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Protein-altering variants at copy 
number-variable regions influence  
diverse human phenotypes

Margaux L. A. Hujoel    1,2,3 , Robert E. Handsaker    3,4,5, 
Maxwell A. Sherman    1,2,3,6,11, Nolan Kamitaki    1,2,3,7, Alison R. Barton    1,2,7,12, 
Ronen E. Mukamel1,2,3, Chikashi Terao    8,9,10, Steven A. McCarroll3,4,5 & 
Po-Ru Loh    1,2,3 

Copy number variants (CNVs) are among the largest genetic variants, yet 
CNVs have not been effectively ascertained in most genetic association 
studies. Here we ascertained protein-altering CNVs from UK Biobank 
whole-exome sequencing data (n = 468,570) using haplotype-informed 
methods capable of detecting subexonic CNVs and variation within 
segmental duplications. Incorporating CNVs into analyses of rare variants 
predicted to cause gene loss of function (LOF) identified 100 associations 
of predicted LOF variants with 41 quantitative traits. A low-frequency 
partial deletion of RGL3 exon 6 conferred one of the strongest protective 
effects of gene LOF on hypertension risk (odds ratio = 0.86 (0.82–0.90)). 
Protein-coding variation in rapidly evolving gene families within segmental 
duplications—previously invisible to most analysis methods—generated 
some of the human genome’s largest contributions to variation in type 2 
diabetes risk, chronotype and blood cell traits. These results illustrate the 
potential for new genetic insights from genomic variation that has escaped 
large-scale analysis to date.

Genomic structural variants (SVs), which modify from 50 base pairs 
to megabases of DNA, account for most base pairs of variation in each 
human genome1. Recent major efforts to study structural variation in 
human genomes elucidated the landscape and mutational origins of 
SVs by ascertaining SVs from short-read sequencing of many thousands 
of individuals2,3 and long-read sequencing of tens of individuals4,5.

Copy number variants (CNVs) are an important class of SVs with 
unique functional consequences (for example, by modifying the dos-
age of genes or regulatory elements). Assessing the impact of CNVs on 
human phenotypes requires genotyping CNVs in large well-phenotyped 
cohorts. This has been possible for larger CNVs detectable from the 
SNP array and whole-exome sequencing (WES) data generated at 
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Rare large-effect CNVs implicate new gene–trait relationships
This resource of protein-altering copy number variation in the UKB 
made it possible to discover new links between genetic variation 
and human phenotypes. To do so, we analyzed CNVs for association  
with 57 heritable quantitative traits (reflecting a broad spectrum of bio-
logical processes; Supplementary Data 1) using linear mixed models25,26. 
We performed two sets of association analyses (Extended Data Fig. 1): 
(1) CNV-only analyses, which identified 180 CNV–trait associations 
(P < 5 × 10−8) probably driven by nonsyndromic CNVs (Fig. 2a and Sup-
plementary Data 2); and (2) gene-level burden analyses that collapsed  
all types of pLOF variants (nonsyndromic CNVs, single-nucleotide  
variants (SNVs) and indels) to maximize power to detect rare LOF 
effects. The burden analyses identified 100 pLOF gene–trait asso-
ciations (P < 5 × 10−8) undetectable from the analyses of pLOF  
SNVs and indels alone, demonstrating the benefit of incorporating 
CNVs in burden analyses (+20% increase in associations; Fig. 2b and  
Supplementary Data 3).

Several of these associations implicated new gene–trait relation-
ships, even for well-studied traits such as height for which common 
variant association studies have reached saturation27. These included 
strong height-reducing effects (>1 s.d.) of ultrarare pLOF variants 
(combined allele frequency (AF) < 0.0001) in CHSY1, which encodes an 
enzyme that synthesizes chondroitin sulfate (a structural component 
of cartilage), UHRF1, which encodes an E3 ubiquitin ligase that shares 
structural homology with UHRF2 (recently implicated by our previous 
work9) and CDK6, which harbors one of the strongest common vari-
ant associations with height28. Rare pLOF variants in two other genes 
exhibited moderate height-reducing effects (−0.5 s.d.): USP14, which 
encodes a ubiquitin-specific protease and PRKG2, which was recently 
implicated in autosomal recessive acromesomelic dysplasia29.

Another height association only discovered using CNVs involved 
CCNF, at which a rare duplication spanning a single 107-bp exon 
accounted for more pLOF events than all other CNVs, SNVs and 
indels combined (Fig. 2c). Validation using available UKB WGS data 
(n = 200,000) confirmed this CNV as a tandem duplication that was 
called from WES with 100% precision and 95% recall, illustrating the 
efficacy of haplotype-informed CNV detection (Extended Data Fig. 2a,b 
and Supplementary Note). CCNF pLOF CNVs associated with a moder-
ate decrease in height (−0.4 ± 0.1 s.d., P = 5.2 × 10−12) and appeared to 
have a pleiotropic effect on erythrocyte traits (Fig. 2d), motivating 
further study of this gene and its product, cyclin F.

While further work will be needed to confirm these findings  
and establish causality, two additional analyses provided evidence 
supporting their robustness. First, across the 15 height associations 
discovered only when considering pLOF CNVs, the effect sizes of pLOF 
CNVs exhibited broad consistency with those of pLOF SNVs and indels 
(Fig. 2e); this consistency held across traits (Extended Data Fig. 3). 
Second, for seven height-associated pLOF CNVs that affected genes 
not previously identified either by large-scale pLOF SNV/indel burden 
analyses23,30 or CNV analyses9, we attempted replication in the BioBank 
Japan (BBJ)31, observing broadly consistent effect sizes for the five genes 
with at least five pLOF CNV carriers in the BBJ (Fig. 2f).

RGL3 LOF is associated with reduced hypertension risk
A low-frequency (AF = 0.9%) deletion of part of exon 6 of the RGL3 
gene was associated with lower blood pressure (BP) (−0.11 ± 0.01 s.d.; 
P = 6.1 × 10−23) and decreased hypertension risk (odds ratio (OR) = 0.86 
(0.82–0.90); Fig. 3a,b and Supplementary Table 3) as well as decreased 
serum calcium (−0.08 ± 0.01 s.d.; P = 6.0 × 10−11; Supplementary Data 2).  
Closer examination of this CNV showed it to be a 1.1-kb deletion present 
in 8,117 UKB participants that intersects only 55 bp of coding sequence 
(Fig. 3c and Extended Data Fig. 2c), yet had been successfully called 
with 99.9% precision and 88% recall (based on breakpoint-based 
follow-up analysis; Supplementary Note). This association was repli-
cated in the All of Us (AoU) cohort (n = 245,394) with a consistent 

scale by biobank projects and consortia6–11. However, the effects of 
kilobase-scale and smaller CNVs, which comprise most CNVs1,5, have 
remained largely hidden, requiring analyses of whole-genome sequenc-
ing (WGS) datasets12,13. Such analyses demonstrated the important 
influences of CNVs (and other SVs) on gene expression14,15 but have only 
recently begun reaching the scale necessary to detect associations with 
human phenotypes16–19.

We sought to leverage population genetic principles to address 
this challenge for protein-altering CNVs. Studies of CNVs classi-
cally focused on large, extremely rare CNVs that recurred ab initio in  
different individuals or families20; most such CNVs affected many 
genes, making it hard to discern the mechanism according to which 
they affected phenotypes. In contrast, far more CNVs are inherited  
by many people from common ancestors; these CNVs, which are  
generally smaller but can have disabling effects on specific, individual 
genes (and thus interpretable, specific effects on human biology),  
have often gone undetected. As such CNVs are inherited by descent 
from common ancestors, we hypothesized that the additional informa-
tion provided by SNP haplotypes9,21 could enable the analyses of abun-
dant exome sequencing data to detect even small copy number-altering 
CNVs within individual protein-coding genes, including genes within 
multicopy and segmental duplication regions. We applied this approach 
to explore the impacts of protein-altering CNVs on the approximately 
500,000 research participants in the UK Biobank (UKB)22,23.

Results
Haplotype-informed detection of rare protein-altering CNVs
We first sought to sensitively detect rare protein-altering CNVs of all 
sizes, including CNVs that affected single exons, from UKB exome 
sequencing data (n = 468,570). To enable detection at this resolution, 
we used a computational approach that can integrate information 
across individuals who share extended SNP haplotypes (Fig. 1a). Because 
CNVs inherited according to descent from common ancestors tend to 
be inherited on a shared SNP haplotype, analyzing such individuals 
together increases detection sensitivity (Fig. 1a). We previously used this 
approach to detect CNVs from genotyping array intensity data (while 
retaining sensitivity to larger de novo CNVs)9; in this study, we adapted 
the approach to model exome sequencing read counts using nega-
tive binomial distributions with sample-specific and region-specific 
parameters (Methods). Importantly, leveraging haplotype-sharing 
information enabled analysis at 100-bp resolution, allowing detection 
of small CNVs that only partially overlap single exons (Fig. 1a).

We applied this approach to identify CNVs in the full UKB cohort, 
focusing our main analyses on 454,682 participants with European 
ancestry to avoid confounding in subsequent association analyses. We 
identified an average of 93.4 CNVs per individual (65.7 deletions and 
27.7 duplications), roughly half of which were short deletions called 
across intervals of 500 bp or less (Fig. 1b and Supplementary Table 1). 
This represented a twofold increase compared to a recent analysis  
of an interim UKB WES release (n = 200,000)10. Validation using  
WGS data for 100 participants indicated that false positives were  
well controlled at less than 10%, with precision improving modestly 
with CNV size (Fig. 1c, Supplementary Table 2 and Methods). Most 
deletions and roughly half of duplications affected at most one exon 
(Fig. 1d), including some CNVs identified using only off-target reads 
that did not intersect any exons.

The most impactful variants were uncommon: across 18,651 genes, 
whole-gene duplications and CNVs predicted to cause loss of func-
tion (pLOF) were identified in a median of eight and 11 individuals, 
respectively, with observed counts decreasing with increasing gene 
constraint (Fig. 1e). When focusing on genes rarely altered by such 
events, a mean of 4.4 genes per individual were affected (1.8 genes 
for whole-gene duplications and 2.6 genes for pLOF CNVs) (Fig. 1f), 
indicating improved sensitivity compared to state-of-the-art methods 
for rare CNV detection24.
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decrease in hypertension risk (OR = 0.83 (0.75–0.92), P = 0.00026; 
Extended Data Fig. 2d and Supplementary Table 4a). The strongest 
BP association at this locus was attained by a common RGL3 missense 
variant (rs167479; AF = 47%) independent of the deletion (r2 = 0.005; 
Fig. 3a). Conditioning on rs167479 resulted in the deletion becom-
ing the lead variant (Fig. 3a), supporting the causality of both RGL3  
coding variants and explaining a previously reported association  
of an intronic SNP in RAB3D (rs55670943, 76 kb downstream32) that 
best tags the deletion (r2 = 0.66).

The deletion variant had a much larger effect on BP than the  
missense variant, similar to the effect of a rare RGL3 stop gain (Fig. 3b), 
suggesting that it causes loss of RGL3 function. Analysis of RNA sequenc-
ing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) pro-
ject33 provided insight into the transcriptional basis for this effect: 
carriers of the deletion, which removes the exon 6 splice acceptor, exhib-
ited splicing into a new splice acceptor upstream of the deletion (Fig. 3c), 
translating to an inframe substitution of a new 23-amino acid sequence 
for a 19-amino acid segment of RGL3. Further work will be required to 
determine whether the modified protein is completely dysfunctional 
or whether the apparent LOF effect is mediated in part by reduced 
expression of RGL3 alleles carrying the deletion (Supplementary Note).

Intriguingly, the BP-lowering effect of the deletion in RGL3 is 
one of the strongest such effects among all coding variants genome- 
wide (Fig. 3d); knockout of RGL3 is likely well tolerated based on 
the presence of 37 UKB participants homozygous for the deletion 
who appeared to be generally healthy (Supplementary Note). These 
observations raise the possibility that RGL3, or a pathway in which 
it functions, could be an appealing target for antihypertensive  
drug development, motivating further study of RGL3 function.

Identifying the impacts of common coding copy number 
variation
In addition to the genetic effects above, in uniquely mappable regions 
of the human genome, potentially important effects on human biology 
could arise within rapidly evolving gene families shaped by extensive 
recent gene duplication and divergence. The analytical technique  
above was designed to detect rare protein-altering CNVs within  
mappable regions. To enable exploration of common coding 
copy number variation, including abundant variation within seg-
mental duplications34, we developed another approach that first  
identifies genomic regions that harbor common copy number varia-
tion (based on correlated WES read depth among parent–child trios)  
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Fig. 1 | Haplotype-informed CNV detection from UKB whole-exome 
sequencing data. a, This approach improved the power to detect CNVs 
by analyzing WES read-depth data from an individual together with the 
corresponding data from individuals sharing extended SNP haplotypes 
(‘haplotype neighbors’), facilitating analysis at a resolution of 100-bp bins.  
In contrast, standard approaches analyze data from an individual alone, generally 
at exon-level resolution. b, Average number of CNVs called per UKB participant, 
subdivided according to copy number change (deletion or duplication) and 

call length. c, Validation rate of CNV calls based on the analysis of WGS data for 
100 UKB participants. d, Average numbers of CNVs called per UKB participant 
affecting the given numbers of genes or exons. e, Distributions (across 
increasingly constrained gene sets) of observed counts of pLOF deletions and 
whole-gene duplications in 487,205 UKB participants. LOEUF, LOF observed/
expected upper bound fraction. Center, median; box edges, 25th and 75th 
percentiles; whiskers, 5th and 95th percentiles. f, Fractions of UKB participants 
with the given numbers of genes affected by rare CNVs.
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and then measures copy number in these regions by leveraging  
haplotype sharing to denoise read depth-derived estimates. This 
approach generalizes the techniques we recently developed to study 
variable number tandem repeat (VNTR) polymorphisms21; here, we 
developed new algorithms to analyze a much larger set of CNV regions 
(Methods).

This approach detected 41,042 genomic regions (defined at the 
resolution of 100-bp segments, exons or previously reported CNVs) 
with evidence of common copy number-altering structural variation. 
These commonly copy number-variable regions overlapped coding 
exons of 11% of autosomal genes, which tended to have lower prob-
ability of LOF intolerance (average pLOF intolerance = 0.16 across such 
genes versus 0.25 across genes not impacted by common copy-altering 
SVs; Supplementary Table 5).

Measuring copy number variation in these regions, many of which 
are invisible to large-scale genetic analysis pipelines, provided a unique 
opportunity to search for associations with phenotypic variation in the 
UKB. Given the difficulty of modeling potentially complex structural 

variation in such regions, compounded with the challenge of analyzing 
short-read alignments in low-mappability regions, we performed asso-
ciation analyses on quantitative, dosage-like measurements derived 
from read depth rather than attempting to call discrete genotypes 
(Extended Data Fig. 1). We reasoned that while these measurements 
might only roughly represent SV alleles, association signals could still 
point to phenotypically important SV regions meriting more careful 
follow-up.

This strategy proved fruitful: association analyses with 57 
quantitative traits identified 375 associations at 99 loci not explain-
able by linkage disequilibrium (LD) to nearby SNPs (Supplementary  
Data 4), recovering strong VNTR–phenotype associations we recently 
reported (including a 39-bp coding repeat in GP1BA associated  
with platelet traits35; P = 1.1 × 10−133), and revealing several new loci 
involving multicopy variation poorly tagged by SNPs. Follow-up  
analyses of the most intriguing associations, detailed below, enabled 
further exploration of genetic variation at these loci and its influences 
on human health.
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associations (P < 5 × 10−8) per trait, colored according to phenotype category, 
with darker shading corresponding to associations detectable only when 
including pLOF CNVs (that is, P > 5 × 10−8 for burden masks considering only 
SNVs and indels). P values are provided in Supplementary Data 3. c, Genomic 
locations of CCNF pLOF CNV calls; boxed calls correspond to the rare duplication 

spanning a single 107-bp exon. d, Effect sizes of CCNF pLOF CNVs for height and 
erythrocyte traits. MCH, mean corpuscular hemoglobin; MCV, mean corpuscular 
volume; MRV, mean reticulocyte volume; MSCV, mean sphered cell volume.  
e, Consistency of height effect sizes of pLOF CNVs with those of pLOF SNVs and 
indels. f, Replication of height effect sizes of pLOF CNVs in the BBJ (for newly 
implicated genes with at least five pLOF CNV carriers in the BBJ). The error bars 
represent the 95% confidence intervals (CIs). Sample sizes for the UKB (d–f) are 
reported in Supplementary Data 1; n = 179,420 for the BBJ.
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Common variants in segmental duplications modulate type 2 
diabetes risk
Copy number variation at 7q22.1 and in CTRB2 associated with HbA1c 
and type 2 diabetes (T2D), contributing two of the top 20 T2D-associated 
loci in UKB (Fig. 4a). The 7q22.1 locus, which also generated the human 
genome’s strongest association with chronotype (Fig. 4b), contains a 
99-kb segmental duplication that is among the largest, most polymor-
phic CNVs in the human genome5 and encompasses four protein-coding 
genes (Fig. 4c). While copy number of the segment (typically ranging 
from two to 14 copies per diploid genome) associated with T2D status 
(P = 2.4 × 10−13 in the UKB; Fig. 4c,d; replication P = 2.0 × 10−4 in AoU; 
Supplementary Table 4b), we wondered whether this signal might 
be driven by paralogous sequence variants (PSVs), that is, SNPs and 
indels carried on one or more copies of the 99-kb segment within each 
allele. To genotype such variation, which is inaccessible to conventional 
analysis of short-read data, we first roughly estimated PSV genotypes 
from WGS read alignments (available for 200,018 UKB participants18) 
and then adapted our haplotype-informed approach to denoise PSV 
genotypes and impute them into the remainder of the UKB cohort 
(Extended Data Fig. 4 and Methods).

Intriguingly, testing PSVs at 7q22.1 for association with T2D and 
chronotype identified a common missense PSV in RASA4 (encoding Ras 
GTPase-activating protein 4) as the most strongly associated variant for 
T2D and second strongest for chronotype (P = 1.3 × 10−25 and 2.6 × 10−72, 
respectively; Supplementary Table 6a; T2D replication P = 2.8 × 10−5 in 
AoU; Supplementary Table 4b). For both phenotypes, the number of 
copies of RASA4 with this variant (encoding a Y731C substitution in the 
canonical transcript) associated much more strongly than copy num-
ber of the 99-kb segment (Fig. 4c); for chronotype, the RASA4 missense 
PSV associated far more strongly than variants at all other loci across 

the genome (Fig. 4b). The contribution of this locus to each phenotype 
had largely been hidden from previous analyses because SNPs flanking 
the segmental duplication poorly tag the multicopy variation within 
it (Fig. 4c). The total number of copies of RASA4 carrying the Y731C 
missense PSV (typically ranging from 0 to 3 per individual; Fig. 4d) 
was associated with increasing T2D risk and ‘eveningness’ (that is, later 
preferred bedtime and rising time) (Fig. 4e), with a 1.30-fold (1.21–1.39) 
range in odds of T2D. This PSV is a strong candidate causal variant given 
its protein-altering effect and support from statistical fine-mapping 
(Supplementary Note); however, further study is required to determine 
whether it indeed underlies one or both of these associations, and if 
so, how this variant affects RASA4 function.

The CTRB2 gene encodes the chymotrypsinogen B2 protein, 
which is primarily produced in the pancreas, is converted into the 
active enzyme chymotrypsin B through enzymatic cleavage in the 
small intestine and has an important role in the digestive process36. 
A common 584-bp deletion (AF = 0.08) spanning exon 6 of CTRB2 
underlies another top locus for T2D (Fig. 4a,f). This deletion falls 
within a region of high homology to CTRB1, but our analysis pipeline 
successfully captured the copy number variability of exon 6 from 
WES read depth despite the low mappability (Fig. 4g,h). The dele-
tion associated with decreased T2D risk (P = 1.6 × 10−16, strongest at 
the locus; OR = 0.86 (0.82–0.89)), replicating in AoU (P = 2.3 × 10−5; 
Extended Data Fig. 2e and Supplementary Table 4c). We also replicated 
a recently reported association of the deletion (which was shown to 
impair chymotrypsin B2 function and localization) with increased 
risk of pancreatic cancer37 (P = 4.2 × 10−12; Fig. 4i and Supplementary 
Table 6b). The opposite effect direction of these associations is nota-
ble given the overall epidemiological association of T2D with increased 
pancreatic cancer risk38.
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Segmental duplication variants associate strongly with  
blood traits
Copy number variation in two other segmental duplication regions 
produced two of the top five independent associations with  
count of basophils (Fig. 5a), a type of white blood cell that has a role in 
the immune response and the regulation of allergic reactions. In this 
study, our analysis helped to recognize powerful effects within the 

FCGR3 gene family, which encodes a family of cell surface receptors 
found on several immune cells, including neutrophils, macrophages 
and natural killer cells; FCGRs have a crucial role in the immune 
response by recognizing and binding to the Fc portion of immuno-
globulins (antibodies) that are bound to antigens39. In the UKB, the copy 
number of FCGR3B (which our analysis disambiguated from that of its 
paralog, FCGR3A) associated strongly with increased basophil count 
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(P = 1.4 × 10−82, far exceeding the associations of nearby SNPs, which 
poorly tagged the recurrent CNV; Fig. 5b,c). Analysis of FCGR3B plasma 
protein levels corroborated the FCGR3B genotypes (Extended Data 
Fig. 5). FCGR3B deletion has previously been associated with several 
autoimmune disorders39–41; in this study, decreasing FCGR3B gene dos-
age was also associated with an increasing risk of chronic obstructive 
pulmonary disease (P = 7.5 × 10−7; Fig. 5d and Supplementary Table 6c). 

The FCGR locus on 1q23.3 contains many functional variants, including 
multiple distinct CNVs39, such that while the basophil count association 
is driven by the FCGR3B copy number, other associations at this locus 
(Supplementary Data 4) may reflect other causal variants.

We also recognized potent effects within the family of alpha- 
defensin genes, a rapidly evolving gene family that encodes a class  
of small, cationic peptides that are part of the innate immune  
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system and have a crucial role in host defense against microbial infec-
tions42. Variation at the alpha-defensin gene cluster at 8p23.1 asso-
ciated strongly with basophil count (Fig. 5a,e) as well as monocyte 
count (Fig. 5e). Alleles at this locus contain a highly variable number 
of copies of a 19-kb repeat, each containing a single alpha-defensin 
gene43. Analysis of PSVs within this region (which had not previously 
been studied at scale, similar to the RASA4 locus at 7q22.1) suggested 
that the number of copies of the 19-kb segment carrying a tightly linked 
five-SNP haplotype within an Alu element inside the repeat, rather than 
the total number of copies of the repeat, might drive the association 
(Fig. 5e and Supplementary Table 6d). The number of copies of this 
repeat type typically ranged from 0 to 5 per individual (Fig. 5f) and 
associated with steadily increasing monocyte count and decreasing 
basophil count (Fig. 5g); however, we caution that a functional conse-
quence of the five-SNP haplotype is not immediately clear, unlike for 
the protein-coding variants at other loci we have highlighted.

SIGLEC14–SIGLEC5 gene fusion demonstrates tissue-specific 
promoter activity
A common, pleiotropic CNV at the SIGLEC14–SIGLEC5 locus provided 
a unique opportunity to isolate a tissue-specific effect of a promoter 
element. A deletion allele at this locus that is particularly common in 
East Asians creates a fusion gene in which SIGLEC5 is placed under the 

control of the SIGLEC14 promoter44 (Fig. 6a,b). In the UKB, this CNV 
is associated with several blood cell indices and serum biomarkers 
(P = 1.5 × 10−8 to 1.7 × 10−37; Fig. 6c, Supplementary Data 4 and Supple-
mentary Table 7a). Follow-up analysis in the GTEx dataset revealed 
an unusually tissue-specific effect of the fusion on SIGLEC5 expres-
sion, with the effect size varying greatly in magnitude and even direc-
tion across tissues (Fig. 6d). This phenomenon was explained by the  
further observation that the fusion’s tissue-specific effects on  
SIGLEC5 expression tracked with relative efficiency the SIGLEC14  
and SIGLEC5 promoters across tissues (measured by the relative  
expression of SIGLEC14 and SIGLEC5 in individuals homozygous for  
the reference allele), such that the variable effect of the fusion was  
in fact consistent with its substitution of the SIGLEC14 promoter in 
place of the SIGLEC5 promoter (Fig. 6d and Supplementary Table 7b).

Other notable results included two strong associations with  
leukocyte telomere length, one involving an 84-bp deletion within an 
alternative last exon of ZNF208 (P = 1.7 × 10−53) and the other involving 
difficult-to-resolve copy number variation in the CLEC18A/CLEC18B/C
LEC18C gene family (P = 1.0 × 10−40), which exhibits complex structural 
variation across two loci more than 4 Mb apart16. Future analyses of 
long-read datasets will be better able to probe variation at such seg-
mental duplications and elucidate phenotypic consequences hinted 
at in this study.
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Discussion
These results illustrate the phenotypic impact of protein-altering CNVs 
hidden from large-scale analyses to date. In this study, we observed 
that such variants include top genetic influences on human pheno-
types that have eluded genetic association studies despite steadily 
increasing sample sizes and phenotyping precision. We further iden-
tified new gene–trait relationships implicated by rare CNVs that, for 
many genes, account for a substantial proportion of LOF events. We 
caution that some of these associations still need replication; in this 
study, we replicated a subset of the associations and observed cor-
roborating evidence from allelic series for others. Additionally, while 
the protein-coding variants we have implicated have clear effects on 
amino acid sequence or gene dosage, experimental work is needed to 
confirm causality of these variants and understand how they influence 
function and ultimately phenotype.

Our analyses, based on exome sequencing of 468,570 individuals 
in the UKB, are far from comprehensive. While our haplotype-informed 
approach accurately recognized several subexonic CNVs that we linked to 
phenotypes, we expect that it missed very rare short CNVs carried by only 
a few UKB participants. We also did not attempt to study shorter tandem 
repeats, which require specialized techniques45. Additionally, our analysis 
of common CNV regions—via rough quantifications of copy number—
imperfectly modeled complex, multiallelic structural variation. More 
precise genotyping of variation in such regions is needed, particularly 
in segmental duplications (approximately 7% of the human genome46). 
Our analyses were also limited in scope by the generally healthy,  
predominantly European ancestry composition of the UKB cohort. A 
search for associations between disease traits and gene-inactivating 
variants (including CNVs) only recovered known Mendelian disease genes 
(Supplementary Data 5), reflecting the limited power to study rare diseases 
in population cohorts. Finally, while we prioritized compelling associa-
tions to highlight in this article using a stringent statistical fine-mapping 
filter, relaxing this filter would yield many more associations.

We anticipate that expanding genome sequencing projects, 
including some that will use long reads17,47, will overcome many of these 
limitations, and we look forward to further insights into phenotypic 
consequences of both coding and noncoding structural polymor-
phisms in the years ahead.
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Methods
Ethics
This research complies with all relevant ethical regulations. The study 
protocol was determined to be not human subjects research by the 
Broad Institute Office of Research Subject Protection and the Partners 
HealthCare Human Research Committee as all data analyzed were 
previously collected and de-identified.

UKB genetic data
WES data were previously generated for approximately 470,000 UKB 
participants23. We analyzed these data together with SNP haplotypes we 
previously generated for 487,409 participants48 in the UKB SNP array 
and imputation data set (imp_v3)22. We performed haplotype-informed 
CNV detection on all UKB participants with SNP haplotypes, including 
468,570 participants with WES data passing quality control and the 
remaining 3% of the imp_v3 samples using an imputation approach 
(Supplementary Note). We also analyzed WGS data available for 
200,018 participants18 in validation and follow-up analyses of PSVs 
within segmental duplications. We focused our primary analyses on 
individuals of self-reported White ethnicity (previously shown to 
be predominantly of European genetic ancestry22), excluding indi-
viduals with trisomy 21, blood cancer, with aberrantly many CNV calls 
and those who had withdrawn at the time of our study (Supplemen-
tary Note), resulting in 454,682 participants being included in main 
analyses.

UKB phenotype data
We primarily analyzed 57 heritable quantitative traits measured on 
most UKB participants (Supplementary Data 1), including 56 quan-
titative traits we recently analyzed9 along with telomere length. We 
reprocessed blood traits using a slightly modified pipe line in which we 
did not perform outlier removal because some rare variants produce 
extreme blood indices: that is, within strata of sex and menopause sta-
tus, we performed inverse normal transformation and then regressed 
out age, ethnicity, alcohol use, smoking status, height and body mass 
index9. We processed the telomere length phenotype (Data-Field 
22192)49 by applying inverse normal transformation. The remaining 
traits were processed as described previously9.

In secondary analyses (for example, follow-up at the loci of inter-
est), we analyzed additional traits including binary disease outcomes 
derived from self-report (touchscreen questionnaire at assessment), 
hospital inpatient records, and cancer and death registries, as well 
as plasma protein abundance for FCGR3B. In particular, we analyzed 
hypertension (174,773 cases and 279,891 controls; first-occurrence 
Data-Field 131286), T2D (21,292 cases and 432,324 controls; derived 
from self-reported, doctor-diagnosed T2D Data-Field 2443, accord-
ing to ref. 50), pancreatic cancer (1,816 cases and 452,848 controls; 
International Statistical Classification of Diseases and Related Health 
Problems, 10th revision code C25 from hospital records and cancer 
and death registries) and COPD (23,875 cases and 430,789 controls; 
first-occurrence Data-Field 131492). Further details are provided in 
the Supplementary Note.

Replication datasets
We replicated key genetic associations in the BBJ31 and AoU47  
cohorts. For rare pLOF CNV associations with height, we performed  
replication analyses in the BBJ (n = 179,420) using a SNP array-based 
CNV call set we generated previously9. For associations with hyper-
tension (at RGL3) and T2D (at RASA4 and CTRB2), we performed 
replication in AoU by genotyping each variant under consideration  
from high-coverage WGS data (n = 245,394 in the AoU v7 release). 
Additionally, for variants with potential transcriptional effects  
(at RGL3 and SIGLEC14/SIGLEC5), we performed follow-up in the 
GTEx33 dataset (n = 838 in GTEx v8). Details are provided in the  
Supple mentary Note.

Overview of hidden Markov model method for 
haplotype-informed rare CNV detection
CNV calling from exome sequencing data typically involves searching 
for consistent increases or consistent decreases in a sample’s WES 
read coverage across a series of captured genomic regions, indicating 
the presence of a duplication or a deletion. This requires accurately 
modeling WES read coverage, which can be substantially influenced by 
technical differences in exome capture that may vary across samples 
and across genomic regions (for example, because of heterogenous 
effects of local GC content). While exome sequencing of the UKB was 
performed relatively uniformly across samples, exome capture was  
performed using a different Integrated DNA Technologies oligo-
nucleotide lot for the first 50,000 samples51 versus the remainder of 
the cohort, requiring careful treatment of this batch covariate.

Our overall strategy to account for technical variation in WES read 
coverage (both across and within oligonucleotide lots) was to estimate 
sample-specific baseline models of expected read depth by identifying 
sets of reference samples with best-matching exome-wide coverage pro-
files21. We analyzed WES read coverage at the resolution of 100-bp bins, 
restricting to bins with coverage in both oligonucleotide lots, similar  
coverage across the two oligonucleotide lots and sufficient mappabil-
ity (requiring most aligned reads to have positive mapping quality). 
To optimize for robust analysis of rare CNVs, we further restricted to 
bins in which we could accurately calibrate normalized read coverage 
to absolute copy number, either because a bin was rarely affected by 
copy number variation or because discrete copy number states could 
be confidently identified.

While most WES-based CNV callers analyze each sample indepen-
dently after performing normalization, we reasoned that we could 
increase CNV detection sensitivity by integrating WES data across 
individuals likely to have co-inherited a large genomic tract (as in our 
recent SNP array-based CNV analysis9). Similar to our previous work, we 
used a hidden Markov model to call CNVs in this haplotype-informed 
way, integrating information regarding copy number state across an 
individual and up to ten ‘haplotype neighbors’ with expected time to 
most recent common ancestor less than a selected value (equivalently, 
if the length of identity by descent (IBD) sharing exceeded a threshold).

In more detail, for each 100-bp bin, for the individual and 
each haplotype neighbor, we used negative binomial distributions 
with sample-specific and region-specific parameters to estimate a 
Bayes factor for deletion and duplication states based on counts of 
read alignments within the 100-bp bin for each sample. For a given 
threshold on the minimum length of IBD sharing, we computed a 
haplotype-informed combined Bayes factor by multiplying Bayes 
factors across the target individual and all haplotype neighbors with 
IBD sharing passing the threshold. We ran this analysis using a set of 
different IBD length thresholds (trading off sensitivity to more recent 
versus older mutations) and compiled calls made across these IBD 
parameter values.

To obtain a high-quality CNV call set, we performed subsequent 
filtering of various classes of calls that tended to be of lower quality 
based on inspection of WES and WGS read alignments at initial calls in 
a pilot analysis. We also removed individuals with more than 300 CNV 
calls. For downstream association analyses, we masked calls on any 
chromosome in which we had previously called a mosaic CNV48. Fur-
ther methodological details are available in the Supplementary Note.

Validation of HMM-based CNV call set
To benchmark the precision of the HMM-based CNV call set, we ana-
lyzed independent WGS data for 100 individuals. For each of these 
individuals, we assessed whether or not WGS read depth was higher 
(respectively, lower) than expected within the putative duplications 
(respectively, deletions) called. We estimated the validation rate as 
the difference between the fraction of calls with WGS read depth in the 
correct direction versus the opposite direction, reasoning that false 
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positive calls should be equally likely to have WGS read depth in either 
direction by chance. We also determined precision and recall for the 
CCNF exon 3 duplication and RGL3 exon 6 partial deletion by directly 
genotyping these CNVs using discordant read and breakpoint-based 
analyses, respectively (Supplementary Note).

Overview of haplotype-informed analysis of common 
copy-altering SVs
The HMM pipeline above was designed primarily to robustly call rare 
CNVs from exome sequencing data. HMM approaches for this task 
directly model the read coverage generated from discrete copy num-
ber states, which can aid statistical power and breakpoint precision 
when the model is accurate. However, such approaches can produce 
suboptimal performance when model assumptions are violated. Model 
violations are especially prone to occur at common CNV loci (where 
calibration of read depth to copy number states can be challenging) 
and in segmental duplications (where high sequence homology can 
influence read mapping in ways that cause copy number alterations to 
have unexpected effects on read depth, and loci may contain multiple 
complex SVs). For these reasons, genotyping common CNVs from 
short-read sequencing, especially within segmental duplications, is 
technically challenging and requires careful modeling52, such that  
general-purpose SV analysis pipelines deployed at scale have had  
limited ability to assess such variation3,24.

Despite these challenges, short-read sequencing read depth, 
including from WES, contains useful signatures of common CNVs 
and other copy-altering SVs, such as VNTRs. We reasoned that, even 
if precisely characterizing such variants from WES is intractable, the 
signals of copy number variation contained in WES read-depth data 
could still provide approximations of structural variation that, while 
rough, could enable discovery of CNV loci associated with phenotypes, 
after which the variants involved could be precisely resolved through 
follow-up analyses of WGS or long-read data. Therefore, we developed 
a complementary analysis pipeline to roughly estimate copy number 
variation across individuals (measured on a continuous rather than 
discrete scale) from WES read coverage at a broad set of predefined 
genomic regions (including 100-bp bins, exons and previously reported 
CNVs), extending methods we recently developed to analyze VNTRs21.

For each genomic region under consideration, we counted the WES 
reads aligned to the segment and normalized these read counts using 
sample-specific reference panels with matched exome-wide coverage 
profiles (as in the first step of the HMM pipeline). Unlike the HMM pipe-
line, we considered low-mappability regions (for example, within seg-
mental duplications) and we generated two read count measurements 
per region, one counting all reads regardless of mapping quality and the 
other counting only reads with positive mapping quality. We then evalu-
ated which of these measurements appeared to be heritable, potentially 
reflecting common CNVs or other copy-altering SVs in the region. To do 
so, we computed mid-parent versus child correlations of normalized 
read counts in 704 trios, restricting further analysis to 100-bp bins and 
exons with significant correlation and all previously reported CNVs.

For each WES read count measurement that potentially repre-
sented common copy number variation in a region, we used long shared 
SNP haplotypes to statistically phase and simultaneously denoise the 
values measured across the UKB WES samples and also impute into 
individuals without WES data. To do so, we adapted the computational 
methods we previously used to analyze VNTRs21, improving scalability 
by using the positional Burrows–Wheeler transform53 to rapidly iden-
tify shared haplotypes. To catch instances in which exome capture 
bias rather than copy number variation was responsible for heritable 
variation in WES coverage (for example, short haplotypes containing 
several SNPs colocated within a few hundred base pairs that influence 
capture efficiency), we restricted to regions for which WES and WGS 
read-depth measurements exhibited consistent signal. Further details 
are available in the Supplementary Note.

Overview of haplotype-informed analysis of PSVs
Beyond measuring copy number at polymorphic segmental dupli-
cations, our computational approach also enabled analysis of PSVs  
within such segments: that is, SNPs and indels present on varying  
numbers of copies of a repeated segment within a single allele. To do 
so, we first roughly estimated PSV genotypes from counts of WGS read 
alignments supporting each base (that is, ‘pileups’) and then adapted 
our haplotype-informed approach to denoise PSV genotypes and 
impute them into the remainder of the UKB cohort (Extended Data 
Fig. 4).

In more detail, for a repeat segment of interest, we first identi-
fied all regions in the GRCh38 reference sequence paralogous to the 
repeat segment and extracted all WGS reads aligning to these regions. 
We then realigned these reads to a new reference containing only one 
copy of the repeat segment plus a small buffer sequence contain-
ing the beginning of a second copy of the same repeat, facilitating 
harmonized ascertainment and genotyping of all common PSVs. 
Specifically, we estimated PSV allele fractions (that is, the fraction 
of repeat units containing a given PSV) from pileup counts, which 
we then converted to absolute estimates of PSV copy number (that 
is, the number of repeat units containing a given PSV) by scaling an 
individual’s total repeat copy number by PSV allele fraction. We then 
used long shared SNP haplotypes to phase PSV copy number and 
impute into individuals without WGS data using the same approach 
we used to analyze common CNVs. Further details are provided in the 
Supplementary Note.

Association testing and statistical fine-mapping
We performed phenotype association analyses on three classes of 
CNVs derived from the HMM-based CNV call set (defined based on  
(1) 100-bp bin overlap, (2) gene overlap and (3) gene pLOF burden), 
as well as the continuous-valued estimates of common copy number 
variation derived from heritable WES coverage (Extended Data Fig. 1).

We conducted association tests for our primary set of 57 quanti-
tative traits using BOLT-LMM25,26 with assessment center, genotyping 
array, WES release (50,000, 20,000, 454,000, 470,000, none), sex, 
age, age squared and 20 genetic principal components included as 
covariates. We fitted the linear mixed model on SNP array-genotyped 
autosomal variants with MAF > 10−4 and missingness lower than 0.1 
and computed association test statistics for the copy number meas-
urements defined above; a similar pipeline produced association test 
statistics for SNP and indel variants imputed by the UKB (the imp_v3 
release22). We included all participants with nonmissing phenotypes 
in the quality controlled European ancestry call set described above. 
We removed associations potentially explainable by LD with imputed 
SNPs and indels within 3 Mb (refs. 9,54) (Supplementary Note).

The associations that survived this filtering represented 
copy-altering SVs—primarily CNVs but also some VNTRs—likely to caus-
ally influence phenotypes. We annotated CNVs on this list as syndromic 
based on a previously curated list of pathogenic CNVs55. For asso-
ciations of particular interest that arose from the analysis of common 
CNVs, we undertook follow-up in the UKB WGS or Human Pangenome 
Reference Consortium long-read assemblies5 to more precisely resolve 
CNVs, after which we refined CNV genotypes (using optimized analyses 
of UKB WES or WGS data) and undertook PSV analyses as necessary. 
Further details on filtering of associations and follow-up analyses at 
loci of interest are provided in the Supplementary Note.

All P values reported for statistical tests throughout this article  
are two-sided and uncorrected for multiple hypothesis testing as we cor-
rected for multiple hypotheses tested by applying Bonferroni-adjusted 
significance thresholds.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
Summary statistics for the CNV–phenotype association tests are avail-
able at https://data.broadinstitute.org/lohlab/UKB_WES_CNV_sum-
stats/ and have been deposited at Zenodo (https://doi.org/10.5281/
zenodo.10529671)56. Access to the following data resources used in this 
study can be obtained by application: UKB (http://www.ukbiobank.
ac.uk/), BioBank Japan (https://biobankjp.org/en/), AoU (https://allofus. 
nih.gov/) and GTEx (via the database of Genotypes and Phenotypes, 
https://www.ncbi.nlm.nih.gov/gap/, accession no. phs000424.v8.p2).

Code availability
The custom code used to perform the haplotype-informed CNV analysis  
of the UKB WES data has been deposited at Zenodo (https://doi.org/ 
10.5281/zenodo.10529671)56. The following open source software 
packages were also used: samtools v.1.11, mosdepth v.0.2.5, bedtools 
v.2.27.1, BLAT v.35, Burrows–Wheeler Aligner v.0.7.17, HTSbox r345, 
PLINK v.1.9, PLINK v.2.0, BOLT-LMM v.2.4.1, REGENIE v.2.2.4, SuSiE 
v.0.12.27 and R v.3.6.3.
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Extended Data Fig. 1 | Overview of primary association analyses of 57 heritable quantitative traits. Categories of variants and CNV measurements tested are 
depicted, and summary numbers of results from each set of association tests that remained after filtering are provided at the bottom.
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Extended Data Fig. 2 | Additional CNV genotyping at key loci. a, Schematic of 
discordant WGS reads that confirm tandem duplications and indicate breakpoint 
locations. b, We genotyped the CCNF exon 3 IED using discordant WGS reads 
(shown for a carrier in UKB) to assess precision and recall of WES-based calls 
from our HMM. c, IGV tracks of WES and WGS alignments for an RGL3 deletion 
carrier. Top, WES features used in optimized breakpoint-based genotyping; 

bottom, independent confirmation of deletion from WGS. d,e, In All of Us (AoU), 
chimeric WGS reads and within-deletion read counts allowed the RGL3 and CTRB2 
deletions to be cleanly genotyped. (The homozygous deletion cluster for RGL3 
contained <20 carriers, so to comply with AoU policy, the Hom-DEL line depicted 
is predicted from the heterozygous cluster).
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Extended Data Fig. 3 | Consistency of effect sizes of pLoF CNV and SNP/indel 
variants across gene-trait associations. Data are shown for all associations 
discovered only upon considering pLoF CNVs (i.e, not reaching significance in 

SNP/indel-only burden tests). The top plot is a merge across all traits, and the 
bottom plots show each phenotype category separately. Error bars are 95% 
confidence intervals. Sample sizes are reported in Supplementary Data 1.
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Extended Data Fig. 4 | Overview of copy-number estimation for paralogous 
sequence variants (PSVs). This figure provides a graphical overview of the 
pipeline we used to estimate copy-numbers of PSVs—that is, SNPs and indels 

carried on one or more copies of a multi-copy segment—from WGS read 
alignments (Supplementary Note, Section 9). We then refined these estimates 
using haplotype-sharing information.
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Extended Data Fig. 5 | Validation of FCGR3B copy number estimation.  
a, Left, normalized protein expression of FCGR3B for each FCGR3B copy-number 
state relative to CN = 2. Estimates and 95% confidence intervals were obtained 
from linear regression analyses of NPX values and then converted to the linear 
scale (2NPX). Right, distribution of normalized protein expression of FCGR3B 
converted to the linear scale (2NPX) for each FCGR3B copy-number state. Counts 
of individuals with each copy-number state are shown above the corresponding 

violin. Boxplots display median value (center line), hinges denote first and third 
quartile (25th and 75th percentile), and whiskers extend from upper (resp. lower) 
hinge to the largest (resp. smallest) value at most 1.5 times the interquartile 
range away from the hinge; all other points are considered outliers and plotted 
individually. b, Scatter plot of normalized WGS and WES read depths at FCGR3B 
for 500 UKB participants. Points are colored based on the estimated FCGR3B 
copy number derived from WES.
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Data collection None

Data analysis Custom code used to perform haplotype-informed CNV analysis of UKB WES data has been deposited at Zenodo (10.5281/zenodo.10529671). 
The following open-source software packages were also used: samtools v1.11, mosdepth v0.2.5, bedtools v2.27.1, BLAT v35, BWA v0.7.17, 
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zenodo.10529671). Access to the following data resources used in this study is obtained by application: UK Biobank (http://www.ukbiobank.ac.uk/), BioBank Japan 
(https://biobankjp.org/en/), All of Us (https://allofus.nih.gov/), GTEx (via dbGaP, https://www.ncbi.nlm.nih.gov/gap/, accession phs000424.v8.p2).
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Reporting on sex and gender We included genetically-determined biological sex as a covariate in analyses.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

We used self-reported ethnic background (UK Biobank Data-Field 21000) to define the primary analysis set and to compare 
allele frequencies across ethnic groupings.

Population characteristics Prospective cohort study (~500,000 individuals from across the United Kingdom); individuals were between 40 and 69 years 
old at recruitment (Sudlow et al. 2015 PLOS Medicine).

Recruitment Recruitment into UK Biobank has been described previously (Sudlow et al. 2015 PLOS Medicine).

Ethics oversight Ethics approval for the UK Biobank study was obtained from the North West Centre for Research Ethics Committee (Bycroft 
et al. 2018 Nature). The present study analyzed de-identified data previously collected by UK Biobank and did not require 
additional ethics oversight.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size We conducted genetic association analyses on 454,682 individuals (all UK Biobank participants of self-reported White ethnicity who were not 
excluded by one of the filters below).

Data exclusions We excluded individuals with trisomy 21, blood cancer, aberrantly many CNV calls, and those who had withdrawn at the time of our study.

Replication We analyzed the All of Us and BioBank Japan data sets to replicate the key associations identified in UK BIobank; all key associations 
replicated. 

Randomization Not applicable to our study; participants were analyzed together and not allocated into groups.

Blinding Not applicable to our study; all data were previously collected, and participants were not allocated into groups.
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