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Phasing involves distinguishing the two parentally inherited copies of each
chromosome into haplotypes. Here, we introduce SHAPEITS5, a new phasing
method that quickly and accurately processes large sequencing datasets and
appliedit to UK Biobank (UKB) whole-genome and whole-exome sequencing

data. We demonstrate that SHAPEITS phases rare variants with low switch
error rates of below 5% for variants present in just 1sample out 0f 100,000.
Furthermore, we outline a method for phasing singletons, which, although
less precise, constitutes an important step towards future developments.
We then demonstrate that the use of UKB as a reference panel improves the
accuracy of genotype imputation, which is even more pronounced when
phased with SHAPEIT5 compared with other methods. Finally, we screen
the UKB data for loss-of-function compound heterozygous events and
identify 549 genes where both gene copies are knocked out. These genes
complement current knowledge of gene essentiality in the human genome.

Modern genetic association studies are increasingly based on
whole-genome or whole-exome sequencing (WGS/WES) for hundreds
of thousands of samples collected as part of nationwide biobanking
initiatives*. Compared with previous studies based on single nucleo-
tide polymorphism (SNP) arrays, WGS and WES data can identify rare
variants (e.g., minor allele frequency below 1%), allowing a systematic
characterization of their contribution to trait heritability®, functional
relevance* and effects onvarious traits and diseases™. In this context,
haplotype phasing of rare variants, which involves distinguishing the
two parentally inherited copies of each chromosome into haplotypes,
addsalayer of biologically relevantinformation and unlocks new analy-
ses. Forinstance, phasing is crucial to identify compound heterozygous
events, whichoccur whenboth copies of agene contain nonidentical,
heterozygous mutations. Inthe case of Mendelian disorders, compound
heterozygosity is one of the most commoninheritance models for rare
recessive diseases in nonconsanguineousindividuals™®. Previous efforts
toidentify compound heterozygous eventsin large cohorts provided
valuable insights, yet these either relied on imputed data’ or ignored

phasing information®. Compound heterozygous event identification
requires high-confidence phase information to be considered when
rarevariants are analyzed, such asingene-based burden test analysis'’.
The most common approach to phase rare variants without parental
genomesor long-readsin large cohorts of individualsis statistical phas-
ing, which leveragesinformationacross individuals to make estimation
of haplotypes". This technique is well established for common variants
typed on SNP arrays, where phase informationis used, for instance, to
perform genotype imputation’?, admixture analysis" and genealogy
estimation'. Phasing methods have been optimized to scale to the
thousands of samples in modern SNP array datasets, and the time is
ripeto do the same for the millions of rare variant sites present in WGS/
WES datasets. As an example, the WGS data for 150,119 UKB samples
comprise three orders of magnitude more variants than the Axiom
array data, around 96% of them having aminor allele frequency (MAF)
below 0.1%. Phasing large scale WGS/WES datasets is challenging and
new methods able to handle large amounts of rare variants are now
emerging®. Recently, a computationally efficient solution for rare
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Fig.1|Rationale of SHAPEITS. a, All samples are phased at common variants
(MAF = 0.1%). b, Phasing of a given rare variant onto the haplotypes at
common variants. Conditioning haplotypes used in the estimation share long
matches with the target (green and blue) and are not monomorphic at the
rare variant. Since heterozygous genotypes for the rare variant are unphased,

LoF variants

the minor alleles at those are assumed to be on both haplotypes (i.e., forcing
homozygosity). ¢, Singleton phasing by assigning the new allele on the target
haplotype with the shortest match. d, Compound heterozygous event mapping
based on the rare variant phasing (a-c).

variant phasing has been implemented in Beagle v.5.4 (refs. 16,17), in
whichcommon and rare variants are phased separately:inafirst step,
astandard phasing method is used to obtain haplotypes at common
variants, and inasecond step rare heterozygous sites are phased onto
the resulting haplotypes using genotype imputation technique. This
type of strategy, based on haplotype scaffolds, has been used in other
contexts, such as in genotype imputation', integration of family data”
and external phasing information®.

In this work, we describe SHAPEITS5, a method designed to accu-
rately phase rare variantsin large WGS/WES datasets, including single-
tons, with moderate accuracy, while attributing phasing confidence
scores. We applied it to estimate haplotypes for 150,119 and 452,644
UKB samples with WGS and WES data, respectively. We demonstrate
the benefit of using these two haplotype collections as reference panels
for SNP array imputation and finally show that the phase inferred at
rare variants in the WES dataset can be screened to reliably identify
compound heterozygous loss-of-function (LoF) mutations, probably
leading to complete gene knockouts.

Results

Overview of the SHAPEITS5 phasing method

SHAPEITS performs haplotype phasing of WGS or WES data using three
different phasing models, each focusing onaspecific type of variants:
(1) common variants are phased using the SHAPEIT4 model®, (2) rare
variants are phased onto the resulting haplotypes using an imputa-
tion model and (3) singletons are phased using a coalescent-inspired
model. See Fig. 1 for anillustration of the phasing scheme. Common
variants are defined as having a MAF above 0.1% and are phased using
an optimized version of the SHAPEIT4 algorithm, known to perform
well on large sample sizes (Fig. 1a).

The resulting haplotypes are used in a second stage as a scaffold
onto which rare variants (MAF < 0.1%) are phased one after another,
following a methodology similar to that of Beagle v.5.4 (refs. 16,17). To
cope with the large numbers of rare variants, SHAPEITS5 uses a sparse
data representation for rare variants: only genotypes carrying at least
one copy of the minor allele are stored in memory and considered for
computation, thereby discarding all genotypes being homozygous for
the major allele”?2. SHAPEIT5 phases each rare heterozygous genotype
conditioning on a small number of informative haplotypes (Fig. 1b).

For a specific rare variant, these conditioning haplotypes are chosen so
that (1) they belong to samples being locally identical-by-descent (IBD)
with the target sample and (2) they are polymorphic at the rare variant
(that is, at least a few carry a copy of the minor allele). To comply with
the first requirement, SHAPEITS5 uses a positional Burrows-Wheeler
transform (PBWT) data structure® built on all the scaffold haplotypes
atcommon variants. This allows rapid identification of shared segments
between haplotypes. To ensure representation of the minor allelein the
conditioning set (second requirement), the method performs asecond
PBWT passrestricted to the subset of samples carryingacopy of the minor
allele. This second passis performed efficiently by leveraging the sparse
representation of the genotypes. We then determine the alleles carried
by the conditioning haplotypes at the rare variant of interest, which
is straightforward when homozygous. However, when a conditioning
sampleis heterozygous, the allele carried by each of its two haplotypes s
unknown. Inthis case, our model assumes that both haplotypes carry the
minoralleleasdonein Beaglev.5.4 (refs.16,17). Once the conditioning set
of haplotypes is assembled, SHAPEITS5 uses the Liand Stephens model**
togetthemost likely phase configuration of the rare allele by imputation
(that is, either onits first or second target haplotype; Supplementary
Fig.1). The strength of our model resides in the guarantee that eachrare
heterozygous genotype is phased from a conditioning set containing
long haplotype matches and carrying copies of the two possible alleles.

For singleton variants (minor allele count (MAC) of 1), SHAPEIT5
uses another phasing model that (1) assumes singletons to be recent
mutation events and (2) leverages IBD sharing patterns between haplo-
types to make inference (Fig. 1c). Specifically, our model identifies
the longest possible match in the dataset for each target haplotype.
By definition, these matches point to haplotypes sharing recent com-
mon ancestors with the target and their lengths indicate the number
of generations separating them: the shorter the match, the older the
common ancestor. Our model assumes thatan older common ancestor
means more time for amutation to occur on that lineage and therefore
assigns the minor alleles of singletons to the target haplotype with the
shortest match?.

Phasing UKB exomes and genomes
We used SHAPEITS to phase haplotypes for three different UKB sequenc-
ing datasets: (1) WGS data on chromosome 20 for 147,754 samples and
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around 13.8 million SNPs and indels after quality control, (2) WES data
for 452,644 samples and around 26 million variants and (3) WGS data
for the full set 0f 150,119 samples and around 603 million variants. For
(1) and (2), we included only samples for which Axiom array data are
available and excluded parental genomes for duos (parent-offspring
pairs) and trios (parent-offspring triplets) to measure phasing accu-
racy in the offspring. Numbers of samples, trios, duos and variants
after quality control are givenin Supplementary Table 1. Phasing of the
WES dataset was performed for each chromosome independently and
phasing of the WGS was done in overlapping chunks of around 4.5 Mb
on average to leverage parallelization on the UKB Research Analysis
Platform (RAP). We compare the performance of our method with
Beagle v.5.4 (refs. 16,17) (default parameters) on the WES and WGS
datasets on chromosome 20.

Phasing performance in the UKB data

To assess phasing performance, we used the available white British
trios (719 for WES, 31 for WGS) and duos (432 for WGS). Using these,
we (1) derived a true set of haplotypes for the offspring using inher-
itance logic, (2) performed statistical phasing of the WES and WGS
datasets after having excluded parental genomes and (3) compared
the offspring haplotypes obtained by statistical phasing with the true
set obtained in (1). We assessed how close the two sets of haplotypes
are by measuring the switch error rate (SER), which is the fraction of
successive heterozygous genotypes phased differently. When looking
atoverall SER using different validation sets (duos, trios), different sets
ofvariants (all variants or common variants only) and different sample
sizes, we found minor differences between SHAPEIT5 and Beagle v.5.4
onthe WGS data (Supplementary Fig.2a-c). However, when consider-
ing only Axiom array positions, lower SER is observed with SHAPEIT5
(Supplementary Fig.2d). We did not find the same pattern when phasing
the Axiom array data only (n=5,000 to n =480,000): the two meth-
ods exhibit similar accuracy regardless of sample size (Extended Data
Fig.1). We obtained low SER (<0.2%) on the largest sample sizes for
both methods, to the point that switch errors and genotyping errors
cannot be distinguished (Extended Data Fig. 2).

Akey feature of the WES and WGS datasets is the large number of
rare variants they contain. The number of heterozygous genotypes is
low at these variants and they have a small contribution in global SER
measurements. We therefore stratified the SER within bins of MACs
tofocus onrare variants. We assigned heterozygous genotypes to dif-
ferent MAC bins depending on the variant frequency and computed
ineach MAC bin the fraction of them being correctly phased (relative
tothe previous heterozygous genotype, regardless of its MAC). When
doing so, we found that SHAPEITS5 phases rare variants with higher
accuracy thanBeagle v.5.4 inboththe WGS and WES datasets (Fig. 2a,b).
Forinstance, SHAPEIT5and Beagle v.5.4 phaserare variants inthe WGS
data(MACbetween1land20) with SER of 4.36% and 8.76%, respectively,
whichisa50.2% drop. Inthe WES dataset, the same variant category is
phased by SHAPEITS5 with a switch error rate of 2.93% compared with
5.18% with Beagle v.5.4 (42.67% reduction). Overall, SHAPEITS5 phases
rare variants in the WES and WGS with 20% to 50% fewer switch errors
compared with Beagle v.5.4, depending on MAC. This improvement
inaccuracyisalso observed when only using trios for validation (Sup-
plementaryFig.3) and depends onsample size (Supplementary Fig.4).
Significant differences between the two methods are observedin data-
sets comprising atleast 50,000 samples and increase with sample size.

In a large sequencing dataset, a singleton can be the product of
several causes, including recent mutation, de novo mutation, somatic
mutation or genotyping error. SHAPEITS5 aims to resolve the phase
of recent mutations. We estimated the fraction of singletons falling
in this category using duos and trios in the WGS data. We measured
the fraction of singletons in offspring that is not supported by the
genotype dataavailable for the parents. In duos, we found that 47.36%
of the singletons are supported by the genotyped parent, whereas

52.64% are not (Extended Data Fig. 3a), deviating from the expected
50% and suggesting that 5.26% of the singletons are not inherited
from parents (assuming no inheritance bias). Consistently, in trios we
found that 4.52% of the singletons in the offspring are not inherited
from the parents (none of the parents carry the minor allele; Mendel
inconsistency; Extended Data Fig. 3b). Together, this shows that most
singletons (-95%) are inherited and can therefore be phased using both
inheritance logic in trios and duos and our model. In the WGS data-
set, we obtained SER of 35.1% and 36.6%, respectively (Extended Data
Fig. 3c,d). In the WES dataset, we obtained an SER of 35.2% (Fig. 2b).
While relatively high, thisis a significant deviation from the expected
50% from previous models (binomial test P values <3.7 x 10°; Extended
DataFig.3c,d).

Allcomputations were performed on the UKB RAP. The RAP offers
achoice of two priority levels for computations: ‘spot’ (lower cost) and
‘ondemand’ (higher cost). Assuming that all computing is performed
on demand, Beagle v.5.4 and SHAPEITS require £57.80 and £65.20 of
computing costs (as of October 2022) to phase chromosome 20 WGS
data (n=147,754), which correspond to approximately £2,890 and
£3,258 for the entire genome (Supplementary Table 2). However, these
are conservative estimates, as SHAPEIT5 allows phasing of the datain
chromosomal chunks (in parallel), therefore greatly reducing the need
for using ‘on demand’ priority.

SHAPEITS5 phasing improves genotype imputation accuracy
Several downstream analyses in disease and population genetics
require haplotype-level data. One example is genotype imputation®,
which uses WGS data as areference panel to predict missing genotypes
inSNP array data. As the accuracy of genotype imputation depends on
thereference panel, we quantified phasing errors using genotype impu-
tation, which has two main advantages. First, it provides a validation
alternative to SER that is easy to partition by minor allele frequency.
Second, it assesses the phasing quality across all samples, and not only
onasmallsubset with parental genomes available. We imputed a subset
0f 1,000 UKB British samples with SNP array data available, together
with WGS and WES as validation.

First, we show that genotype imputation using the UKB WGS refer-
ence panel greatly outperforms the previous generation of reference
panels, such as the Haplotype Reference Consortium (HRC)? (Fig. 2c),
inline with previous findings showing that large WGS panels enhance
imputation®. For both UKB WGS and WES, we find that the reference
panels phased with SHAPEITS5 outperform those phased with Beagle
v.5.4 atrare variants (MAC < 500; Fig. 2¢,d and Extended Data Fig. 4),
consistent with the SER estimates reported in Fig. 2a,b. Asanexample,
imputation using the WGS or WES reference panel phased with
SHAPEITS provides an increase of squared Pearson coefficient of
around 0.05 for variants with a MAC between 2 and 5. In an associa-
tion study, this corresponds to an increase of 5% in effective sample
size when testing these variants for association, due only to better
reference panel phasing?®. Even singletons are better imputed using
the SHAPEITS5 panel. Despite the low overall accuracy at these variants,
which restricts their utility in downstream analyses, this confirms on
alarger scale the validity of our singleton phasing.

SHAPEITS introduces a metric of phasing confidence at rare het-
erozygous genotypes (MAF < 0.1%), which corresponds to the prob-
ability of thereported phase. This allows controlling for phasing errors
and utilizing phasing certainty in downstream analyses. Phasing con-
fidence lies between 0.5and 1, where lindicates no uncertainty in the
phase and 0.5 means that the two phasing possibilities are equally
likely. Singletons are attributed a phasing confidence of 0.5 as phasing
confidence cannot be computed for them. We assessed the phasing
accuracy at different confidence scores (Extended Data Fig. 5) and
show that filtering variants with a threshold of 0.99 controls the SER
to amaximum of around 2% for WGS data and around 1% for WES data
while keeping most variants (for instance, >75% and >40% variants with
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MAC2-5areretained). This allows researchers to confidently use rare
heterozygous genotypes in their analyses.

Identification of LoF compound heterozygotes

Compound heterozygous events occur in an individual when both
copiesof agene contain atleast one heterozygous variant. Compound
heterozygosity is often studied in the context of LoF variants, which are
expected to have highly deleterious effects on genes—equivalent to a
homozygous gene knockout. Indeed, compound heterozygous events
have been linked to several diseases including cancer, birth defects
and Alzheimer’s disease®*~*%. The accurate haplotype phasing across
the UKB performed in this study, including extremely rare variants,
allows the identification of individuals and genes with compound
heterozygous events. For this, we gathered 383,637 high-confidence
LoF variants (stop-gain, frameshift or essential splice variants) phased
across 374,826 white British individuals and 17,689 protein-coding genes
(Methods). We found thatagene has, onaverage, 22.3 LoF variants across
the cohortand anindividual has, on average, 7.8 LoF variants (Extended
DataFig. 6). To determine compound heterozygous events, we identify
individuals with LoF mutationsin both copies of agene. Owingto their
higher error rates and the risk of introducing false positives, we opted
to exclude singletons from these analyses. A total of 2,150 (12%) out
of'17,689 protein-coding genes tested had at least one individual with

two or more LoF variants, and thus liable for compound heterozygous
identification. From those 2,150 genes, we found 549 (26%) genes with
one or more individuals with compound heterozygous LoF variants
(Fig.3a), foratotal of 779 gene-individual events (766 distinct individu-
als; Extended Data Fig. 7 and Supplementary Data 1). When consider-
ing only high-confidence haplotype calls (phasing confidence score
>0.99), wesstillidentify 80% (441) genes and 79% (614) of the compound
heterozygous eventsidentified in the full dataset, indicating that these
mostly rely on high-confidence haplotype calls (Fig. 3a and Extended
DataFig.7). We found that the 549 compound heterozygous genes are
highly depleted in several lists of known essential genes, compared
with the 2,150 genes with two or more LoF variants (odds ratio (OR)
0.1-0.48 across essential gene lists, P< 9.7 x 107; Fig. 3b). Conversely,
compound heterozygous genes are enriched in lists of nonessential
and homozygous LoF tolerant genes (OR 1.2-2.7 across nonessential
gene lists; Fig. 3¢). The comparison with genes with two or more LoF
variants in the same individual ensures that the signal observed is not
duetothe mere presence or absence of LoF variantsinthose genes, but
rather the avoidance of them occurringinbothgene copies. As the UKB
is composed largely of healthy individuals, a depletion of compound
heterozygous events in essential genesis expected.

When comparing with phasing performed with Beagle v.5.4,
we found 673 compound heterozygous genes (962 events) that are
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Fig.3| Compound heterozygous identification in the UKB WES data phased
with SHAPEITS. a, Number of genes with at least one individual with compound
heterozygous LoF variants across several categories: Full data, all LoF variantsin
the study, except singletons; High confidence, LoF variants excluding calls with
phasing confidence score <0.99; and Random phasing, shuffling phasing of all
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heterozygous genes presence in several lists of essential genes (Methods).
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at-6.c,Same asbbut across lists of nonessential or LoF tolerant genes. d, Ratio

between the number of individuals with compound heterozygous events and
the expected number of individuals given the number of variants, per gene.
Missense (n =14,336 genes) and synonymous (n = 9,816 genes) events are shown
inaddition to LoF events (n = 2,150 genes) as acomparison. The length of the
box corresponds to theinterquartile range (IQR) with the center line and values
corresponding to the median, and the upper and lower whiskers represent the
largest or lowest value no further than 1.5x IQR from the third and first quartile,
respectively. Pvalues between categories correspond to two-sided Wilcoxon
test Pvalues.

significantly depleted in essential genesbut atreduced levels compared
with SHAPEITS5 phasing (Extended Data Fig. 8). Finally, as a control,
we attributed the phase of variants randomly, which led to 1,792 com-
pound heterozygous genes and 17,241 events (Fig. 3a), which did not
display depletion in essential genes, as expected (Fig. 3b). Together,
these results indicate that accurate haplotype phasing is crucial for
the identification of bonafide compound heterozygous events.

The finding that compound heterozygous genes are depleted
in essential genes indicates that such events are avoided, at least in a
subset of the genes. To explore this further, we compared the number
of expected and observed compound heterozygous events per gene,
based on the variant distribution in the UKB cohort, assuming that
each variant phase is independent (Methods). For LoF variants, we
observed a marked decrease in observed compound heterozygous
events compared with expected, confirming evidence for negative
selection (Fig. 3d). Conversely, when considering variants with syno-
nymous effect (Extended Data Fig. 9 and Supplementary Data 1), the
number of observed compound heterozygous events is not depleted
(medianratio=1.4; Fig.3d), indicating no or low selective pressure to
reduce synonymous variant compound heterozygous events for most
genes. When considering missense or low-confidence LoF variants
(referred to as missense for simplicity), we observed a mild decrease

inobserved events compared with expected (meanratio=0.8; Fig. 3d
and Supplementary Data 1), consistent with the possible deleterious
effect of some missense variants. In addition, we found that missense
compound heterozygous genes had only mild or no depletion for essen-
tial genes, whereas synonymous compound heterozygous genes either
had nosignificant depletions or were even enriched in some essential
gene sets (Extended Data Fig. 9). Overall, our results demonstrate
that the accurate phasing at rare variants with SHAPEITS allows us to
screen for compound heterozygous events across the UKB cohort with
high confidence, revealing that LoF compound heterozygous events
are under strong selective pressure in essential genes, as expected by
their high negative impact.

Discussion

WepresentSHAPEITS,atool forphasingrarevariantsinlargesequencing
datasets. SHAPEITS5 phases common variants first to create a haplotype
scaffold. Subsequently, rare variants are phased one at atime on this
scaffold. A key difference from Beagle v.5.4 is the use of individualized
panels of haplotypes for rare variant phasing. SHAPEITS ensures
representation of the minor alleles at rare variants, which leads to
accuracy improvements that are more pronounced in larger
sample sizes. We produced phased genomes for the UKB WGS and
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WES data for acompute cost below £4,000. The haplotype estimates
have low SERs, with rare variants down to doubletons being phased
with high confidence. Thisaccurate phasing enables highly accurate
genotype imputation when used as areference panel. Beyond meas-
uring error rates, we also validated phased haplotypes biologically
by identifying compound heterozygous events, which we found
highly depleted in essential genes, as expected. In addition, we
achieved singleton phasing, albeit with higher error rates and there-
fore with limited downstream utility. However, we view this as an
advance in phasing models as previous approaches were unable to
phase singletons.

Although of substantial interest, previous knowledge of com-
pound heterozygous cases comes mostly from case studies in fami-
lies”® and there is currently no method to identify these eventsinlarge
biobanks systematically. Here, we show that high-quality phasing
of rare variants with SHAPEITS allows compound heterozygosity to
be studied at the biobank-scale level, which can greatly increase the
number of events characterized compared with the use of family
data, in addition to exploring their association with new pheno-
types. As a proof-of-principle, we screened all protein-coding genes
for compound heterozygous events with high-confidence LoF vari-
ants and found 549 genes predicted to be fully knocked out across
816 UKB individuals out of the 374,826 individuals considered in
this study. This complements other lists of nonessential genes®,
with the main difference that these knockouts are found in vivo in
humans. Approximately 0.22% of the UKB cohort had at least one
gene knockout by compound LoF heterozygous events. This observed
frequency of events matches previous estimates in outbred healthy
cohorts®. UKB participants are not expected to have any rare and/
or severe genetic diseases as their average age is 56 years, which is
after the age of onset for most rare diseases. This partially explains
why the gene knockouts observed are strongly depleted in several
lists of essential genes. However, we still found 52 genes deemed as
essential in at least one of the essential gene lists we analyzed. We
can conceive three possible scenarios to explain these specific cases.
First, the mutations had amoderate impact on the individual and did
not result in severe disease. As an example, we found one individual
with pulmonary embolism while having a knockout of the essential
gene ADAMI9—a gene reported for its involvement in pulmonary
disease®*. Second, compensatory mutations canrescue the deleteri-
ous effect of the knockout. For instance, we observed one individual
with a knockout of CFFTR—an essential gene found to be rescued by
several gain-of-function mutations across the genome®*°. Finally,
some of the compound heterozygous events discovered may be false
positives driven by incorrect phasing or erroneous LoF annotations.

We foresee that rare variant phasing in large sequencing studies
such as the UKB has the potential to unlock many applications and
analyses. First, other types of functional variants can be screened for
compound heterozygous effects, for instance, combining LoF and
missense or regulatory variants*’. Second, phase information can
beincluded in rare variant burden testing approaches, which usually
consider only amixture of the two haplotypes. Third, using accurately
phased reference panels allows phasing of extremely rare variants with
high accuracy, even singletons to some extent, for any new sequenced
genome from the same population. This is beneficial for diagnosis of
rare and severe diseases caused by compound heterozygous effects,
such as in the Genomics England dataset*, in which diagnosis yield
could beincreased by incorporating phase information.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01415-w.
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Methods

Ethics statement

This study relied on analyses of genetic data from the UKB cohort,
which was collected with informed consent obtained from all partici-
pants. Data for this study were obtained under the UKB applications
licence number 66995. All data used in this research are publicly avail-
abletoregistered researchers through the UKB data-access protocol.

Common variant phasing

For common variant phasing (MAF > 0.1%), SHAPEITS is based largely
on the previous SHAPEIT version (v.4). Briefly, it updates the phase
of each sample in turn within a Gibbs sampler iteration scheme: each
sampleis phased by conditioning on other samples” haplotypes using
the Li and Stephens model*. Two main features, already part of the
SHAPEIT4 model, allow fast phasing at common variants: (1) first,
the haplotype sampling step has linear complexity in the number of
conditioning states*?and is multithreaded so that several samples are
phasedin parallel; (2) second, the sampling is based on a parsimonious
and highly informative set of haplotypes, identified in constant time
using the PBWT data structure.

However, one computational limitation of SHAPEIT4 residesinits
inability to parallelize the construction of the PBWT, which canbecome
relatively long in very large datasets. In SHAPEITS5, the main improve-
ment we introduced for common variant phasing is a parallelization
scheme for the PBWT construction: several PBWT passes are run in
parallel on several central processing unit cores, each one running for
adifferent chunk of 4 cM by default, achieving a notable reduction of
the wallclock running time of the method.

Rare variant phasing

To accurately phase rare variants (MAF<0.1%), SHAPEITS uses the
haplotypes derived at common variants as haplotype scaffolds onto
which heterozygous genotypes are phased one rare variant at a time.
For asingle heterozygous genotype, we aim to determine which of the
two target chromosomes carries the minor allele (as opposed to the
major allele). To do so, our method uses the Li and Stephens model to
compute the probabilities of the two possible phases. The probabilistic
inference is based on a set of haplotypes carried by other samples in
the dataset, that we call conditioning haplotypes. Similarly, we call a
conditioning sample, any sample carrying at least one conditioning
haplotype and conditioning set, the collection of conditioning haplo-
types used forinference. The outcome of the estimationis a posterior
probability of the most likely phase for each of the rare heterozygotes.
Specifically, our model comprises five main features:

Sparse representation. We use a sparse matrix representation of
the genotypes at rare variants to efficiently store large amounts of
genotype data in memory and speed up computations. Only geno-
typescarryingatleast one copy of the rare allele are stored in memory
together with the necessary indexes to determine the sample and vari-
anttowhichthegenotype corresponds. As most of the rare variants are
homozygous for the major allele, this representation allows for alarge
reductionin memory usage and a fast identification of heterozygous
genotypes at a given rare variant. To quickly retrieve rare genotypes
at both the sample and variant levels, we store this sparse genotype
matrix in memory together with its transpose.

Haplotype selection. To get the most informative haplotypes in the
conditioning set, we require that they (1) share long haplotype matches
withthe targetand (2) are not monomorphicattherare variant of inter-
est. The first condition ensures that the haplotypes in the condition-
ing set are informative for the copying model. The second condition
ensures that the conditioning set contains carriers of the two possible
alleles at the rare variant ofinterest. The latter isrequired to accurately
contrast the two possible phasing possibilities of the rare heterozygous

variant. To efficiently retrieve haplotypes complying with these prop-
erties, we use the PBWT data structure of the haplotype data derived
at common variants. We perform both forward and backward PBWT
sweeps so that we canidentify long matches between haplotypes cen-
tered in the position of the rare variant by interrogating the flanking
prefix arrays. This gives a first set of haplotypes that complies with
condition (1), but not necessarily with condition (2). Therefore, we
do asecond identification of matches in the PBWT, this time restrict-
ing the search to the subset of samples carrying the minor allele. We
achieve this second pass efficiently by taking advantage of the sparse
genotype representation: we interrogate only the PBWT prefix arrays
atthe sparseindexes.

Forcing homozygosity. The conditioning set defined before contains
asetofhaplotypes thatshare large segments with the target haplotype
at common variants, but they have not been phased yet at the rare
variant of interest. When the conditioning sample (that is, the sample
carrying the haplotype) is homozygous, this is not an issue as its two
haplotypes carry the same allele. However, when the conditioning
sampleisheterozygous, we do notknow the allele carried by each one
ofits two haplotypes. We solve this by simply assigning the minor allele
to both haplotypes”. As a consequence of the two previous steps, the
conditioning set of haplotypesis guaranteed to contain carriers of the
two possible alleles at the rare variant of interest.

Copying model. We can now perform phasing of rare heterozygous
genotypesbased onthe conditioning set of haplotypes that have been
constructed as part of all the previous steps. SHAPEITS5 computes the
probability that each target haplotype carries the minor allele by using
a haploid version of the Li and Stephens model** as implemented in
Impute5 (ref. 21) (for a definition of the HMM parameters and a formal
description of the imputation model used, see Rubinacci et al.”' and
Howie et al.*®). Specifically, it runs a forward-backward pass as donein
the context of genotype imputation (see Marchini** for details) to get the
probabilities that each target haplotype carries the minor allele at the
rare variant. In practice, the vector of copying probabilities is obtained
ateachrarevariant by averaging the copying probabilities computed at
the two closest flanking common variants. Here, the conditioning set of
haplotypes serves as alocal reference panel for imputing the alleles at
therarevariantinthe targetsample. Of note, accurate inference is made
possible since the conditioning set we chose is guaranteed to comprise
carriers of both the major and minor alleles at the rare variant of inter-
est. Having only carriers of a single allele would not be informative for
making inference here. Finally, we use these imputation probabilities
to derive phasing probabilities (Supplementary Fig. 1), which we can
use to get the most probable phase or as phasing confidence scores to
propagate phasing uncertainty in downstream analyses.

Singleton phasing. In the case of singletons, only the target sample
carries a copy of the minor allele at the rare variant. Therefore, none
of the conditioning haplotypes carries the minor allele and the whole
copying model described above is unable to make inference. This is
a well-known limitation of all statistical phasing methods. SHAPEIT5
can provide inference at these sites by using the Viterbi algorithm for
theLiand Stephens model*, to obtain the longest shared IBD segment
between each one of the two target haplotypes and the conditioning
haplotypes. The minor allele of singletons is then assigned to the tar-
gethaplotype with the shortest shared segment. Theideabehind this
model presumes that the shorter the IBD sharing between two haplo-
types, the older their most recent common ancestor is, and therefore,
the chance for new mutations to occur in that lineage isincreased.

Validation of haplotype estimates
To validate haplotype estimates, we use trios (two parents, one off-
spring) for WES data and both duos (parent-offspring pairs) and trios
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for WGS data. To identify parent-offspring relationships, we use the
kinship estimate and the IBSO as provided as part of the UKB SNP array
release. We select parent-offspring relationships as having a kinship
coefficientlower than 0.3553 and greater than 0.1767 and an IBSO lower
than 0.0012 (refs.1,45). Inaddition, we require that the difference inage
between parents and offspringis greater than15 years and that the two
parents have different sex for trios. We finally keep only self-declared
white British individuals for which ancestry was confirmed by princi-
pal component analysis (PCA, UKB field 22006). The number of trios
used in the validation for all three datasets (Array, WES or WGS) is
shownin Supplementary Table 1. Validation of haplotypes is a two-step
procedure. First, we statistically phase a given dataset including only
the offspring samples. Second, we use the parents to measure the
SER—ametric commonly used to assess how close estimated and true
haplotypes are. The SER is defined as the fraction of successive pairs
of heterozygous genotypes being correctly phased. In the context of
this work, we measured SER stratified by bins of MAC. We assigned each
heterozygous genotype toagiven MAC bin and counted the fraction of
heterozygous genotypesbeing correctly phased per MACbin, relative
to the previous heterozygous genotypes (this one can belong to any
MAC bin). This definition of SER has the advantage of showing how
well statistical phasing performs depending on the frequency of the
variants it phases (either common or rare).

UKB SNP array dataset

We used the UKB Axiom array in PLINK format and converteditinto VCF
format using plink2 (v.2.00a3.1LM). This resulted in 784,256 variant
sites across autosomes for 488,377 individuals. We then applied qual-
ity control on the data using the UKB SNPs and samples QC file (UKB
Resource 531) to only retain SNPs and individuals that have been used
for the official phasing of the Axiom array data’, resulting in 670,741
variant sites across 486,442 individuals. Thisincludes 897 white British
parent-offspring trios and 4,373 white British parent-offspring duos
(Supplementary Table1).

UKB WGS dataset

We use the whole-genome GraphTyper joint call pVCFs from the UKB
RAP. We first decomposed multiallelic variants into biallelic variants
using bcftools (v.1.15.1) norm-m*®, We then performed quality control of
thevariantsites and filtered out SNPs and indels for (1) Hardy-Weinberg
Pvalue <107, (2) more than 10% of the individuals having no data
(GQscore = 0; missing data), (3) heterozygous excess less than 0.5 or
greaterthanl.5and (4) alternative alleles with AAscore <0.5. Addition-
ally, we keptonly variantsites with the tag ‘FILTER = PASS’, as suggested
by the data providers®. This resulted in a total of 603,925,301 variant
sites, including 20,662,402 common variant sites (MAF > 0.1%) and
583,262,899 rare variant sites (MAF < 0.1%), across a total of 150,119
individuals. This WGS dataset includes 31 trios and 432 duos (Sup-
plementary Table 1). To assess the accuracy of the phasing, we use
chromosome 20 only. For this analysis, we used only samples being also
genotyped with the UKB Axiom array, resulting in 147,754 individuals
(Supplementary Table 1). We phased chromosome 20 using chunks of,
onaverage, 4.5 Mbwith overlapping buffers of 250 kb. We used Beagle
v.5.4 (refs.16,17) with default parameters on the entire chromosome 20.

UKB WES dataset

We used the WESfiles in pVCF format as released on UKB RAP. The qual-
ity control pipeline has been described in Szustakowski et al.””. To phase
WES data, we first merged it with the unphased SNP array data. The aim
ofthiswastoincrease the number of common variants that are phased
inthefirststep of SHAPEITS (that is, common variants phasing), which
improves the quality of the haplotype scaffold onto which rare variants
arephased, inparticular atintergenicregions. We kept only individuals
with both the SNP array and the WES data, resulting in 452,644 total
individuals, including 719 white British parent-offspring trios and

3,014 white British parent-offspring duos. When a variant is listed in
both the WES and the SNP array, we keep the SNP array copy as the SNP
array is expected tobe more robust to SNP calling errors*®. This resulted
inretaining a total of 26,199,614 variants, including 977,517 common
variants (MAF > 0.1%) and 25,222,097 rare variants (MAF < 0.1%) (Sup-
plementary Table 1). Phasing the 452,644 individuals with both WES
and Axiom array available data is performed for each chromosome
independently inasingle chunk. We also used Beagle v.5.4 (refs.16,17)
with default parameters.

Genotype imputation

To perform genotype imputation fromthe phased WGS and WES data-
sets, we extracted 1,000 samples with British ancestry that are unre-
lated to any other sample in the dataset, and for which we had Axiom
SNParray dataavailable. We therefore used areference panel composed
of the remaining 146,754 WGS samples and 446,470 WES samples for
both SHAPEIT5 and Beagle v.5.4. For the HRC reference panel, we used
the PICARD toolkit (http://broadinstitute.github.io/picard/) toliftover
the data to the Human genome assembly GRCh38, retaining 99.8% of
the original variants.

We used Beagle v.5.4 for genotype imputation of SNP array data,
allowing prephasing from the reference panel. We accessed imputa-
tionaccuracy by measuring the squared Pearson correlationbetween
imputed and high-coverage genotypes using the GLIMPSE_concord-
ance tool* (-gt-val option) at custom allele count bins (--ac-bins 1510
2050100200 50010002000 500010000 20000 50000 100000
146754 for WGS, --ac-bins 1510 20 50 100 200 500 1000 2000 5000
100002000050000100000446470 for WES). Adrop of correlation
quantifies the reductionin effective sample sizein association testing
duetoimperfectimputation. For instance, a difference of 0.05involves
apower loss equivalent to losing 5% of the data.

We also evaluated the nonreference discordance rate using the
GLIMPSE_concordance® tool. The nonreference discordance*® is cal-
culatedasNRD = (e, + €., + €,,)/ (e, + €., + €,,+ M, + m,,), wheree,,, e,,and
e,, are the counts of the mismatches for the homozygous reference,
heterozygous and homozygous alternative genotypes, respectively,
and m,,and m,, are the counts of the matches at the heterozygous and
homozygous alternative genotypes. NRD is an error rate that excludes
the homozygous reference matches, which are the most frequent at
rare variants, giving more weight to the other matches. We computed
the nonreference discordance rate within frequency bins in the refer-
ence panel.

Compound heterozygosity detection
We restricted the analysis to the cohort of self-declared white British
individuals for which the ancestry is confirmed by PCA (UKB field
22006) with both SNP array and exome-seq data, excluding parental
individuals (n =374,826). Only WES variants with MAF < 0.1% before
sample filtering were considered. Variant annotations (LoF, Synony-
mous and Missense|LC) were obtained from the Genebass database®
through Hail (gene-level results, results.mt). Briefly, these variants
had been annotated by Ensembl VEP v.95 (ref. 51) and LoF variants
(stop-gain, frameshift and splice donor/acceptor sites) were further
processed by LOFTEE?, separating high-confidence (used as ‘LoF’)
from low-confidence (used inthe ‘Missense|LC’ category). Only unique
canonical transcripts for protein-coding genes were considered. LoF,
synonymous and missense variants were gathered in the UKB cohort
using bcftools (v.1.15.1) isec function, with the ‘-c none’ parameter to
match variants by chromosome, position, reference and alternative
alleles. Singleton variants were excluded from this analysis.
Identification of compound heterozygous events was performed
with custom Python (v.3.7) scripts. Briefly, for each variant type (LoF,
synonymous, missense) and for each gene, individuals with atleast two
mutations were assessed for compound heterozygosity by having at
least one variant in each of the two haplotypes. In addition, for each
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gene, we calculated the expected number of individuals with compound
heterozygosity as Z,Ll — i(v_l), wherevindicates thenumber of variants
inindividual i in the gene. To compare the number of LoF compound
heterozygous genes and events without phasing, we randomized phas-
ing at all variants by attributing 0.5 probability for each variant to fall
ineither of the two haplotypes, independently for each variant.

Essential and nonessential gene lists

We obtained lists of essential and nonessential genes from several
sources (described below). For each of these gene lists, we performed
Fisher’s exact tests (two-sided) for several categories of compound
heterozygous genes versus noncompound heterozygous genes, con-
sideringabackground of 2,150 genes with at least one individual with
two LoF mutations. For synonymous and missense variants, the back-
ground included 10,119 and 14,914 genes, respectively. The following
lists of genes were obtained: (1) essential in mice (n = 2,454) from Georgi
etal.”includes genes where homozygous knockout in mice resultsin
pre-, peri- or postnatal lethality and was extracted with ortholog human
gene symbols from McArthur’s laboratory®’; (2) essential in culture
(n=360) core essential genes from genomic perturbation screens
were obtained from Hart et al.”’; (3) nonessential in culture (n=927)
putatively nonessential genes (sShRNA screening) were obtained from
Hart et al.**; (4) essential CRISPR (n = 684) genes essential in culture
from CRISPR screening were obtained from Hart et al.**; (5) essential
ADaM (n=1,075) genes annotated by the ADaM analysis of alarge col-
lection of gene dependency profiles (CRISPR-Cas9 screens) across
855 human cancer cell lines (Project Score and Project Achilles20Q2)
were obtained from Vinceti et al.”’; (6) essential gnomAD (n=1,920)
genes at the bottom LOEUF decile from gnomAD v.2.1.1 (that is, most
constrained genes) were obtained from https:/gnomad.broadinstitute.
org/(ref.4); (7) nonessentialgnomAD (n=1,919) genes at the top LOEUF
decile from gnomad AD v.2.1.1 (that is, least constrained genes) were
obtained from https://gnomad.broadinstitute.org/ (ref. 4); and (8)
homozygous LoF tolerant (n =1,815) genes with homozygous LoF vari-
ants observed in the gnomAD cohort were obtained from Karczewski
etal.* (Supplementary Data 7).

Statistics and reproducibility

This study was based on the UKB SNP array, WES and WGS datasets.
Variants and samples were selected based on quality controls and
ancestry as described in the SNP array, WES and WGS data processing
methods. In certain analyses, only individuals including both WGS/
WES and SNP array datawere included. Statistical analyses, including
Fisher’s exact tests, binomial and Wilcoxon tests were performed with
Rv.4.2. All code to reproduce analyses is publicly available.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Thelists of compound heterozygous events and genes are available in
Supplementary Datal. The phased WGS reference panel can be accessed
viathe UKBRAP: https://ukbiobank.dnanexus.com/landing.RAPisopen
toresearcherswho arelisted as collaborators on UKB-approved access
applications. Liftover was performed using a chain file provided by
UCSC (https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/).
The publicly available subset of the Haplotype Reference Consortium
dataset is available from the European Genome-Phenome Archive at
the European Bioinformatics Institute, accession EGASO0001001710.
Source data are provided with this paper.

Code availability
SHAPEITS is available under MIT license at https://github.com/odela-
neau/shapeit5. Thisincludes code to the phase_common, phase_rare,

ligate and switch tools and the scripts used to phase WES and WGS data
onthe UKBRAP. The documentationis available at https://odelaneau.
github.io/shapeit5. Code and source data to reproduce analysis and
plots have been deposited in the linked Zenodo repository: https://
doi.org/10.5281/zenodo0.7828479 (ref. 56).
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the entire chromosome 20 (x-axis) with SHAPEITS. A switch between dark and incorrect duo/trio phasing as validation. When using the WGS as validation, many
light blue represents a switch error. At the top is shown the Axiom array phasing of these inconsistencies disappear.
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sided Exact binomial test asimplementedinR.
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Extended Data Fig. 8| Compound heterozygous identification in the
UK Biobank WES data phased with Beagle5.4. (a) Number of genes with
acompound heterozygous event in at least one individual (N = 374,826
individuals). (b) Number of compound heterozygous events (N = 374,826
individuals). (c) Two-way Fisher’s Exact test odds ratios + 95% confidence

interval (log2-scaled) of compound heterozygous genes versus non-compound
heterozygous genes presence in multiple lists of essential genes (see Methods).

Background is composed of genes with >2 LoF mutations. X-axis is capped at —6.
(d) Same as previous, but across lists of non-essential genes.
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The publicly available subset of the Haplotype Reference Consortium dataset is available from the European Genome-Phenome Archive at the European
Bioinformatics Institute, accession EGASO0001001710.

The UK Biobank data was accessed under the project 66995.
The lists of compound heterozygous events and genes are available in Supplementary Data 1.
The phased WGS reference panel can be accessed via the UKB research analysis platform (RAP): https://ukbiobank.dnanexus.com/landing.

Liftover was performed using a chain file provided by UCSC (https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/).
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Antibodies [] chip-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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