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Clonal hematopoiesis (CH) arises when a substantial proportion of mature
blood cellsis derived from a single hematopoietic stem cell lineage. Using
whole-genome sequencing of 45,510 Icelandic and 130,709 UK Biobank
participants combined with amutational barcode method, we identified
16,306 people with CH. Prevalence approaches 50% in elderly participants.
Smoking demonstrates a dosage-dependent impact onrisk of CH. CH
associates with several smoking-related diseases. Contrary to published
claims, we find no evidence that CH is associated with cardiovascular
disease. We provide evidence that CH is driven by genes that are commonly
mutated in myeloid neoplasia and implicate several new driver genes.

The presence and nature of a driver mutation alters the risk profile for
hematological disorders. Nevertheless, most CH cases have no known driver
mutations. A CH genome-wide association study identified 25loci, including
19 notimplicated previously in CH. Splicing, protein and expression
quantitative trait loci were identified for CD164 and TCLIA.

Clonal hematopoiesis (CH) may be defined as adisproportionate expan-
sion of one or afew clones of hematopoietic stem cells (HSCs) in indi-
viduals with ostensibly normal hematopoiesis'. Hematopoiesis has a
highly polyclonal underpinning in younger individuals, but becomes
increasingly restricted in HSC clonal diversity withadvancing age’. CHis
associated with reduced age-adjusted life expectancy and predisposes

to hematological neoplasia, particularly to myeloid diseases"**. CH has
alsobeenimplicatedin abroad spectrum of nonhematological condi-
tions, ranging from carcinomas to cardiovascular disease (CVD)"*~°.
Peripheral blood sampling can provide a reasonable insight into
the clonal makeup of the recent underlying HSC population. Leuko-
cytes fromnormal blood are predominantly short-lived myeloid cells,
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mostly granulocytes. These cells have high production rates and short
timelags from committed progenitor cells, whichin turnrequire con-
tinual replenishment from HSC or multipotent progenitors'®. Naturally,
thelymphocyticlineages have amuch greater time lag from the under-
lying HSC population. Clonal expansions in CH can show multilineage
involvement extending to lymphocytes, but do not always do so'-.

Perhaps as a result of the proximity of myeloid lineages to the
underlying HSC population, somatic mutations that initiate myeloid
malignancies are thought to arise in the HSC compartment. Similar
mutations can be found in apparently normal but clonally expanded
hematopoietic cells from individuals who appear to be well. In both
cases, the mutations can be traced back to underlying HSC*. We refer
tothemas‘candidate preleukemic driver’ (CPLD) mutations, because of
their propensity to drive CH expansions and consequently to increase
risks of hematological disease.Indeed, the presence of a CPLD mutation
in a blood sample from an evidently healthy individual has, by many
investigators, been used to define the presence of CH**"*, Clearly, and
as pointed out by others', this biases the detection of CH in favor of
genes and mutations that may subsequently lead to the development
of myeloid neoplasia.

As cell populations grow they accumulate mutations, most of
which are presumed to be phenotypicallyinconsequential. Asaresult,
every cloneisuniquely ‘barcoded’ by the somatic mutations that were
presentinthe founder cell at the inception of the clone. If a particular
clone expands sufficiently, its mutational barcode becomes evident in
DNA sequence reads. We have shown through whole-genome sequenc-
ing (WGS) of peripheral blood that clonal expansionsindicative of CH
canbedetected by examining counts of mosaic somatic mutations (if
sufficient care is taken to differentiate them from germline variants
and sequencing errors)’. Thus CH expansions can be identified solely
onthe basis of barcode mutations, irrespective of whether they carry
a CPLD mutation. This method enabled us and others to show that CH
isvery common, if notinevitable, in the elderly’>. Moreover, most CH
casesdonot carry an obvious CPLD mutation. Here we use mutational
barcodesto study the epidemiology and genetics of CHin participants
fromIceland (ISL) and the UK Biobank (UKB) for whom we have gener-
ated extensive WGS data.

Results

Identification of CH cases from WGS in ISL and UKB

We used WGS from 45,510 Icelanders and 130,709 British ancestry
participants from the UKB"'®, Average sequencing depth was 33x for
UKB and 38x for ISL. Participants with prior diagnoses of hematologi-
caldisorders or grossly abnormal hematology measurements on entry
were excluded. Weidentified people with CH based on an evolution of
our mutational barcode strategy'. Mosaic somatic mutation barcodes
were generated by modeling low variant allele fraction (VAF) sequence
reads (Extended Data Fig. 1). To reduce contamination from low-VAF
germline variants and recurrent sequencing errors, we used only indica-
tor mutations that were observed once in each cohort and restricted
in VAF range to 0.10-0.25. Participants with barcodes containing a
number of indicator mutations above a threshold were considered to
have CH. We identified 16,306 people with CH, a prevalence over the
two cohorts of 9.3%.

As anticipated from previous studies, CH was uncommon in
under 45-year-olds, but increased dramatically in frequency thereaf-
ter, approaching 50% by age 80. Both current and previous smoking
substantially increased risk of CH (Extended Data Fig. 1b,c). Pack years
furtherincreased CHrisk (P=8.57 x1077), whereas years since stopped
smoking were protective (P=3.54 x 107'°; Supplementary Table 1),
indicating a dose-dependent relationship between smoking and CH.
While the mechanisms by which age and smoking promote CHare yet to
beelucidated, both factors clearly are potential confoundersin epide-
miological analyses. Participants with CH were at substantially greater
risk of all-cause mortality and of being diagnosed subsequently with a

hematological disorder. Smoking was an independent risk factor for
mortality but not for hematological disorders (Supplementary Table2).

Associations of CH with disease

In case-control analysis, CH had strong associations with both mye-
loid and lymphoid neoplasia (Table 1and Supplementary Table 3). CH
was also associated with existing or subsequent diagnoses of chronic
obstructive pulmonary disease (COPD), lung cancer, peripheral artery
disease (PAD), emphysema and alcohol abuse. These nonhematological
conditions are known to be smoking-related, and their significance was
substantially attenuated once smoking was taken into account. This
suggests that the associations may be due to residual confounding
from various aspects of smoking behavior. Hematological disorder
associations were not similarly attenuated by smoking adjustments.
Analysis restricted to never smokers produced similar conclusions
(Supplementary Table 4).

Case-control analysis revealed no indication of association
between CH and key CVD phenotypes, neitherin UKB norinISL (Supple-
mentary Table 5). Unadjusted for smoking, no CVD phenotype passed
Bonferronisignificance and, once adjusted, none was even nominally
significant. To examine this further, we conducted a time-to-CVD-event
analysisin UKB. We considered also whether CH defined by mutational
barcodes differed inthisrespect from CH containing a CPLD mutation.
Additionally, we examined CHIP as defined using the filtering strategy
recommended in ref. 19,20. In all three instances, we were unable to
measure any increased risk of CVD in people with CH. We did, though,
observe strong effects from potential confounders in the multivari-
ablemodel (Table 2). CH has also beenimplicated in pro-inflammatory
phenomena, a suggested basis for its reported CVD association*?,
Accordingly, we looked for CH associations with a panel of inflamma-
tory conditions, but saw none (Supplementary Table 5). In UKB, CH
was associated with alcoholic liver disease (Table 1) but not fatty liver
conditions, at variance with a recent report,

Tobetter understand theincreased mortality rate attributable to
CH, we examined the primary cause of death records inameta-analysis
of ISL and UKB. Participants with CH were at increased risk of death
from both myeloid and lymphoid hematological disorders, as well
as lung cancer, COPD and alcohol abuse (Supplementary Table 6). As
before, the nonhematological risks were attenuated (but not elimi-
nated) by adjustment for smoking. Chronicischemic heart disease and
heart failure had nominally significant hazard ratios (HRs), but did not
meet the Bonferroni threshold. Even though a substantial number of
deaths fromacute myocardial infarction occurredin the cohort, their
frequency was not elevated in participants with CH.

Association of mosaic somatic mutations with CH

Most prior DNA sequence-based studies identified CH using a prede-
fined list of CPLD mutations that are already known to occur in myeloid
neoplasia*" ™. Some studies have tested mutated genes for statistical
association with CH or evidence of positive selection in CH****, Qur
method can identify CH irrespective of whether a CPLD mutation is
present. Thus we can search in a comparatively unbiased manner for
genes with mutations that drive CH. We conducted agene-based burden
test for somatic mutations associated with CH (Fig. 1a and Supple-
mentary Table 7). As anticipated from previous studies"**, mutations
in DNMT3A, TET2 and ASXL1 were the most significantly associated
with CH. Most of the other genes are known to be commonly mutated
in myeloid disease. Some are implicated, additionally or uniquely, in
lymphoid neoplasia®.

We also examined the intragenic distribution of the somatic muta-
tions and used Fisher’s exact tests to identify individual mutations that
drive the signal from each gene (Fig. 1b-e and Supplementary Fig. 1).
ASXL1I exhibited predominantly frameshift or nonsense mutations in
the 13th (last) exon. ASXLI activation in myeloid neoplasia typically
results from gain-of-function mutations that produce C-terminally
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Table 1| Associations between clonal hematopoiesis and disease in UKB

Phenotype UKB n cases n controls OR?® Pvalue? OR,; smoking® P, smoking®
C91lymphoid leukemia 268 124,500 10.44 1.59x107% 10.62 6.51x107%2
C911 chronic lymphocytic leukemia 229 124,010 11.94 2.59x107% 12.25 9.27x10°®
Myeloproliferative neoplasms 194 124,670 762 1.60x107%* 7.92 1.40x107%
C92 myeloid leukemia 182 124,057 7.60 1.05x107% 7.41 3.85x107
F10 mental and behavioral disorders due to use of alcohol 3,069 121,730 1.91 6.32x107% 158 9.53x10™
D46 myelodysplastic syndromes 141 124,098 6.40 712x107% 6.47 1.31x1072
D473 essential hemorrhagic thrombocythaemia 183 124,056 5.32 771x107% 5.23 9.48x10™%°
J44 other chronic obstructive pulmonary disease 4113 120,751 1.51 2.01x107° 112 0.018

D45 polycythemia vera 92 124,676 8.28 1.05%x107® 812 3.29x10™
C34 malignant neoplasm of bronchus and lung 1,377 123,391 1.90 2.29x10™ 1.45 1.00x107®
C93 monocytic leukemia 25 123134 46.51 1.01x107® 4772 9.37x107"
Peripheral artery disease 2,012 122,787 160 9.23x10™ 1.27 2.46x10™*
D619 aplastic anemia 284 123,955 2.69 1.28x10™° 2.38 1.00x107
D474 osteomyelofibrosis 26 123,133 13.56 9.08x10™ 14.61 471x10°°
J43 emphysema 1,025 123,774 170 1.01x107° 118 0.066
€83 diffuse non-Hodgkins lymphoma 359 124,536 2.29 273x107° 2.23 3.52x10®
K709 alcoholic liver disease 276 124,492 2.40 4.70x10°° 1.93 6.20x10™
150 heart failure® 2,922 121,942 1.28 5.03x107® 117 0.0045

The Bonferroni cutoff level is 5.00x107, unadjusted. Phenotype list is edited to remove redundancies and subphenotypes. *Multivariable regression, adjusted for sex and age at blood draw
(linear and quadratic). "Additionally, adjusted for smoking status (current, previous), pack years and years since stopped smoking. °Heart failure was included in the UKB table because prior

literature reports implicated an association with CH.

Table 2 | Time-to-event analysis of three models of CH for cardiovascular disease endpoints®

Characteristics Barcode-CH CPLD-CH® CHIP®

HR 95% Cl Pvalue HR 95% Cl Pvalue HR 95% Cl Pvalue
Clonal hematopoiesis 1.01 (0.94,1.08) 0.88 1.01 (0.90,113) 0.89 1.01 (0.88,1.15) 0.92
Age at blood draw 1.08 (1.06, 1.10) <2x107® 1.08 (1.06, 110) <2x107" 1.08 (1.06,1.10) <2x107
Previous smoking 115 (110,1.22) 8.60x107® 116 (110,1.22) 8.20x107°® 116 (110,1.22) 8.20x10®
Current smoking 210 (1.95, 2.27) <2x107 210 (1.95, 2.27) <2x107 210 (1.95, 2.27) <2x107
Hypertension 1.44 (1.37,1.51) <2x10™® 1.44 (1.37,1.51) <2x107 1.44 (1.37,1.51) <2x107
BMI 1.05 (1.04,1.05) <2x107® 1.05 (1.04,1.05) <2x107® 1.05 (1.04,1.05) <2x107®

n=118,673; number of events=7,242; stratified by age bin and sex. *Data are from UKB. °CH containing a CPLD mutation, defined using our in-house methodology (Methods). °CHIP is defined

using the strategy described in ref. 20. Cl, confidence interval from Cox regression.

truncated proteins”. However, we also saw protein truncation mutations
in exon 12, namely Arg404Ter and Arg417Ter, that associated strongly
with CH (P=9.7 x10™® and 2.6 x 107%, respectively, UKB, Fisher’s exact
test). These mutations are puzzling because they would be expected to
induce nonsense-mediated decay of the ASXLI transcript®, whichwould
obviate a gain-of-function effect. Further investigation is warranted.
The CHassociation with GNBI was completely attributable to Lys57Glu
mutations (P=1.4 x 107, UKB, Fisher’s exact test). GNBI mutations
affecting Lys57 predominate in myeloid neoplasia, whereas mutations
at other positions are more frequent in lymphoid malignancies®. In
CALR, high-impact mutations clustered in the ninth (last) exon, sug-
gesting a gain-of-function analogous to that seen in PPM1D and ASXL1
(Fig. 1d,e). Such mutations are present in essential thrombocythemia
(ET) and primary myelofibrosis*’; however, they have not been consist-
entlyimplicated as CH-defining mutations (Supplementary Table 7). We
obtained robust evidence linking high-impact PRRI4L mutationsto CH
(P=3x10™", UKB, SKAT-0). PRR14L is not generally recognized as a CH
gene (Supplementary Table 7); however, mutations have been seen in
chronic myelomonocyticleukemiaandinfrequently in CH participants®.

We previously reported a tentative association between CH
and MYDS88 mutations in ISL'. We confirm that finding robustly here
(P=1.9 x107'°, UKB, SKAT-0), the strongest signal coming from Leu-
252Pro. MYD88 Leu252Pro (formerly Leu265Pro) mutations are par-
ticularly related to lymphoplasmacytic lymphoma/Waldenstrom
macroglobulinemia (LPL/WM), whichwould not be expected to havea
substantial bloodborne component®*****, However, MYD88 mutations
also occur in an atypical minority of chronic lymphocytic leukemia
(CLL) and Leu252Pro has been observed innormal B cells from patients
with LPL/WM?***5, We also reported a CH association with mutationsin
MTA2 (ref.1) and confirmthat finding here (P=7.9 x 107, UKB, SKAT-0).
Individually significant missense mutations were clustered within the
SANT domain (Fig. 1b,c), which recruits histone deacetylase-1to the
nucleosome remodeling and deacetylase (NuRD) complex®. Even
though we were able to demonstrate strong associations between
the common CPLD genes and CH, most cases could notbe accounted
for by an obvious driver mutation (Extended Data Fig. 2). Several
factors may contribute to this; a lower sensitivity for CPLD mutation
detection in WGS versus whole exome or panel sequencing, driver
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Fig. 1| Association of mosaic somatic mutations with CH. a, Results (-log,,(P))
of gene-based burden test using SKAT-O for association of somatic mutations
with CH. Data are a meta-analysis of ISL and UKB. Separate burden tests were
conducted to include high-impact (red) or moderate-impact mutations (green;
asassessed with the Ensembl VEP) and a combination of both types (blue) for the
genes indicated. P, is the Pvalue for combined high- and moderate-impact
variants. The maximum impact (MaxImpact) VEP annotation was used to classify
eachmutation. b, Lollipop plot showing the counts of somatic mutations in the
MTA2 gene detected in CH cases in UKB. Green lollipops are missense, black are

Position (bp) along coding exons
(each exon padded by 5 bp)

frameshifts and orange are splice mutations. PFAM domain and exon structures
are shown below. BAH, bromo-adjacent homology domain; ELM2, Egl-27 and
MTA1 homology 2 domain; GATA, GATA zinc finger domain; MTA_R1, metastasis-
associated protein MTA1R1 domain; SANT, Swi3-Ada2-N-Cor and TFIIIB domain.
¢, Fisher’s exact association test results in UKB for individual mutations in MTA2.
Diameter of the circles indicates the total number of participants with the
mutation (CH cases + controls). SwissProt domains and exon structure of the
geneareshownbelow.d,e, Asinband cbut for the CALR gene. FE, Fisher’s exact.

mutations located outside the coding sequences of known CPLD
genes, mosaic chromosomal alterations (mCA), clonally inherited
epigenetic effects and random drift in an HSC pool with a very low
effective population size'*.

Differential risks of hematological disorders

We investigated the types of hematological disorders arising in par-
ticipants with CH. Moreover, we considered how the risk profile of
CH defined by mutational barcodes (referred to herein as simply ‘CH’
or ‘barcode-CH’ when disambiguation is required) differed from CH
defined by the presence of a CPLD mutation (CPLD-CH) or by the

absence of aCPLD mutationinabarcode positive case (CPLDneg-CH)
(Supplementary Table 8). As shown in Fig. 2a, HRs for both myeloid
and lymphoid disorders wereincreased for all three CH classes. There
were, however, differences in nuance. Participants with CPLD-CH were
morelikely to develop myeloid neoplasia than those with barcode-CH
or CPLDneg-CH. Conversely, participants with barcode-CH or
CPLDneg-CH were more likely to develop lymphoid neoplasia than
those with CPLD-CH. Within myeloid subtypes, CPLDneg-CH par-
ticipants were at demonstrable risk of chronic myeloid leukemia
(CML), myelodysplastic syndrome (MDS) and myeloproliferative
neoplasia (MPN). However, CPLD-CH participants were at higher risk
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Fig. 2| Differential risks of subsequent hematological disorders for barcode-
CH, CPLD-CH and CPLDneg-CH. a, HR and 95% CI from Cox regressions for
subtypes of hematological disorder, stratified by CPLD-CH, barcode-CH and
CPLDneg-CH. Diagnoses were included if they arose 6 months or more after
blood sampling for CH determination. Data are meta-analysis of UKB and ISL

(n=162,963 participants overall, 14,837 with barcode-CH, 5,288 with CPLD-CH

and 11,692 with CPLDneg-CH). b, HR and 95% ClI for subsequent hematological

disorder stratified by CPLD genes. MM, multiple myeloma; MGUS, monoclonal
gammopathy of undetermined significance; OMF, osteomyelofibrosis.

of developing acute myeloblastic leukemia (AML), MDS and MPN (in
particular, polycythemia vera (PCV)) than CPLDneg-CH participants.
Within lymphoid subtypes, barcode-CH and CPLDneg-CH carried sig-
nificantrisks of CLL, whereas CPLD-CH did not. This suggests that some
barcode-CH cases may have incipient, undiagnosed CLL or high-count
monoclonal B cell ymphocytosis (MBL). However, because B cells
normally comprise a small proportion of the leukocyte population,
evenin MBL, B cell clonal expansions are unlikely to pass our CH detec-
tion threshold in the absence of an overt hematological abnormality.
Accordingly, they are unlikely to account for a substantial number of
barcode-CH cases. Moreover, associations with MPN and CLL could be
driven by undetected mCA accompanying the barcode-CH*"*,

We investigated whether, among CPLD-CH participants, risks of
hematological disorders differed by the particular CPLD gene involved
(Fig. 2b). Significant HRs were seen for ASXL1-CH, DNMT3A-CH,
JAK2-CH, SF3B1-CH, SRSF2-CH, TET2-CH and TP53-CH but not for
PPMID-CH. The risk from JAK2-CH was greater than from any other of
the CPLD genes. While participants with DNMT3A-CH were at some-
whatincreased risk, HR estimates for other CPLD-CH typesincluding
ASXL1-CH and TET2-CH were substantially higher.

CH GWAS meta-analysis in ISL and UKB
We carried outa GWAS meta-analysis for barcode-CH (designated the
‘CHGWAS’)in130,709 UKB and 45,510 ISL participants, using germline
genotypes imputed from WGS training sets''. We identified 25 loci with
associationsignals of P < 5x 1078 (Fig. 3 and Supplementary Table 9). An
additional ten low-frequency, high-effect variants require confirma-
tion and were not considered further. All of the sentinel variants had
low variant effect predictor (VEP) impacts. At chr22q12, the sentinel
variant was in high linkage disequilibrium (LD) (= 0.95in UKB and
1.0inISL) with the well-known oncogenic ‘1100delC’ CHEK2 frameshift
mutation rs555607708_delG (Thr367MetfsTer15)*. Conditional analy-
sis identified secondary signals at chr3q25 (a splice region variant in
SMC4), chr5p15 (TERT) and chr21q11 (an Arg448Gly missense in NRIPI;
Extended DataFig. 3 and Supplementary Table 9). Scanning at amore
relaxed stringency (P <5 x107) for variants with moderate or high
VEP effects identified a low-frequency protective Arg684Gln variant
in RTEL1 (rs35640778_A; odds ratio (OR) =0.80,P=1.75x107) and a
Thr343Ser missense in ELFI (rs1056820_T; OR=0.92, P=1.71x107).
One CH GWAS variant, at TERT, was reported by us previously in
association with barcode-CH in ISL'. We reproduced this association;
however, the sentinel TERT variant this time wasrs7705526_A (OR=1.28,
P=1.79 x107’®), which is the same variant as subsequently reported
for CPLD-CH". Several other CH GWAS loci have been associated with

related phenotypes, such as CPLD-CH" ™, mCA***, loss of Y chromo-
some (LoY)***2 or MPN****, The LD between our CH GWAS variants
and those signals is detailed in Supplementary Table 10. We found no
previous reports for 19 of the CH GWAS loci.

Togainfurtherinsightinto CHwithoutknowndrivers, we repeated
the GWAS using only CPLDneg-CH participants as cases (Extended Data
Fig.4 and Supplementary Table 11). Effects were broadly similar to the
barcode-CH GWAS (m =1.02, P=1.47 x 107®). Following two new loci
were detected: TERC and KDM6B. The protective effect of chr14:TCLIA
1rs2887399_T was stronger in CPLDneg-CH, perhaps due to the differing
effects of this allele in various CPLD mutation backgrounds (see CPLD
gene specific CH GWAS associations, below). CHEK2 and SMC4 variants
had somewhat larger effects in barcode-CH.

CPLD gene-specific CH GWAS associations

We repeated the GWAS meta-analysis on CPLD-defined CH for driver
genes where there was sufficient power to do so. Considering all vari-
ants that were significantly associated with barcode-CH or any one
of the CPLD-CH types, we compared their effects on barcode-CH and
various types of CPLD-CH. There were substantial differencesin effects
between CPLD-CH types (Extended Data Fig. 5 and Supplementary
Table12).

Viewing the patterns overall, most variants demonstrated no effect
onASXL1-CH.While TET2-CH, for example, showed a highly significant
slope when regressed on barcode-CH (m =0.94, P=5.64 x107°), the
slope for ASXL1-CH versus barcode-CH was muchshallower and of lower
significance (m = 0.41, P=8.76 x10™*). Moreover, PPM1D-CH produced
nosignificant regressionagainst barcode-CH. One possible explanation
is that environmental factors have a greater influence on ASXLI-CH
and PPM1D-CH than on other CPLD-CH types— risk of PPM1D-CH was
substantially increased in patients who have undergone chemotherapy
(OR=7.9,P=4.5x10"* Supplementary Table 13), while ASXL1-CH was
more strongly associated with smoking than other CPLD-CH types
(Supplementary Table 14) in agreement with previous reports***,

CH GWAS variants affect blood traits, telomeres and MPN
Togaininsightinto the functionality and pleiotropic effects of the CH
GWAS variants, we examined published GWAS associations for them
and variantsin LD (Supplementary Table 15). Even though participants
with grossly abnormal hematology had been excluded from the study,
many clinical hematology parameters*’ showed associations with the
CH phenotype. Moreover, many CH GWAS loci had associated clinical
hematology traits in the GWAS Catalog or UKB data (Supplementary
Tables 15 and 16 and Extended Data Fig. 6).
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Several CH GWAS variants were reportedly associated with leuko-
cytetelomere length (LTL) in the GWAS Catalog. To investigate this in
detail, we examined the relationship between CH and LTL, using UKB
samples that were contemporaneously assessed for both CH (in this
study) and LTL (inref. 48). CH, along with age and prior or current smok-
ing, was strongly associated with shorter LTL (8=-0.129, P<2 x107%;
Supplementary Table 17) as seen previously in ISL'. Moreover, most
CH GWAS variants associated with shorter telomeres, in line with the
CH:LTL phenotype association. However, the two chr5:TERT variants
andavarianton chr6p22 (near the MHC) were significantly associated
with longer telomeres (Fig.4a and Supplementary Table 18). Asaresult
of this discordance, no significant regression parameters could be
obtained and, consequently,aMendelian randomization (MR) analysis
was not considered prudent. Foracomplementary examination of the
effects of LTL GWAS variants on the CH phenotype, we conducted anew
GWAS for LTLin the UKB, using our current WGS-based imputation. We
found 191 LTL variants (Supplementary Table 19). Their effectson LTL
and CHare plottedin Fig. 4b. We found evidence of a massive discord-
ance of effects, with some longer LTL alleles associated with increased
CHrisk and others associated with reduced risk (indicated as ‘cloud I’
and ‘cloud 2, respectively, in Fig. 4b). Here again, MR analysis was not
considered advisable.

Observed LTL is measured in blood that may contain CH expan-
sions. So, any variant that promotes CH but does not directly affect
telomeres would appear to cause shorter telomeres, because of the
association between CH and contemporaneously observed short tel-
omeres. By the same token, such CH-promoting variants might be
identified as LTL-associated variantsin an LTL GWAS. To examine this,
werepeated the GWAS for LTL, using only participants without proven
CH.There was no evident difference in the effects of LTL GWAS variants
between the two subgroups (Extended Data Fig. 7).

Aswas shown in Fig. 2a, CH associated strongly with subsequent
diagnoses of MPNinline withits proposed status asa clinical precursor
to MPN*. The majority of CH GWAS variants also conferred risk of MPN
(Fig.4c and Supplementary Table 18). MR analysis was consistent with
CH havinga causative effect on MPN (inverse-variance weighted (IVW),
P=7.86 x107%; Supplementary Table 20).

CH GWAS variants are involved in expression quantitative trait
loci (eQTL), splicing quantitative trait loci (SQTL) and protein
quantitative trait loci (pQTL)

We considered whether the CH GWAS variants affect RNA abundance
or splicing of nearby genes. For each sentinel variant, we identified
all variantsin LD (> 0.8) and then queried public RNA-seq eQTL and
sQTL databases, focusing onblood or blood-related cell types. Variants
with substantial cis effects were investigated further in ISL RNA-seq
datafrom17,848 peripheral blood samples (Supplementary Table 21).
eQTL at ABCCS and TRIM59/SMC4 are described in Extended Data
Fig. 8, while other salient examples are discussed below:

CD164 is, biologically, a good candidate for a role in CH patho-
genesis. It is expressed on early HSC and can affect their prolifera-
tion, differentiation, adhesion to bone marrow stromal elements,
migration and retention in HSC niches*®*, Public sources revealed
a CD164 sQTL in blood, lymphoblastoid B-cell lines (LCL) and several
nonhematological tissues. The top reported sQTL in whole blood has
r*=0.81 with our sentinel CH GWAS hit (rs3056655), while the top
SsQTL in LCL has r*=0.86. Using ISL blood RNA-seq, we ascertained
that the sQTL affects the two major isoforms of CD164, which differ
by the presence (CD164-202) or absence (CD164-203) of exon 5. The
latter isoform lacks the full-length CD164 protein’s glycosaminoglycan
attachmentsite. Increased exon 5 skipping was strongly associated with
the rs3056655_A CH risk allele (P=3.04 x1073%, 8= 0.44). Coverage
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plots of ISLRNA-seq datafrom CD8" T cells and monocytes revealed a
decreasein overall CD164 gene expressionassociated with the CH risk
allele rs3056655_A (Fig. 5).

We carried out a proteomic analysis of plasmasamples from12,636
UKB participants for whom we had CH status information, using the
Olink platformtointerrogate levels 0f 1,472 proteins and test them for
association with CH. Several proteins of relevant biological interest
ranked highly (by significance), including the hematopoietic progeni-
tor cell growth factors FLT3LG and CLECI11A, thrombopoietin THPO,
pro-inflammatory cytokines CCL5 and TNFSF12 and smoking marker
ALPP (Supplementary Table 22). Second in the ranking was TCL1A, an
oncoproteinin T cell leukemias, lymphomas, CLL and several nonhe-
matological cancers®. Higher TCL1A levels were associated with CH

(P=2.05x107",8=0.21), and this replicated ISL SomaScan proteomic
data (P=2.86 x1072, B=0.06) (ref. 54). TCL1A is of particular interest
because a CH GWAS variant is located 162 bp upstream of the gene’s
transcriptionstartsite (Fig. 6a). The minor allele, rs2887399_T (minor
allele frequency (MAF) ~20%), is protective against CH in our data. It
has been implicated (with varying direction of effect) in CPLD-CH,
mCA and LoY (see above and refs. 13,41,55). The rs2887399 T allele
is reported to suppress ectopic expression of TCL1A in CPLD mutant
HSC?**. Asearch for cis-pQTL using UKB Olink and ISL SomaScan iden-
tified two conditionally independent LD classes of variant, both with
minor allelesacting toreduce TCL1A expression. One LD class of pQTL
was correlated with rs2887399 T (r*~0.67), whereas asecond LD class
pQTL, typified by rs78986913_A was not (> ~0.092, MAF ~4%; Fig. 6b,c).
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arcindicates anincrease. b, Colocalization plot of the CD164 locus showing
association from logistic/linear regression of rs3056655 with CH (blue) and

with the E4 to E6 splice eventin whole blood (red, -log,,(P) is divided by 40

for scaling). c, RNA-seq coverage plot of CD164 from 822 CD8" cytotoxic T cell
samples, stratified by rs3056655 allele, showing reduced levels of expressionin
rs3056655_A (CH at-risk) heterozygotes and homozygotes. Note that rs3056655
is multi-allelic, but only the rs3056655_A (CH at-risk) and _G (CH protective)
alleles were seen in the RNA-seq samples. d, As ¢, but RNA-seq from 899
monocyte samples.

Curiously, rs78986913_A did not show anindependent signalin GWAS
for CH predispositionin conditional analysis (P, = 0.78).

To investigate this further, we searched for RNA-seq cis-eQTL for
TCLIA.Inwholeblood, both the 4% MAF rs78986913 A and the 20% MAF
rs2887399 T variant classes reduced expression of TCLIA. Conditioning
the eQTL signal on rs78986913, COLOC” revealed an 85% probability
of peak identity between the rs2887399 eQTL and the CH GWAS peak.
Both the 4% MAF and 20% MAF variants classes affected expressionin B
cells. However, inmonocytes only the 20% MAF rs2887399 T variant was
associated with TCLIARNA expression and a4% MAF rs78986913_A peak
was not in evidence (Fig. 6d-g). It appears that, in this case, the eQTL
and pQTL of relevance to CH may be restricted to the myeloid lineage.

Discussion

Thisstudy expands greatly on our previous investigation of CH detected
using mutational barcodes’, extending the number of cases from 1,403
t016,306. We reaffirm the strong associations between CH, age and
smoking and provide evidence that smoking has a dose-dependent

impact on CH. Aside from confirming the risk for hematological dis-
eases, we find that CH associates with COPD, lung cancer, PAD, emphy-
sema and alcohol abuse. These conditions are all smoking-related. The
effects of CH ontheir risks were strongly attenuated when adjusted for
smoking. Itislikely that the remaining associations are due to residual
confounding from various aspects of smoking behavior that could not
be fully taken into account in the analysis. It is notoriously difficult to
remove all residual confounding from smoking behavior, especially
when using self-reported information®*°, An attractive hypothesis is
that smoking creates aninflammatory state, exerting pressure on the
hematopoietic system, depleting the HSC and progenitor cell pool
and driving compensatory HSC self-renewal, thereby increasing the
probability of a clonal outgrowth®-¢,

Studies that reported an association between CH and CVD
received a great deal of attention, having been reviewed exten-
sively®??2, Somewhat less attention was given to contemporane-
ous studies reporting a lack of association, albeit sometimes in
smaller samples’ *'*'*15% The present study finds no evidence of an

Nature Genetics | Volume 55 | December 2023 | 2149-2159

2156


http://www.nature.com/naturegenetics
https://www.ncbi.nlm.nih.gov/snp/?term=rs3056655
https://www.ncbi.nlm.nih.gov/snp/?term=rs3056655
https://www.ncbi.nlm.nih.gov/snp/?term=rs3056655

Article

https://doi.org/10.1038/s41588-023-01555-z

a Clonal hematopoiesis meta ICE UKB -
52857399 MAF = 20% 1.0 100 @
60 ! 08 s d e -
: 2 |, 8 T
507 | £ 04~ g Whole-blood TCL1A expression X Etggg 28& conditional
g w0 " 02 teo 2
o o S 478986913 MAT - %0 10 100 . Lrserasemar-20%
9 3 500 ‘ Fs 50 st
2 40 3 9
e 400 80 3
20 T =
- S % o 0 & o RN
— % = 3 S % . ':~ I
o 9 2 > ] :
- 200 40 % _'?
. 100 0 2
95.5 956 95.7 95.8 959 =
) S 20
Position on chr14 (Mb) o =
b OLINK proteomics TCLTA in UKB
o
E——— 0 100 § _ o
400 . e . . " "
) g»g ~f 80 3 955 956 957 95.8 95.9 95.65 95.70 95.75 95.80
- . = -
= 300 . %msw o 81 60 g,_ Position on chr14 (Mb) Position (Mb)
o b
2 200 . >
o] . o
< FEI © g f i ) i
100 . ). . @ B cells TCL1A expression Monocytes TCL1A expression
. TP IO 20 3
ol bk L IPNRE, IR W . § 0 I gg 100 z . ‘ 152867399 WAF - 20% g(:z 100 z
T o - o3
- = 2z 35 06 _ L 8o g 10 06 L Lgo g
04 5 s 0.4 o
. . %0 0.2 =1 ~ 9 H 0.2 =
[ 60 2 [ © 60 2
= 25 o 5 ~ o 5
955 956 957 958 959 & S E BN S
S 20 5 <] =
Position on chr14 (Mb) T g 40 9 5 7 . 40 3
15 . ® ® 8 ®
) . 5 6 . 5
[+ Somascan proteomics TCL1A 10 . . 20 =X 20 =
o ) (] 2 5 2
TR MAT - %0 10 100 8 5 FAN> Sain z z
08 ) [¢] [
100 .
06 1lg0 3 e —— =
: 0.4 =
801 | ‘g 5 -
S ‘ . 92 leo 2
g 99 Lo 0 g =
o © ysgeraeaaf20% = i
T 40 | .o P 40 % 95.5 95.6 95.7 95.8 95.9 95.6 95.7 95.8 95.9
20 I\ | . l‘ .o h 20 g Position on chr14 (Mb) Position on chr14 (Mb)
| 30 Lo aMRREL B e ES
o J " * o 2

95.5 95.6 957

Position on chr14 (Mb)
Fig. 6 | CHrisk variants, pQTL and eQTL at the TCL14 locus. a, Locus zoom
of CH GWAS results at TCL1A. b, Cis-pQTL analysis of variants affecting plasma
protein levels of TCL1A in 47,133 UKB participants. ¢, As b, but from 35,559
ISL participants. d, RNA-seq cis-eQTL analysis of TCLIA in wholeblood. e,
Colocalization analysis of CH GWAS and blood eQTL signals at the TCL1A locus.
The CH GWAS (green) and unadjusted eQTL signals (red) do not coincide.

95.8 95.9

However, when the eQTL signal is adjusted for the 4% MAF rs78986913 variant
(P,q;values showninblue), then the peaks overlap with a PP.H4 = 85% probability
that they correspond to the same signal. The position of the CH GWAS sentinel
variant rs2887399 is indicated by the gray vertical line. f, TCL1A eQTL from 758

B cell RNA samples. g, TCLIA eQTL from 884 monocyte samples. Inall panels
except e, the r* focusis on rs2887399.

association between CVD and barcode-CH or CPLD-CH. The strong
potential for confounding by age and smoking has been emphasized,
here and elsewhere'. Moreover, our stringent exclusion of people
with a pre-existing hematological abnormality may be a factor. Some
hematological disorders (particularly MPN) have known associations
with blood clotting and CVD risk®*. We observed an increased inci-
dence of CVD among the participants whom we excluded compared
to participants without CH (HR = 5.08, P< 2 x 107%). We also note that
published CVD risks are seen particularly for ASXL1-CH (which has a
demonstrable smokingbias) and JAK2-CH (which associates strongly
with MPN)*, Not taking these considerations sufficiently into account
may create or inflate an apparent CVD risk.

There may be a large number of undiscovered mutations that
conferasufficient fitness advantage to drive HSC clonal expansions to
overt CHover along period of time****, We find several genes that are
notwellrecognized as CH drivers, some with previously noted involve-
ment in myeloid (or in some cases lymphoid) disease. Nevertheless,
most CH still cannot be accounted for by an obvious driver mutation.
No satisfactory explanation has yet emerged and the question merits
further investigation.

Here we provide new evidence for 25 loci with germline variants
that predispose to barcode-CH. We additionally identify three second-
ary signals and two suggestive, missense variants. Several variants
overlap with loci that have been associated with CPLD-CH, mCA, LoY

and MPN, underlining the close relationships between these pheno-
types'?1+15427446566 CH GWAS variants commonly show pleiotropic
associations with blood cell traits, LTL and MPN but not CVD—no CH
GWAS variants had listings for CVD in the GWAS Catalog, and MR analy-
sis gave no indication that CH risk variants increased CVD outcomes
(Supplementary Table 20).

Based on MR using the few instrumental variables that were avail-
able to them at the time, a study described in ref. 67 concluded that
long-LTL alleles predispose to CH, whereas CH alleles predispose
toward shorter telomeres. This is not fully consistent with our obser-
vations, in which we see many discordant effects (Fig. 4). MR studies
typically show thatlong-LTL alleles are associated with cancer predis-
position, whereas observed telomere lengths in blood of predisposed
people or in tumors can be either longer or shorter. Indeed, we find
that CHis linked to shorter observed LTL, perhaps as a result of extra
divisions thatan HSC clone had to undertake to gainits dominance (see
Fig. 4a above and ref. 1). In leukemias, paradoxically, risk is increased
by both long and short observed LTL, measured prospectively®®. A
rationalization for this, as evidenced in congenital telomeropathies,
couldbethattoo short telomeresimpair HSC functionand precipitate
a bone marrow insufficiency. This places a selective pressure on the
HSC population and the marrow is repopulated by HSCs that have
acquired alterations allowing them to bypass the replicative exhaus-
tioninduced by the telomere erosion®*’°. MR studies in MPN, CLL and
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leukemias in general implicate long-LTL alleles as risk factors*+¢772,
Along-LTL genetic constitution may relax the replicative constraints
that normally keep HSC expansions in check, allowing emergent HSC
clonestoexpand and present alarger target for secondary oncogenic
events. Itis therefore plausible that both long-LTL and short-LTL vari-
ants could act to promote CH.
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Methods

Epidemiology

Iceland. The study included WGS of whole blood samples from 45,699
Icelanders participating in various projects at deCODE genetics. The
study was authorized by the Icelandic National Bioethics Committee
and the Data Protection Authority (License VSN-16-104). Allindividuals
gave written informed consent.

UKB. The study included WGS of whole blood samples from 130,709
participants in the UKB. The study was authorized by the North West
Research Ethics Committee (reference 06/MRE08/65). Allindividuals
gave written informed consent. Genotype and phenotype data for
our study were obtained, and research was conducted under the UKB
applicationlicense 56270.

Study exclusion criteria. For UKB we included only participants with
self-declared British or Irish ethnicity (UKB field 21000). For ISL, to
suppress germline singleton mutations in the samples (which can be
mistaken for high VAF somatic mutations'), we excluded individuals
with unproven Icelandic ancestry as far back as great-grandparents.
Our definition of CH excludes pathological expansions of defined,
committed lineages such as lymphomas, leukemias, MDS and MPN.
Accordingly, participants were excluded from most analyses (unless
otherwise specified) if they had a diagnosis of ahematological disorder
(International Classification of Diseases, Tenth Revision (ICD10) codes
C81-C96 and D45-D47) before or within 6 months after blood draw.
Participants were also excluded if they had substantial evidence of
abnormality from hematology parameters measured at recruitment
(ifavailable), comprising white blood cells (WBC) <1.5 x 10° or >35 x 10°
cells per | or hemoglobin concentration (HGB) <8 g dI™, or platelet
count (PLT) <50 x 10° cells per .

WGS for CH case definition
UKB. Reads were aligned to GRCh38 reference (GRCh38 reference with
alt contigs plus additional decoy contigs and HLA genes) with bwamem
(v0.7.17). Duplicates were marked using Picard MarkDuplicates (v2.20.3).
A base quality recalibration table was created using GATK BaseRecali-
brator (v4.0.12) with known sites files dbSNP138, Mills and 1000G gold
standard indels, and known indels from GATK resource bundle (from
gs://genomics-public-data/resources/broad/hg38/v0). For each chro-
mosome in chrlto chr22, chrX, chrY, the resulting base recalibration
table was applied using GATK ApplyBQSR (v4.0.12) and then variants
were called for each sample individually using GATK HaplotypeCaller
and GATK GenotypeGVCFs (v4.0.12). Variants were (hard) filtered using
criteria in http://gatkforums.broadinstitute.org/discussion/2806/
howto-apply-hard-filters-to-a-call-set. Average sequence depth was 33.

We extracted all singleton SNPs (SNPs occurring only once in the
UKB cohort) for 149,960 participants, then filtered on genotype qual-
ity (GQ) = 90 to obtain some 287 million singleton variants (ignoring
hard filtering).

The following filter steps were applied:

« useFILTER in (PASS, Low_QD)
+ 15<depth<60
« minor allele reads >3 to remove spurious low-VAF bump

We estimate the number of somatic singleton mutations with
0.1< VAF £0.25 as the number of observed variants in this VAF range
minus the number of expected germline variants. To model the
expected number of germline variants in this VAF range, we make the
following assumptions:

« Theexpected number of germline variants in the VAF ranges
0.1-0.25and 0.75-0.9 are approximately equal (that is, there is
symmetry in the germline variant VAF distribution).

» Thevast majority of variants in VAF ranges 0.35-0.65 and
0.75-0.90 are germline variants.

» Theratio of germline variants in VAF ranges 0.75-0.90 and
0.35-0.65 is approximately constant for each participant, given
sequencing depth and sequencing center.

Foreach depth, we compute theratio of total observed (germline)
variants in VAF range 0.75-0.9 compared to VAF range 0.35-0.65. This
computationis done separately for each sequencing center. For each
participant, the number of expected germline variants in VAF range
0.1-0.25foragivensequencing depthisthen computed as the expected
fraction of germline variantsin VAF range 0.75-0.9, given the observed
number of variants in VAF range 0.35-0.65 at the given depth. Only
sequencing depths >21 were considered. Based on an expected frac-
tion of CH of around 1% at age 40, we set a threshold of >20 observed
somatic singleton indicator mutations with 0.1 < VAF < 0.25 to define
CH.Thisthreshold was adjusted for sequencing center (+1for Vanguard
and-2.2for Sanger) to achieve agreement of age dependency between
the sequencing centers. Note that the VAF of the indicator mutations
isnot a precise measurement of the VAF of the CH clone—because only
~20indicator mutations are required to define CH, VAF distributions
of somewhat smaller and larger clones are likely to pass through the
detection window. Moreover, larger clones will generate subclones
withindicator mutations of lower VAF.

ISL. For ISL, we needed to accommodate for different sequencing plat-
forms. A total of 33,189 samples sequenced on lllumina HiSeqX were
processed to determine CH status as previously'. For 12,510 samples
sequenced onIllluminaNovaSeq, reads were aligned to hg38reference
using bwamem (v0.7.10), indels realigned using GATK IndelRealigner
(GATK 2.3-9) and duplicates removed using Picard MarkDuplicates
(V1.117). Genotypes were called using GATK HaplotypeCaller and GATK
GenotypeGVCFs (v.2014.4-3.3.0-0-ga3711aa). Variants were (hard) fil-
tered asabove. CH status was determined as described above for UKB;
however, singletons were determined based ona cohort of ~100,000
sequenced participants. As no base quality recalibration was applied
toISL, the estimated number of somatic singletons for 0.1 < VAF < 0.25
was higher than for UKB (46 for WGS NoPCR Nova and 32 for NEB WGS).
Average sequence depth was 38.

Definition of CPLD-CH. Weran Strelka2 (2.9.10) somatic workflow on
CPLD generegions on CRAM files from genome alignment (see above).
To suppress artifacts due to mapping problems, we used one of the
CRAM  files as a normal sample for all other samples. Variants were
filtered ondepth>10, FILTER = ‘PASS, and 0.01 < VAF < 0.99. To identify
germline variants, we performed a binomial test on VAF against 0.5,
and classified calls with P> 0.05 as potential germline calls. Variants
with >5 observations and >75% potential germline calls were removed.
We annotated the remaining variants using VEP and kept only those
moderate/high-impact variants that were either high impact (but not
in‘GNAS, JAK2, ‘SRSF2, ‘SF3BT’) or present in ref. 13.

Note that the definition of CPLD-CH is not subject to the same VAF
restrictions as the mutational barcode method described above. More-
over, particularly in younger individuals, CPLD-CH can be detected
in the absence of a mutational barcode, as discussed in ref. 1 (see also
Supplementary Table 8).

To define CHIP in Table 2, we used the strategy recommended in
refs. 19,20, adapted to our dataset. Variants in the 73 candidate genes
(except U2AF1) were called using Strelka2. Variants were annotated
with VEP v.100. Variants given in Vlasschaert Supplementary Table 1
(ref. 20) were selected and kept if they had depth =20 and minAD >3.
Variants occurringat >15times were tested for association with age and
rs7705526—variants with P> 0.1 or estimate <O for both covariates were
removed. A binomial test was used to remove putative germline vari-
ants by testing if the read depth was statistically different from half of
the sum of all sequencing reads at that site. Variants with P> 0.01 were
removed, except for variant sites TET2 H1904R, 11873T and T1884A.
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Phenotypes and metadata

ISL phenotypic data were taken from national registries, hospital and
project-based datasets curated in the deCODE genetics phenotypic
database. For UKB, age at blood sampling was computed from UKB
field 3166.1CD10 diagnoses were taken from the following UKB fields:

- ICD10 hospital inpatient summary (41270).

« Self-reported illnesses, cancer (20001) and noncancer (20002).

« Cause of death from death registry, primary (40001) and sec-
ondary (40002).

« Cancer registry ICD10 (40006) and ICD9 (40013).

» OPCS4 hospital inpatient summary (41272).

Smoking. The smoking phenotype was focused on heavy smokers (cur-
rent or previous) and was defined based on the following UKB fields:

» 1249, past tobacco smoking (-3 = no answer, 1= on most or all
days, 2 = occasionally, 3 =tried once or twice, 4 =no) .

e 1239, current tobacco smoking (-3 =no answer, 1=o0n most or all
days, 2 = occasionally, 0 = no).

* 3436, age started smoking in current smokers.

» 2867, age started smoking in former smokers.

« 2897, age stopped smoking.

- 2887, number of cigarettes previously smoked daily.

* 3456, number of cigarettes currently smoked daily.

We used data only from the first assessment. Smoking status
was defined as current if 1239 =1 and previous if 1249 =1, otherwise
never. Pack years and years since stopped smoking were derived
from 3436, 2867, 2897, 2887 and 3456. The fraction of participants
with CH was modeled using logistic regression for all participants
with the available covariates smoking status, pack years and years
since stopped smoking. Nonlinear transformations for pack years
and years since stopped smoking were based on the results of the
generalized additive model.

Hematological disorders were classified according to the follow-
ing scheme:

< Allhematological disorders—C81-C96, D45-D47, then...

« Anymyeloid disease—C92-C94, D45, D46, D47.0, D47.1, D47.3,
D47.4,D47.5

* AML andrelated—C92.0, C92.4, C92.5,C92.6,C92.8,C93.0, C94

e CMLandrelated—C92.1,C92.2,C92.3,C93.1,C93.3

« MDS-D46

*  MPN (non-CML)—D45, D47.0,D47.1, D47.3, D47.4, D47.5

*  PCV-D45

« ET-D473

« OMF-D47.4

« Anylymphoid disease—C81-C91, D47.2, D47.9
« CLL-C91.1

- MM-C90

*+  MGUS-D47.2

Disease and clinical hematology parameter phenotype-phenotype
association testing. We tested for association between CH and case-
control phenotypes by logistic regression, using sex and age at blood
draw (linear and quadratic) as covariates. To correct for the influence
of smoking, we also performed logistic regression using smoking
status (and, in some cases, pack years and years since stopped smok-
ing) as additional covariates. We estimated, conservatively, that we
tested 10,000 independent disease phenotypes and set the Bonferroni
adjustment level accordingly at 5.00 x 10°%. For clinical hematology
parameters and other quantitative phenotypes, we tested for asso-
ciation between the number of somatic singletons and quantitative
phenotypesby linear regression, using sex and age at blood draw (linear
and quadratic) as covariates. The number of somatic singletons was
inverse normal transformed stratified by sequencing center and sex.
Quantitative traits were inverse normal transformed stratified by sex.

To correct for the influence of smoking, we also performed linear
regression using smoking status as an additional covariate.

Time-to-event analysis of CVD, hematological disorders, survival
and cause of death analysis. For UKB, the median age at blood draw
was 58.4 years and the median follow-up time was 12.0 years (range:
10.2-14.7).ForISL, the median age at blood draw was 53.0 years and the
median follow-up time was 14.7 years (range: 0-20.8). For time-to-event
and survival analysis, we fitted Cox proportional hazards models using
the R package Survival (v3.3-1). We stratified by sex and 5-year age bin
and adjusted for age at blood draw and smoking. Assumptions for the
Cox proportional hazards model were checked using the ‘cox.zph’ func-
tion of the R package. The CAD phenotype comprised ICD10 codes from
firstreported diagnoses or cause of death (1200, 121, 1210, 1211, 1212, 1213,
1214, 1219, 121X, 122,1220, 1221, 1228, 1229, 124,1240, 1241, 1248, 1249, 125,
1250, 1251,1252,1256,1258,1259) and OPCS4 codes (K401, K402, K403,
K404, K411, K412,K413,K414, K451, K452,K453,K454,K455,K491,K492,
K498, K499, K502, K751, K752, K753, K754, K758, K759). Primary cause
of death data were obtained from field 40001 for UKB and from the
National Register of Deaths for ISL. Analysis was conducted where 210
participants had the same cause of death. Participants with nonqualify-
ing causes of death were right-censored. For the time-to-event analysis
of hematological disorders showninFig. 2, hematological events with
ICD codes described above were registered if they occurred 6 months
ormore after sampling for CH assessment. Participants who could not
be assessed for CPLD status were excluded. In an analysis of HR for
CPLDneg-CH, participants who were barcode-CH positive, CPLD-CH
positive were excluded.

Somatic genetics

Gene-based somatic mutation burden testing. Burden testing of
somatic variants was performed using SKAT-O”. For all protein-coding
genes, weretrieved genotypes for those high/moderate-impact variants
thatoccurredless than 500 (UKB) or 175 (ISL) times and removed likely
germline variants (that occurred >5 times withamean VAF between 0.45
and 0.55). SKAT-O was run with adjustment for age at blood draw, eth-
nicity, sexand sequencing center. We report ongenes where one of the
VEP categories was Bonferronisignificant (P <1.0 x 107°) in one cohort
and at least nominally significantin the other, or the P, ineq<1.0 X 107°.
Individual variants were assessed using Fisher’s exact test.

Chemotherapy and CPLD mutations. We extracted the date of first
chemotherapy (OPCS4 code X72%, X73%) from the UKB phenotype
database. In total, 403 participants had undergone chemotherapy
before blood sampling. We then estimated the relative risk of a defined
CPLD mutationby multivariable logistic regressionincluding terms for
age, sex and smoking status.

CHGWAS

Genotyping, WGS and imputation. For ISL, 174,987 samples were
genotyped using chip arrays from the [llumina OmniExpress family
(n=136,215) with the remaining samples using older HumanHap fam-
ily chips. Sequence variants for imputation were identified by WGS
data from 63,118 samples. Joint variant calling used GraphTyper v.1.4
(ref.74). Genotypes for these variants were imputed into the chip-typed
samples using long-range phasing” yielding phased genotypes for
173,025 participants.

For UKB, chip genotyping, WGS and imputation are detailed in
ref. 17. Briefly, genotyping was performed using a custom-made Affy-
metrix chip (UK BiLEVE Axiom) on the first 50,000 participants and
the UKB Axiom for the remainder. Sequence variants for imputation
were identified by WGS of 150,119 samples, performed by deCODE
genetics and the Wellcome Trust Sanger Institute. Joint variant call-
ing was performed using GraphTyper v.1.4. Long-range phasing was
used toimpute the WGS-derived genotypesinto 431,079 participants.
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CH GWAS, association testing and meta-analysis. Methods for GWAS
associationtesting are described in detail elsewhere'”’°. Briefly, associa-
tionbetweenimputed variants and barcode-CH as abinary phenotype
wastested by logistic regression under amultiplicative genetic model.
ForISL, the modelincluded as covariates—sex, county of birth, current
ageorageatdeath (first-and second-order termsincluded) and anindi-
cator function for the overlap of the lifetime of the individual with the
time span of phenotype collection. In UKB, 20 principle components
were used to adjust for population stratification, with age and sex
included as covariates. LD regression was used to account for cryptic
relatedness and stratification”. Analysis of quantitative hematologi-
cal parameters and LTL used the linear mixed model implemented in
BOLT-LMM’%. For meta-analyses, GWAS results from ISL and UKB were
combined using a fixed-effects inverse-variance method based on
effect estimates and s.e. in which each dataset was assumed to have a
common OR but allowed to have different population frequencies for
alleles and genotypes. Sequence variants were mapped to NCBI Build
38 and matched on position and allele to harmonize the datasets. We
tested ~75.2 million variants for association, with MAF > 0.001% and
imputation information >0.8 in at least one of the cohorts. For con-
ditional analysis, the sentinel signal at each locus was defined as the
variant with the lowest Bonferroni adjusted P value using adjusted
significance thresholds”. Conditional analysis used individual-level
genotype data to test possible secondary signals +500 kb from the
sentinel signal.

CPLD-CH GWAS. The GWAS was repeated using individuals who were
identified as carrying a somatic mutation in CPLD genes as affected.
For the CPLD-CH x barcode-CH effect x effect plots, variants were
included ifthey were associated at P<5x 1078 (or 5 x 107 for moderate-
or high-impact variants) in barcode-CH or in any one of the CPLD-CH
classes and had not been excluded as high impact, rare variants as
indicated in Supplementary Table 9. Variants were not plotted if they
had abs(log.OR) >3, but they were included in the data table (Sup-
plementary Table 12).

Investigation of pleiotropic traits in the GWAS Catalog. For each
sentinel variant, we identified all variantsin LD (> > 0.8) within £500 kb.
Forthose variants, we then searched the GWAS Catalog® for reported
associations with P<1x107.

LTL and MPN effect xeffect plots and MR. Variants selected for
effect x effect plots and MR of LTL and MPN were genome-wide sig-
nificant according to stringent weighted Bonferroni criteria after
stepwise conditional analysis at each locus’. LTL variants and effects
were determined by GWAS using UKB LTL data*®. MPN outcomes were
freshly recalculated using current UKB data (Supplementary Table 18).
MR analyses were performed using linear regression withoutaninter-
cept term, weighted by the inverse-variance of the outcome asso-
ciations (IVW), MR coupled with anintercept test and weighted linear
regression with anintercept term (MR-Egger®).

RNA eQTL and sQTL analysis. Public domain databases that were
screened for RNA-seq eQTL and sQTL data are detailed in the Data
Availability section. In-house RNA-seq analysis was performed as an
extension of our previous studies’***—we isolated RNA from whole
blood samples from ISL participants (n =17,848), in addition to 822
Tcell, 758 B celland 899 monocyte samples, using Chemagic Total RNA
Kit special (PerkinElmer) and sequenced it using lllumina HiSeq 2599
and NovaSeq systems. STAR software (v.2.5.3) was used to align RNA-seq
reads to personalized genomes®. Kallisto®* was used to estimate tran-
scriptabundances. BOLT-LMM was used to test additive model associa-
tion between transcript abundance and genetic variants. Adjustment
factors were as follows: sequence artifact estimations, demographic
characteristics, blood cell counts and 100 leave-one-chromosome-out

(LOCO) principle components of the gene expression matrix. The top
cis-eQTL was defined as the variant with the most significant associa-
tionwithin1Mb of the gene.

LeafCutter (v.0.2.6) (ref. 85) was used to quantify RNA alternative
splicing. Linear regression under the additive model was used to test
theassociation betweenalternative splicing events and linked genetic
variants using quantile-normalized-percentage-spliced-in (PSI) values
foreachjunction. Adjustment factors were as follows: sequence artifact
estimations, demographic characteristics, blood cell counts and 15
LOCO principle components of the quantile-normalized PSI matrix.
Colocalizationanalysis between CH GWAS variants and eQTL was car-
ried out using COLOC” implementedinR.

Proteomics. Proteomic analysis of ISL plasma samples (including
n=18,527 participants assessed for CH) using the SomaScan version
4 panel was described previously**. Proteomic analysis of UKB plasma
samples (n=12,636 participants with CH assessment) was conducted
using the Olink Explore 1536 platform as part of the UKB-Pharma Pro-
teomics Project (UKB application 65851). The vast majority of the
samples were randomly selected from among UKB participants. Olink
measurements used the normalized protein expression (NPX) values
recommended by the manufacturer, which include normalization.

To test for associations between plasma protein levels and CH,
we used the following model: protein level ~ CH + age + sex + smok-
ing + blood count phenotypes, where the smoking phenotypeis ‘ever
smoked’ (UKBID20160) and blood count phenotypes are WBC, eosino-
phil (EO) %, lymphocyte number (LY#), plateletcrit (PCT), platelet
(PLT), high light scatter reticulocyte number (HLR#), HLR%, monocyte
number (MO#), reticulocyte (RET) %, immaturereticulocyte fraction
(IRF), reticulocyte number (RET#) platelet distribution width (PDW),
mean corpuscular hemoglobin (MCH), mean corpuscular volume
(MCV), mean sphered cell volume (MSCV), basophil (BA) %, MO%,
eosinophil number (EO#), neutrophil (NE) %, and red cell distribution
width (RWD). All the blood-related phenotypes were corrected for
age and sex and standardized to normal distribution before entering
into the model.

Statistical testing. All statistical tests used in the study were two-sided.
None of the Pvalues quoted were adjusted for multiple testing.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

In addition to data presented in Supplementary Tables 1-22, the fol-
lowing new datasets are made available at: https://www.decode.com/
summarydata/

1. Variantlevel GWAS meta-analysis data for ISLand UKB for barcode-CH
and each CPLD-CH typeillustrated in Fig. 3.

2.Mutation level counts and Fisher’s exact test results for each somatic
mutation tested in ISL and UKB.

WGS, genotype and phenotypic data for UKB participants can be
accessed by approved researchers via the UKB research analysis plat-
form: https://ukbiobank.dnanexus.com/landing. Guidance on access
canbefound here: apply foraccess (ukbiobank.ac.uk). Individual-level
ISL WGS, RNA-seq and phenotype data cannot be made publicly avail-
able because that is prohibited by the Icelandic Act on Data Protec-
tion and Processing of Personal Data and conditions set forth to us by
the Icelandic Data Protection Authority. On-site access to the data at
deCODE genetics facilities may be granted. Interested parties should
write to the lead contact author S.N.S. with a brief description of the
requirements and intended use. Requests will be discussed by the
deCODE data access committee and a response given within 4 weeks.
We used data from the following public domain sources:
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GWAS Catalog®® (https://www.ebi.ac.uk/gwas/home 26/10/2021
release) for reported GWAS associations.

GTEx v8 (ref. 86; https://gtexportal.org/home/) for eQTL/sQTL, vari-
ous tissues.

eQTL Catalog® (https://www.ebi.ac.uk/eqtl) for eQTL/sQTL, various
tissues.

GEUVADIS® (https://www.cnag.crg.eu/projects/geuvadis) for eQTL/
sQTLinLCL.

Ref. 89 for eQTL/sQTL in monocytes, neutrophils and T cells.
eQTLGen Consortium®® (https:/www.eqtlgen.org) for eQTL/sQTL in
blood.

Ref.91for eQTL/sQTL in vascular and metabolic tissues.

XQTL Serve” (https://mostafavilab.stat.ubc.ca/xQTLServe) for eQTL/
sQTLinbrain.

Ref. 93 for eQTL/sQTLin dendritic cells.

Ref. 94 for eQTL/sQTL in monocytes.

MuTHER®” (http://www.muther.ac.uk) for eQTL/sQTL in adipose, LCL
and skin.

Ref.96 foreQTL/sQTLinliver.

Ref. 97 foreQTL/sQTLinlung.

Ref. 98 (https://nephqtl.org) for eQTL/sQTLin kidney.

Ref. 99 (http://icahn.mssm.edu/gwas2genes) for eQTL/sQTL in vari-
ous tissues.

Ref.100 for eQTL/sQTL in leukocytes.

Ref.101foreQTL/sQTL inblood.

Ref. 102 (GEO (https://www.ncbi.nlm.nih.gov/geo) accession
GSE196830) for eQTL/sQTL in 14 immune cell types.

Ref.103 for eQTL/sQTLin LCL.

Code availability

No custom code/software was used in the study. The publicly available
software used is indicated in the Methods above and collated in the
attached Reporting Summary.
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Extended Data Fig.1| Age and smoking dependency of CH. a, Frequency withage. The line connects the observed CH proportions, error bars are 95%Cl.
distribution in UKB of singleton mutations: Mutations that were observed only Data are from the ISL sample (n = 45,510), which has a larger age range than UKB.
onceinthe cohort were plotted by variant allele fraction (VAF). The counts ¢, Effects of current and previous smoking on CH by age: CH was modeled by age
were further stratified by the age of the subject at blood draw. Note that there and stratified by current or previous smoking status using sex, Pack-Years and
isa‘bump’inthedistribution starting below a VAF of approximately 0.3 and Years Since Stopped Smoking as covariates. Points correspond to observed CH
that the size of this ‘bump’is age dependent. This distribution was modeled to proportions and error bars are 95%Cl. Lines correspond to a logistic regression
identify people with more than the expected number of low-VAF mutations, as fit. Data are from the UKB sample (n =130,709).

explained further in the Methods. b, Proportion of subjects with CH increases
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position of the diagonal. Gray lines indicate the position of no effect. Detailed
dataincluding case and control numbers are in Supplementary Table 12. The
chrl14:TCL1A rs2887399_T allele was protective against barcode-CH, TET2-CH
and ASXL1-CH whilst the same allele increased risk of DNMT3A-CH, in line with
previous reports. The chrl4:TCLIA variantis indicated in the DNMT3A-CH and
ASXLI-CH panels toillustrate the reversal of effect. Similarly, the chr6:CD164
chr6:CD164 153056655 _A allele increased risk of barcode-CH and DNMT3A-CH but

logOR barcode-CH logOR barcode-CH

decreased risk of TET2-CH'. The latter result was seen only in UKB, whereas ISL
data could not confirmit. The chr3:SMC4rs201009932 variant had no discernible
effect on ASXLI-CH while it had a pronounced effect on JAK2-CH. chr3:THRB had
no apparent effect on DNMT3A-CH and chr5:TERT rs7705526 had no effect on
PPM1D-CH. Other variants showed prominent effects only in specific CPLD-CH
types: chr12:SOX5 and chr14:DLKI had no evident effects outside of barcode-CH,
while chr13:KLF12had no apparent effect outside of PPMID-CH. The chr9JAK2
rs16922785_G allele (indicated in the JAK2-CH panel) only conferred CH risk in the
context of the JAK2 Val617Phe somatic mutation and was preferentially linked
toitincis, as has been noted previously for the 46/1JAK2 haplotype and MPN
risk'%*. rs16922785 is in moderate LD with the 46/1 haplotype (r* = 0.68) and had
asomewhat stronger association with JAK2-CH than the 46/1 haplotype tagger
rs12343867_C (P=1.60x107°vs1.04 x107).
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Extended Data Fig. 6 | Effects of CH GWAS variants on clinical hematology
parameters. a, GWAS Catalog reports: For each sentinel CH GWAS variant, we
identified all variants in LD with r? > = 0.8 within +/-500kb. For those variants,
we searched the GWAS Catalog for reported associations with P-values <1x107
from linear regression association. CH GWAS loci (y-axis) are colored red if the
Altallele increased CHrisk, otherwise blue. Circles are colored red if the Alt allele
was associated with anincrease in the hematological trait value (x-axis), blue if
there was a decrease and gray if the direction of effect could not be ascertained.
b, Associations from linear regression between sentinel CH GWAS variants

and clinical hematology traits measured on contemporaneous samples in the
UKB: CH GWAS loci (y-axis) are colored red if the Alt allele increased CH risk,
otherwise blue. Hematological trait symbols (x-axis) are colored red if their
values increased in association with the CH phenotype, blue if they decreased
in CH and gray if they were not associated with CH. Blocks are colored inif the
effect of the CH GWAS variant on the trait was at least nominally significant: red
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indicates that the Alt allele was associated with anincrease in the hematological
trait value, blue indicates a decrease. Intensity of color indicates the effect size.
Hematological traits are ordered by hierarchical clustering within the CH at-risk
and CH protective strata. Platelet parameters were affected by the greatest
number of variants: PCT, PLT, PDW and MPV; followed by erythrocytic parameters
MCH, RBCand MCV. The best alignmentsin direction of effects (¢that is where
the effects of the variant on CH and the hematological trait were consistent with
the phenotype:phenotype association) were seen again for platelet parameters
PDW, PCT and PLT as well as for MO#, LY# and BA%. From the perspective of the
CH GWAS variants, the variants affecting the most hematological traits were
chr6:CD164 and chr6:HLA-C. However chr6:CD164 had rather poor alignment in
the direction of effects. The best alignments were seen for chr21:14966851 NRIP1,
chr3:THRB and chr3:16068930:SMC4. Clinical hematology parameters are as
defined in Sheard".
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Extended Data Fig. 7 | Effects leukocyte telomere length (LTL) GWAS variants
onLTL in UKB and in a UKB sub-sample with barcode-CH cases removed. A
GWAS was conducted on a sub-sample of UKB from which proven CH cases had
beenremoved (n=111,523). The effects of LTL GWAS variants were compared

no effect.

between the two samples: LTL effect on the x-axis and the no CHLTL effect on

the y-axis. The plotted points are association the effect estimates from linear
regression and the bars indicate 95%Cl. The red dotted line indicates the fitted
inverse variance weighted (IVW) regression. Gray lines indicate the position of
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Extended Data Fig. 8| Co-localization of eQTL with CH GWAS loci
chr3q27:ABCC5 and chr3q25:TRIM59/SMC4. a, Public databases report

that ABCCS expression is down regulated in association with the CHrisk allele
chr3:183954156_GT in whole blood, monocytes and T-cells. This eQTL was
confirmedin ISL whole blood RNAseq (B =-0.926 sd, P=1x107%"). We noted a
closely correlated, moderate impact splice region variant (rs7636910, r*= 0.96)
in ABCCS. The panel shows a plot of RNAseq eQTL signals from whole blood
(red) and CH GWAS results (blue) by genomic location. eQTL P-values are
scaled asindicated in the legend. Co-localization analysis (COLOC”) indicated
aPP.H4 =74% probability that the eQTL and CH GWAS signals arise from the
same, single causative variant. ABCC5 is, however, not a compelling biological
candidate for CH causation. b, Public databases report that TRIM59 and SMC4
expressioninblood isincreased inassociation with CHrisk allele rs2305407 A,

b

TRIM59, CH conditioned on chr3_160368930_T_TA
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whichis annotated as an SMC4 splice region variant. These signals replicated
inISL blood RNAseq (TRIMS59: 3 =0.458sd, P=1x107*°; SMC4: 3 =0.073sd,
P=1.75x10™"). There were two independent CH GWAS signals at 3q25; a

1-2%EAF CHrisk variant chr3_.160368930_T_TA and a ~ S55%EAF CH risk variant
rs2305407_A, which carries the eQTL association. Accordingly, the CH GWAS plot
(blue) shows the P, values for rs2305407_A conditioned on chr3_160368930_T_
TA. The TRIM59 RNAseq eQTL signal (red) is scaled as indicated in the legend.
COLOC revealed a PP.H4 = 96% probability of peak identity. COLOC did not show
substantial evidence of peak identity with the SMC4 eQTL, whether the CH GWAS
signal was conditioned on chr3_160368930_T_TA or not, with PP.H4 = 4.5% and
2.2%, respectively. eQTL and CH GWAS signals were derived from linear and
logistic regression association analysis, respectively.
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