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Accurate rare variant phasing of whole- 
genome and whole-exome sequencing data 
in the UK Biobank

Robin J. Hofmeister    1,2, Diogo M. Ribeiro    1,2, Simone Rubinacci    1,2  
& Olivier Delaneau    1 

Phasing involves distinguishing the two parentally inherited copies of each 
chromosome into haplotypes. Here, we introduce SHAPEIT5, a new phasing 
method that quickly and accurately processes large sequencing datasets and 
applied it to UK Biobank (UKB) whole-genome and whole-exome sequencing 
data. We demonstrate that SHAPEIT5 phases rare variants with low switch 
error rates of below 5% for variants present in just 1 sample out of 100,000. 
Furthermore, we outline a method for phasing singletons, which, although 
less precise, constitutes an important step towards future developments. 
We then demonstrate that the use of UKB as a reference panel improves the 
accuracy of genotype imputation, which is even more pronounced when 
phased with SHAPEIT5 compared with other methods. Finally, we screen 
the UKB data for loss-of-function compound heterozygous events and 
identify 549 genes where both gene copies are knocked out. These genes 
complement current knowledge of gene essentiality in the human genome.

Modern genetic association studies are increasingly based on 
whole-genome or whole-exome sequencing (WGS/WES) for hundreds 
of thousands of samples collected as part of nationwide biobanking 
initiatives1,2. Compared with previous studies based on single nucleo-
tide polymorphism (SNP) arrays, WGS and WES data can identify rare 
variants (e.g., minor allele frequency below 1%), allowing a systematic 
characterization of their contribution to trait heritability3, functional 
relevance4 and effects on various traits and diseases5,6. In this context, 
haplotype phasing of rare variants, which involves distinguishing the 
two parentally inherited copies of each chromosome into haplotypes, 
adds a layer of biologically relevant information and unlocks new analy-
ses. For instance, phasing is crucial to identify compound heterozygous 
events, which occur when both copies of a gene contain nonidentical, 
heterozygous mutations. In the case of Mendelian disorders, compound 
heterozygosity is one of the most common inheritance models for rare 
recessive diseases in nonconsanguineous individuals7,8. Previous efforts 
to identify compound heterozygous events in large cohorts provided 
valuable insights, yet these either relied on imputed data9 or ignored 

phasing information6. Compound heterozygous event identification 
requires high-confidence phase information to be considered when 
rare variants are analyzed, such as in gene-based burden test analysis10. 
The most common approach to phase rare variants without parental 
genomes or long-reads in large cohorts of individuals is statistical phas-
ing, which leverages information across individuals to make estimation 
of haplotypes11. This technique is well established for common variants 
typed on SNP arrays, where phase information is used, for instance, to 
perform genotype imputation12, admixture analysis13 and genealogy 
estimation14. Phasing methods have been optimized to scale to the 
thousands of samples in modern SNP array datasets, and the time is 
ripe to do the same for the millions of rare variant sites present in WGS/
WES datasets. As an example, the WGS data for 150,119 UKB samples 
comprise three orders of magnitude more variants than the Axiom 
array data, around 96% of them having a minor allele frequency (MAF) 
below 0.1%. Phasing large scale WGS/WES datasets is challenging and 
new methods able to handle large amounts of rare variants are now 
emerging15. Recently, a computationally efficient solution for rare 
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For a specific rare variant, these conditioning haplotypes are chosen so 
that (1) they belong to samples being locally identical-by-descent (IBD) 
with the target sample and (2) they are polymorphic at the rare variant 
(that is, at least a few carry a copy of the minor allele). To comply with 
the first requirement, SHAPEIT5 uses a positional Burrows-Wheeler 
transform (PBWT) data structure23 built on all the scaffold haplotypes 
at common variants. This allows rapid identification of shared segments 
between haplotypes. To ensure representation of the minor allele in the 
conditioning set (second requirement), the method performs a second 
PBWT pass restricted to the subset of samples carrying a copy of the minor 
allele. This second pass is performed efficiently by leveraging the sparse 
representation of the genotypes. We then determine the alleles carried 
by the conditioning haplotypes at the rare variant of interest, which 
is straightforward when homozygous. However, when a conditioning 
sample is heterozygous, the allele carried by each of its two haplotypes is 
unknown. In this case, our model assumes that both haplotypes carry the 
minor allele as done in Beagle v.5.4 (refs. 16,17). Once the conditioning set 
of haplotypes is assembled, SHAPEIT5 uses the Li and Stephens model24 
to get the most likely phase configuration of the rare allele by imputation 
(that is, either on its first or second target haplotype; Supplementary 
Fig. 1). The strength of our model resides in the guarantee that each rare 
heterozygous genotype is phased from a conditioning set containing 
long haplotype matches and carrying copies of the two possible alleles.

For singleton variants (minor allele count (MAC) of 1), SHAPEIT5 
uses another phasing model that (1) assumes singletons to be recent 
mutation events and (2) leverages IBD sharing patterns between haplo-
types to make inference (Fig. 1c). Specifically, our model identifies 
the longest possible match in the dataset for each target haplotype. 
By definition, these matches point to haplotypes sharing recent com-
mon ancestors with the target and their lengths indicate the number 
of generations separating them: the shorter the match, the older the 
common ancestor. Our model assumes that an older common ancestor 
means more time for a mutation to occur on that lineage and therefore 
assigns the minor alleles of singletons to the target haplotype with the 
shortest match25.

Phasing UKB exomes and genomes
We used SHAPEIT5 to phase haplotypes for three different UKB sequenc-
ing datasets: (1) WGS data on chromosome 20 for 147,754 samples and 

variant phasing has been implemented in Beagle v.5.4 (refs. 16,17), in 
which common and rare variants are phased separately: in a first step, 
a standard phasing method is used to obtain haplotypes at common 
variants, and in a second step rare heterozygous sites are phased onto 
the resulting haplotypes using genotype imputation technique. This 
type of strategy, based on haplotype scaffolds, has been used in other 
contexts, such as in genotype imputation18, integration of family data19 
and external phasing information20.

In this work, we describe SHAPEIT5, a method designed to accu-
rately phase rare variants in large WGS/WES datasets, including single-
tons, with moderate accuracy, while attributing phasing confidence 
scores. We applied it to estimate haplotypes for 150,119 and 452,644 
UKB samples with WGS and WES data, respectively. We demonstrate 
the benefit of using these two haplotype collections as reference panels  
for SNP array imputation and finally show that the phase inferred at 
rare variants in the WES dataset can be screened to reliably identify 
compound heterozygous loss-of-function (LoF) mutations, probably 
leading to complete gene knockouts.

Results
Overview of the SHAPEIT5 phasing method
SHAPEIT5 performs haplotype phasing of WGS or WES data using three 
different phasing models, each focusing on a specific type of variants: 
(1) common variants are phased using the SHAPEIT4 model20, (2) rare 
variants are phased onto the resulting haplotypes using an imputa-
tion model and (3) singletons are phased using a coalescent-inspired 
model. See Fig. 1 for an illustration of the phasing scheme. Common 
variants are defined as having a MAF above 0.1% and are phased using 
an optimized version of the SHAPEIT4 algorithm, known to perform 
well on large sample sizes (Fig. 1a).

The resulting haplotypes are used in a second stage as a scaffold 
onto which rare variants (MAF < 0.1%) are phased one after another, 
following a methodology similar to that of Beagle v.5.4 (refs. 16,17). To 
cope with the large numbers of rare variants, SHAPEIT5 uses a sparse 
data representation for rare variants: only genotypes carrying at least 
one copy of the minor allele are stored in memory and considered for 
computation, thereby discarding all genotypes being homozygous for 
the major allele21,22. SHAPEIT5 phases each rare heterozygous genotype 
conditioning on a small number of informative haplotypes (Fig. 1b).  
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Fig. 1 | Rationale of SHAPEIT5. a, All samples are phased at common variants 
(MAF ≥ 0.1%). b, Phasing of a given rare variant onto the haplotypes at 
common variants. Conditioning haplotypes used in the estimation share long 
matches with the target (green and blue) and are not monomorphic at the 
rare variant. Since heterozygous genotypes for the rare variant are unphased, 

the minor alleles at those are assumed to be on both haplotypes (i.e., forcing 
homozygosity). c, Singleton phasing by assigning the new allele on the target 
haplotype with the shortest match. d, Compound heterozygous event mapping 
based on the rare variant phasing (a–c).
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around 13.8 million SNPs and indels after quality control, (2) WES data 
for 452,644 samples and around 26 million variants and (3) WGS data 
for the full set of 150,119 samples and around 603 million variants. For 
(1) and (2), we included only samples for which Axiom array data are 
available and excluded parental genomes for duos (parent–offspring 
pairs) and trios (parent–offspring triplets) to measure phasing accu-
racy in the offspring. Numbers of samples, trios, duos and variants 
after quality control are given in Supplementary Table 1. Phasing of the 
WES dataset was performed for each chromosome independently and 
phasing of the WGS was done in overlapping chunks of around 4.5 Mb 
on average to leverage parallelization on the UKB Research Analysis 
Platform (RAP). We compare the performance of our method with 
Beagle v.5.4 (refs. 16,17) (default parameters) on the WES and WGS 
datasets on chromosome 20.

Phasing performance in the UKB data
To assess phasing performance, we used the available white British 
trios (719 for WES, 31 for WGS) and duos (432 for WGS). Using these, 
we (1) derived a true set of haplotypes for the offspring using inher-
itance logic, (2) performed statistical phasing of the WES and WGS 
datasets after having excluded parental genomes and (3) compared 
the offspring haplotypes obtained by statistical phasing with the true 
set obtained in (1). We assessed how close the two sets of haplotypes 
are by measuring the switch error rate (SER), which is the fraction of 
successive heterozygous genotypes phased differently. When looking 
at overall SER using different validation sets (duos, trios), different sets 
of variants (all variants or common variants only) and different sample 
sizes, we found minor differences between SHAPEIT5 and Beagle v.5.4 
on the WGS data (Supplementary Fig. 2a–c). However, when consider-
ing only Axiom array positions, lower SER is observed with SHAPEIT5 
(Supplementary Fig. 2d). We did not find the same pattern when phasing 
the Axiom array data only (n = 5,000 to n = 480,000): the two meth-
ods exhibit similar accuracy regardless of sample size (Extended Data  
Fig. 1). We obtained low SER (<0.2%) on the largest sample sizes for 
both methods, to the point that switch errors and genotyping errors 
cannot be distinguished (Extended Data Fig. 2).

A key feature of the WES and WGS datasets is the large number of 
rare variants they contain. The number of heterozygous genotypes is 
low at these variants and they have a small contribution in global SER 
measurements. We therefore stratified the SER within bins of MACs 
to focus on rare variants. We assigned heterozygous genotypes to dif-
ferent MAC bins depending on the variant frequency and computed 
in each MAC bin the fraction of them being correctly phased (relative 
to the previous heterozygous genotype, regardless of its MAC). When 
doing so, we found that SHAPEIT5 phases rare variants with higher 
accuracy than Beagle v.5.4 in both the WGS and WES datasets (Fig. 2a,b). 
For instance, SHAPEIT5 and Beagle v.5.4 phase rare variants in the WGS 
data (MAC between 11 and 20) with SER of 4.36% and 8.76%, respectively, 
which is a 50.2% drop. In the WES dataset, the same variant category is 
phased by SHAPEIT5 with a switch error rate of 2.93% compared with 
5.18% with Beagle v.5.4 (42.67% reduction). Overall, SHAPEIT5 phases 
rare variants in the WES and WGS with 20% to 50% fewer switch errors 
compared with Beagle v.5.4, depending on MAC. This improvement 
in accuracy is also observed when only using trios for validation (Sup-
plementary Fig. 3) and depends on sample size (Supplementary Fig. 4). 
Significant differences between the two methods are observed in data-
sets comprising at least 50,000 samples and increase with sample size.

In a large sequencing dataset, a singleton can be the product of 
several causes, including recent mutation, de novo mutation, somatic 
mutation or genotyping error. SHAPEIT5 aims to resolve the phase 
of recent mutations. We estimated the fraction of singletons falling 
in this category using duos and trios in the WGS data. We measured 
the fraction of singletons in offspring that is not supported by the 
genotype data available for the parents. In duos, we found that 47.36% 
of the singletons are supported by the genotyped parent, whereas 

52.64% are not (Extended Data Fig. 3a), deviating from the expected 
50% and suggesting that 5.26% of the singletons are not inherited 
from parents (assuming no inheritance bias). Consistently, in trios we 
found that 4.52% of the singletons in the offspring are not inherited 
from the parents (none of the parents carry the minor allele; Mendel 
inconsistency; Extended Data Fig. 3b). Together, this shows that most 
singletons (~95%) are inherited and can therefore be phased using both 
inheritance logic in trios and duos and our model. In the WGS data-
set, we obtained SER of 35.1% and 36.6%, respectively (Extended Data  
Fig. 3c,d). In the WES dataset, we obtained an SER of 35.2% (Fig. 2b). 
While relatively high, this is a significant deviation from the expected 
50% from previous models (binomial test P values <3.7 × 10–15; Extended 
Data Fig. 3c,d).

All computations were performed on the UKB RAP. The RAP offers 
a choice of two priority levels for computations: ‘spot’ (lower cost) and 
‘on demand’ (higher cost). Assuming that all computing is performed 
on demand, Beagle v.5.4 and SHAPEIT5 require £57.80 and £65.20 of 
computing costs (as of October 2022) to phase chromosome 20 WGS 
data (n = 147,754), which correspond to approximately £2,890 and 
£3,258 for the entire genome (Supplementary Table 2). However, these 
are conservative estimates, as SHAPEIT5 allows phasing of the data in 
chromosomal chunks (in parallel), therefore greatly reducing the need 
for using ‘on demand’ priority.

SHAPEIT5 phasing improves genotype imputation accuracy
Several downstream analyses in disease and population genetics 
require haplotype-level data. One example is genotype imputation26, 
which uses WGS data as a reference panel to predict missing genotypes 
in SNP array data. As the accuracy of genotype imputation depends on 
the reference panel, we quantified phasing errors using genotype impu-
tation, which has two main advantages. First, it provides a validation 
alternative to SER that is easy to partition by minor allele frequency. 
Second, it assesses the phasing quality across all samples, and not only 
on a small subset with parental genomes available. We imputed a subset 
of 1,000 UKB British samples with SNP array data available, together 
with WGS and WES as validation.

First, we show that genotype imputation using the UKB WGS refer-
ence panel greatly outperforms the previous generation of reference 
panels, such as the Haplotype Reference Consortium (HRC)27 (Fig. 2c), 
in line with previous findings showing that large WGS panels enhance 
imputation2. For both UKB WGS and WES, we find that the reference 
panels phased with SHAPEIT5 outperform those phased with Beagle 
v.5.4 at rare variants (MAC < 500; Fig. 2c,d and Extended Data Fig. 4), 
consistent with the SER estimates reported in Fig. 2a,b. As an example,  
imputation using the WGS or WES reference panel phased with  
SHAPEIT5 provides an increase of squared Pearson coefficient of 
around 0.05 for variants with a MAC between 2 and 5. In an associa-
tion study, this corresponds to an increase of 5% in effective sample 
size when testing these variants for association, due only to better 
reference panel phasing28. Even singletons are better imputed using 
the SHAPEIT5 panel. Despite the low overall accuracy at these variants, 
which restricts their utility in downstream analyses, this confirms on  
a larger scale the validity of our singleton phasing.

SHAPEIT5 introduces a metric of phasing confidence at rare het-
erozygous genotypes (MAF < 0.1%), which corresponds to the prob-
ability of the reported phase. This allows controlling for phasing errors 
and utilizing phasing certainty in downstream analyses. Phasing con-
fidence lies between 0.5 and 1, where 1 indicates no uncertainty in the 
phase and 0.5 means that the two phasing possibilities are equally 
likely. Singletons are attributed a phasing confidence of 0.5 as phasing 
confidence cannot be computed for them. We assessed the phasing 
accuracy at different confidence scores (Extended Data Fig. 5) and 
show that filtering variants with a threshold of 0.99 controls the SER 
to a maximum of around 2% for WGS data and around 1% for WES data 
while keeping most variants (for instance, >75% and >40% variants with 
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MAC 2–5 are retained). This allows researchers to confidently use rare 
heterozygous genotypes in their analyses.

Identification of LoF compound heterozygotes
Compound heterozygous events occur in an individual when both  
copies of a gene contain at least one heterozygous variant. Compound 
heterozygosity is often studied in the context of LoF variants, which are 
expected to have highly deleterious effects on genes—equivalent to a 
homozygous gene knockout. Indeed, compound heterozygous events 
have been linked to several diseases including cancer, birth defects 
and Alzheimer’s disease8,29–32. The accurate haplotype phasing across 
the UKB performed in this study, including extremely rare variants, 
allows the identification of individuals and genes with compound  
heterozygous events. For this, we gathered 383,637 high-confidence 
LoF variants (stop-gain, frameshift or essential splice variants) phased 
across 374,826 white British individuals and 17,689 protein-coding genes 
(Methods). We found that a gene has, on average, 22.3 LoF variants across 
the cohort and an individual has, on average, 7.8 LoF variants (Extended 
Data Fig. 6). To determine compound heterozygous events, we identify 
individuals with LoF mutations in both copies of a gene. Owing to their 
higher error rates and the risk of introducing false positives, we opted 
to exclude singletons from these analyses. A total of 2,150 (12%) out 
of 17,689 protein-coding genes tested had at least one individual with 

two or more LoF variants, and thus liable for compound heterozygous 
identification. From those 2,150 genes, we found 549 (26%) genes with 
one or more individuals with compound heterozygous LoF variants  
(Fig. 3a), for a total of 779 gene-individual events (766 distinct individu-
als; Extended Data Fig. 7 and Supplementary Data 1). When consider-
ing only high-confidence haplotype calls (phasing confidence score 
>0.99), we still identify 80% (441) genes and 79% (614) of the compound 
heterozygous events identified in the full dataset, indicating that these 
mostly rely on high-confidence haplotype calls (Fig. 3a and Extended 
Data Fig. 7). We found that the 549 compound heterozygous genes are 
highly depleted in several lists of known essential genes, compared 
with the 2,150 genes with two or more LoF variants (odds ratio (OR) 
0.1–0.48 across essential gene lists, P < 9.7 × 10−3; Fig. 3b). Conversely, 
compound heterozygous genes are enriched in lists of nonessential 
and homozygous LoF tolerant genes (OR 1.2–2.7 across nonessential 
gene lists; Fig. 3c). The comparison with genes with two or more LoF 
variants in the same individual ensures that the signal observed is not 
due to the mere presence or absence of LoF variants in those genes, but 
rather the avoidance of them occurring in both gene copies. As the UKB 
is composed largely of healthy individuals, a depletion of compound 
heterozygous events in essential genes is expected.

When comparing with phasing performed with Beagle v.5.4, 
we found 673 compound heterozygous genes (962 events) that are 
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Fig. 2 | Phasing performance. a,b, SER (y axis, log scale) of SHAPEIT5 (blue) 
compared with Beagle v.5.4 (black) stratified by MAC (x axis) for the UKB WGS 
(a) and WES (b). The zoomed-in views show the relative reduction of SER using 
SHAPEIT5 compared with Beagle v.5.4 at rare variants. c,d, Imputation accuracy 
(Aggregate r2, y axis) for 1,000 white British samples genotyped with the Axiom 

array when using reference panels phased with either SHAPEIT5 (blue) or Beagle 
v.5.4 (black) WGS (c) or WES (d). In (c) the data were also imputed using the HRC 
reference panel (gray). The zoomed-in views show the increase of imputation 
accuracy at rare variants using the UKB dataset phased with SHAPEIT5 compared 
with Beagle v.5.4 as a reference panel.
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significantly depleted in essential genes but at reduced levels compared 
with SHAPEIT5 phasing (Extended Data Fig. 8). Finally, as a control, 
we attributed the phase of variants randomly, which led to 1,792 com-
pound heterozygous genes and 17,241 events (Fig. 3a), which did not 
display depletion in essential genes, as expected (Fig. 3b). Together, 
these results indicate that accurate haplotype phasing is crucial for  
the identification of bona fide compound heterozygous events.

The finding that compound heterozygous genes are depleted 
in essential genes indicates that such events are avoided, at least in a 
subset of the genes. To explore this further, we compared the number 
of expected and observed compound heterozygous events per gene, 
based on the variant distribution in the UKB cohort, assuming that 
each variant phase is independent (Methods). For LoF variants, we 
observed a marked decrease in observed compound heterozygous 
events compared with expected, confirming evidence for negative 
selection (Fig. 3d). Conversely, when considering variants with syno-
nymous effect (Extended Data Fig. 9 and Supplementary Data 1), the 
number of observed compound heterozygous events is not depleted 
(median ratio = 1.4; Fig. 3d), indicating no or low selective pressure to 
reduce synonymous variant compound heterozygous events for most 
genes. When considering missense or low-confidence LoF variants 
(referred to as missense for simplicity), we observed a mild decrease 

in observed events compared with expected (mean ratio = 0.8; Fig. 3d 
and Supplementary Data 1), consistent with the possible deleterious 
effect of some missense variants. In addition, we found that missense 
compound heterozygous genes had only mild or no depletion for essen-
tial genes, whereas synonymous compound heterozygous genes either 
had no significant depletions or were even enriched in some essential 
gene sets (Extended Data Fig. 9). Overall, our results demonstrate 
that the accurate phasing at rare variants with SHAPEIT5 allows us to 
screen for compound heterozygous events across the UKB cohort with 
high confidence, revealing that LoF compound heterozygous events 
are under strong selective pressure in essential genes, as expected by 
their high negative impact.

Discussion
We present SHAPEIT5, a tool for phasing rare variants in large sequencing  
datasets. SHAPEIT5 phases common variants first to create a haplotype 
scaffold. Subsequently, rare variants are phased one at a time on this 
scaffold. A key difference from Beagle v.5.4 is the use of individualized  
panels of haplotypes for rare variant phasing. SHAPEIT5 ensures 
representation of the minor alleles at rare variants, which leads to  
accuracy improvements that are more pronounced in larger  
sample sizes. We produced phased genomes for the UKB WGS and 
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Fig. 3 | Compound heterozygous identification in the UKB WES data phased 
with SHAPEIT5. a, Number of genes with at least one individual with compound 
heterozygous LoF variants across several categories: Full data, all LoF variants in 
the study, except singletons; High confidence, LoF variants excluding calls with 
phasing confidence score <0.99; and Random phasing, shuffling phasing of all 
LoF variants (once). b, Two-way Fisher’s exact test odds ratios ± 95% confidence 
interval (log2-scaled) of compound heterozygous genes versus noncompound 
heterozygous genes presence in several lists of essential genes (Methods). 
Background is composed of 3,018 genes with ≥2 LoF mutations; x axis is capped 
at –6. c, Same as b but across lists of nonessential or LoF tolerant genes. d, Ratio 

between the number of individuals with compound heterozygous events and 
the expected number of individuals given the number of variants, per gene. 
Missense (n = 14,336 genes) and synonymous (n = 9,816 genes) events are shown 
in addition to LoF events (n = 2,150 genes) as a comparison. The length of the 
box corresponds to the interquartile range (IQR) with the center line and values 
corresponding to the median, and the upper and lower whiskers represent the 
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respectively. P values between categories correspond to two-sided Wilcoxon  
test P values.
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WES data for a compute cost below £4,000. The haplotype estimates 
have low SERs, with rare variants down to doubletons being phased 
with high confidence. This accurate phasing enables highly accurate 
genotype imputation when used as a reference panel. Beyond meas-
uring error rates, we also validated phased haplotypes biologically  
by identifying compound heterozygous events, which we found  
highly depleted in essential genes, as expected. In addition, we 
achieved singleton phasing, albeit with higher error rates and there-
fore with limited downstream utility. However, we view this as an 
advance in phasing models as previous approaches were unable to 
phase singletons.

Although of substantial interest, previous knowledge of com-
pound heterozygous cases comes mostly from case studies in fami-
lies7,8 and there is currently no method to identify these events in large 
biobanks systematically. Here, we show that high-quality phasing 
of rare variants with SHAPEIT5 allows compound heterozygosity to 
be studied at the biobank-scale level, which can greatly increase the 
number of events characterized compared with the use of family 
data, in addition to exploring their association with new pheno-
types. As a proof-of-principle, we screened all protein-coding genes 
for compound heterozygous events with high-confidence LoF vari-
ants and found 549 genes predicted to be fully knocked out across 
816 UKB individuals out of the 374,826 individuals considered in 
this study. This complements other lists of nonessential genes33, 
with the main difference that these knockouts are found in vivo in 
humans. Approximately 0.22% of the UKB cohort had at least one 
gene knockout by compound LoF heterozygous events. This observed 
frequency of events matches previous estimates in outbred healthy 
cohorts34. UKB participants are not expected to have any rare and/
or severe genetic diseases as their average age is 56 years, which is 
after the age of onset for most rare diseases. This partially explains 
why the gene knockouts observed are strongly depleted in several 
lists of essential genes. However, we still found 52 genes deemed as 
essential in at least one of the essential gene lists we analyzed. We 
can conceive three possible scenarios to explain these specific cases. 
First, the mutations had a moderate impact on the individual and did 
not result in severe disease. As an example, we found one individual 
with pulmonary embolism while having a knockout of the essential 
gene ADAM19—a gene reported for its involvement in pulmonary 
disease35,36. Second, compensatory mutations can rescue the deleteri-
ous effect of the knockout. For instance, we observed one individual 
with a knockout of CFFTR—an essential gene found to be rescued by 
several gain-of-function mutations across the genome37–39. Finally, 
some of the compound heterozygous events discovered may be false 
positives driven by incorrect phasing or erroneous LoF annotations.

We foresee that rare variant phasing in large sequencing studies 
such as the UKB has the potential to unlock many applications and 
analyses. First, other types of functional variants can be screened for 
compound heterozygous effects, for instance, combining LoF and 
missense or regulatory variants40. Second, phase information can 
be included in rare variant burden testing approaches, which usually 
consider only a mixture of the two haplotypes. Third, using accurately 
phased reference panels allows phasing of extremely rare variants with 
high accuracy, even singletons to some extent, for any new sequenced 
genome from the same population. This is beneficial for diagnosis of 
rare and severe diseases caused by compound heterozygous effects, 
such as in the Genomics England dataset41, in which diagnosis yield 
could be increased by incorporating phase information.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-023-01415-w.
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Methods
Ethics statement
This study relied on analyses of genetic data from the UKB cohort, 
which was collected with informed consent obtained from all partici-
pants. Data for this study were obtained under the UKB applications 
licence number 66995. All data used in this research are publicly avail-
able to registered researchers through the UKB data-access protocol.

Common variant phasing
For common variant phasing (MAF ≥ 0.1%), SHAPEIT5 is based largely 
on the previous SHAPEIT version (v.4). Briefly, it updates the phase 
of each sample in turn within a Gibbs sampler iteration scheme: each 
sample is phased by conditioning on other samples’ haplotypes using 
the Li and Stephens model24. Two main features, already part of the 
SHAPEIT4 model, allow fast phasing at common variants: (1) first, 
the haplotype sampling step has linear complexity in the number of 
conditioning states42 and is multithreaded so that several samples are 
phased in parallel; (2) second, the sampling is based on a parsimonious 
and highly informative set of haplotypes, identified in constant time 
using the PBWT data structure.

However, one computational limitation of SHAPEIT4 resides in its 
inability to parallelize the construction of the PBWT, which can become 
relatively long in very large datasets. In SHAPEIT5, the main improve-
ment we introduced for common variant phasing is a parallelization 
scheme for the PBWT construction: several PBWT passes are run in 
parallel on several central processing unit cores, each one running for 
a different chunk of 4 cM by default, achieving a notable reduction of 
the wallclock running time of the method.

Rare variant phasing
To accurately phase rare variants (MAF<0.1%), SHAPEIT5 uses the 
haplotypes derived at common variants as haplotype scaffolds onto 
which heterozygous genotypes are phased one rare variant at a time. 
For a single heterozygous genotype, we aim to determine which of the 
two target chromosomes carries the minor allele (as opposed to the 
major allele). To do so, our method uses the Li and Stephens model to 
compute the probabilities of the two possible phases. The probabilistic 
inference is based on a set of haplotypes carried by other samples in 
the dataset, that we call conditioning haplotypes. Similarly, we call a 
conditioning sample, any sample carrying at least one conditioning 
haplotype and conditioning set, the collection of conditioning haplo-
types used for inference. The outcome of the estimation is a posterior 
probability of the most likely phase for each of the rare heterozygotes. 
Specifically, our model comprises five main features:

Sparse representation. We use a sparse matrix representation of 
the genotypes at rare variants to efficiently store large amounts of 
genotype data in memory and speed up computations. Only geno-
types carrying at least one copy of the rare allele are stored in memory 
together with the necessary indexes to determine the sample and vari-
ant to which the genotype corresponds. As most of the rare variants are 
homozygous for the major allele, this representation allows for a large 
reduction in memory usage and a fast identification of heterozygous 
genotypes at a given rare variant. To quickly retrieve rare genotypes 
at both the sample and variant levels, we store this sparse genotype 
matrix in memory together with its transpose.

Haplotype selection. To get the most informative haplotypes in the 
conditioning set, we require that they (1) share long haplotype matches 
with the target and (2) are not monomorphic at the rare variant of inter-
est. The first condition ensures that the haplotypes in the condition-
ing set are informative for the copying model. The second condition 
ensures that the conditioning set contains carriers of the two possible 
alleles at the rare variant of interest. The latter is required to accurately 
contrast the two possible phasing possibilities of the rare heterozygous 

variant. To efficiently retrieve haplotypes complying with these prop-
erties, we use the PBWT data structure of the haplotype data derived 
at common variants. We perform both forward and backward PBWT 
sweeps so that we can identify long matches between haplotypes cen-
tered in the position of the rare variant by interrogating the flanking 
prefix arrays. This gives a first set of haplotypes that complies with 
condition (1), but not necessarily with condition (2). Therefore, we 
do a second identification of matches in the PBWT, this time restrict-
ing the search to the subset of samples carrying the minor allele. We 
achieve this second pass efficiently by taking advantage of the sparse 
genotype representation: we interrogate only the PBWT prefix arrays 
at the sparse indexes.

Forcing homozygosity. The conditioning set defined before contains 
a set of haplotypes that share large segments with the target haplotype 
at common variants, but they have not been phased yet at the rare 
variant of interest. When the conditioning sample (that is, the sample 
carrying the haplotype) is homozygous, this is not an issue as its two 
haplotypes carry the same allele. However, when the conditioning 
sample is heterozygous, we do not know the allele carried by each one 
of its two haplotypes. We solve this by simply assigning the minor allele 
to both haplotypes17. As a consequence of the two previous steps, the 
conditioning set of haplotypes is guaranteed to contain carriers of the 
two possible alleles at the rare variant of interest.

Copying model. We can now perform phasing of rare heterozygous 
genotypes based on the conditioning set of haplotypes that have been 
constructed as part of all the previous steps. SHAPEIT5 computes the 
probability that each target haplotype carries the minor allele by using 
a haploid version of the Li and Stephens model24 as implemented in 
Impute5 (ref. 21) (for a definition of the HMM parameters and a formal 
description of the imputation model used, see Rubinacci et al.21 and 
Howie et al.43). Specifically, it runs a forward-backward pass as done in 
the context of genotype imputation (see Marchini44 for details) to get the 
probabilities that each target haplotype carries the minor allele at the 
rare variant. In practice, the vector of copying probabilities is obtained 
at each rare variant by averaging the copying probabilities computed at 
the two closest flanking common variants. Here, the conditioning set of 
haplotypes serves as a local reference panel for imputing the alleles at 
the rare variant in the target sample. Of note, accurate inference is made 
possible since the conditioning set we chose is guaranteed to comprise 
carriers of both the major and minor alleles at the rare variant of inter-
est. Having only carriers of a single allele would not be informative for 
making inference here. Finally, we use these imputation probabilities 
to derive phasing probabilities (Supplementary Fig. 1), which we can 
use to get the most probable phase or as phasing confidence scores to 
propagate phasing uncertainty in downstream analyses.

Singleton phasing. In the case of singletons, only the target sample 
carries a copy of the minor allele at the rare variant. Therefore, none 
of the conditioning haplotypes carries the minor allele and the whole 
copying model described above is unable to make inference. This is 
a well-known limitation of all statistical phasing methods. SHAPEIT5 
can provide inference at these sites by using the Viterbi algorithm for 
the Li and Stephens model24, to obtain the longest shared IBD segment 
between each one of the two target haplotypes and the conditioning 
haplotypes. The minor allele of singletons is then assigned to the tar-
get haplotype with the shortest shared segment. The idea behind this 
model presumes that the shorter the IBD sharing between two haplo-
types, the older their most recent common ancestor is, and therefore, 
the chance for new mutations to occur in that lineage is increased.

Validation of haplotype estimates
To validate haplotype estimates, we use trios (two parents, one off-
spring) for WES data and both duos (parent–offspring pairs) and trios 
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for WGS data. To identify parent–offspring relationships, we use the 
kinship estimate and the IBS0 as provided as part of the UKB SNP array 
release. We select parent–offspring relationships as having a kinship 
coefficient lower than 0.3553 and greater than 0.1767 and an IBS0 lower 
than 0.0012 (refs. 1,45). In addition, we require that the difference in age 
between parents and offspring is greater than 15 years and that the two 
parents have different sex for trios. We finally keep only self-declared 
white British individuals for which ancestry was confirmed by princi-
pal component analysis (PCA, UKB field 22006). The number of trios 
used in the validation for all three datasets (Array, WES or WGS) is 
shown in Supplementary Table 1. Validation of haplotypes is a two-step 
procedure. First, we statistically phase a given dataset including only 
the offspring samples. Second, we use the parents to measure the 
SER—a metric commonly used to assess how close estimated and true 
haplotypes are. The SER is defined as the fraction of successive pairs 
of heterozygous genotypes being correctly phased. In the context of 
this work, we measured SER stratified by bins of MAC. We assigned each 
heterozygous genotype to a given MAC bin and counted the fraction of 
heterozygous genotypes being correctly phased per MAC bin, relative 
to the previous heterozygous genotypes (this one can belong to any 
MAC bin). This definition of SER has the advantage of showing how 
well statistical phasing performs depending on the frequency of the 
variants it phases (either common or rare).

UKB SNP array dataset
We used the UKB Axiom array in PLINK format and converted it into VCF 
format using plink2 (v.2.00a3.1LM). This resulted in 784,256 variant 
sites across autosomes for 488,377 individuals. We then applied qual-
ity control on the data using the UKB SNPs and samples QC file (UKB 
Resource 531) to only retain SNPs and individuals that have been used 
for the official phasing of the Axiom array data1, resulting in 670,741 
variant sites across 486,442 individuals. This includes 897 white British 
parent–offspring trios and 4,373 white British parent–offspring duos 
(Supplementary Table 1).

UKB WGS dataset
We use the whole-genome GraphTyper joint call pVCFs from the UKB 
RAP. We first decomposed multiallelic variants into biallelic variants 
using bcftools (v.1.15.1) norm -m46. We then performed quality control of 
the variant sites and filtered out SNPs and indels for (1) Hardy–Weinberg  
P value < 10−30, (2) more than 10% of the individuals having no data 
(GQ score = 0; missing data), (3) heterozygous excess less than 0.5 or 
greater than 1.5 and (4) alternative alleles with AAscore <0.5. Addition-
ally, we kept only variant sites with the tag ‘FILTER = PASS’, as suggested 
by the data providers15. This resulted in a total of 603,925,301 variant 
sites, including 20,662,402 common variant sites (MAF ≥ 0.1%) and 
583,262,899 rare variant sites (MAF < 0.1%), across a total of 150,119 
individuals. This WGS dataset includes 31 trios and 432 duos (Sup-
plementary Table 1). To assess the accuracy of the phasing, we use 
chromosome 20 only. For this analysis, we used only samples being also 
genotyped with the UKB Axiom array, resulting in 147,754 individuals 
(Supplementary Table 1). We phased chromosome 20 using chunks of, 
on average, 4.5 Mb with overlapping buffers of 250 kb. We used Beagle 
v.5.4 (refs.16,17) with default parameters on the entire chromosome 20.

UKB WES dataset
We used the WES files in pVCF format as released on UKB RAP. The qual-
ity control pipeline has been described in Szustakowski et al.47. To phase 
WES data, we first merged it with the unphased SNP array data. The aim 
of this was to increase the number of common variants that are phased 
in the first step of SHAPEIT5 (that is, common variants phasing), which 
improves the quality of the haplotype scaffold onto which rare variants 
are phased, in particular at intergenic regions. We kept only individuals 
with both the SNP array and the WES data, resulting in 452,644 total 
individuals, including 719 white British parent–offspring trios and 

3,014 white British parent–offspring duos. When a variant is listed in 
both the WES and the SNP array, we keep the SNP array copy as the SNP 
array is expected to be more robust to SNP calling errors48. This resulted 
in retaining a total of 26,199,614 variants, including 977,517 common 
variants (MAF ≥ 0.1%) and 25,222,097 rare variants (MAF < 0.1%) (Sup-
plementary Table 1). Phasing the 452,644 individuals with both WES 
and Axiom array available data is performed for each chromosome 
independently in a single chunk. We also used Beagle v.5.4 (refs. 16,17) 
with default parameters.

Genotype imputation
To perform genotype imputation from the phased WGS and WES data-
sets, we extracted 1,000 samples with British ancestry that are unre-
lated to any other sample in the dataset, and for which we had Axiom 
SNP array data available. We therefore used a reference panel composed 
of the remaining 146,754 WGS samples and 446,470 WES samples for 
both SHAPEIT5 and Beagle v.5.4. For the HRC reference panel, we used 
the PICARD toolkit (http://broadinstitute.github.io/picard/) to liftover 
the data to the Human genome assembly GRCh38, retaining 99.8% of 
the original variants.

We used Beagle v.5.4 for genotype imputation of SNP array data, 
allowing prephasing from the reference panel. We accessed imputa-
tion accuracy by measuring the squared Pearson correlation between 
imputed and high-coverage genotypes using the GLIMPSE_concord-
ance tool49 (-gt-val option) at custom allele count bins (--ac-bins 1 5 10 
20 50 100 200 500 1000 2000 5000 10000 20000 50000 100000 
146754 for WGS, --ac-bins 1 5 10 20 50 100 200 500 1000 2000 5000 
10000 20000 50000 100000 446470 for WES). A drop of correlation 
quantifies the reduction in effective sample size in association testing 
due to imperfect imputation. For instance, a difference of 0.05 involves 
a power loss equivalent to losing 5% of the data.

We also evaluated the nonreference discordance rate using the 
GLIMPSE_concordance49 tool. The nonreference discordance46 is cal-
culated as NRD = (err + era + eaa)/(err + era + eaa + mra + maa), where err, era and 
eaa are the counts of the mismatches for the homozygous reference, 
heterozygous and homozygous alternative genotypes, respectively, 
and mra and maa are the counts of the matches at the heterozygous and 
homozygous alternative genotypes. NRD is an error rate that excludes 
the homozygous reference matches, which are the most frequent at 
rare variants, giving more weight to the other matches. We computed 
the nonreference discordance rate within frequency bins in the refer-
ence panel.

Compound heterozygosity detection
We restricted the analysis to the cohort of self-declared white British 
individuals for which the ancestry is confirmed by PCA (UKB field 
22006) with both SNP array and exome-seq data, excluding parental 
individuals (n = 374,826). Only WES variants with MAF < 0.1% before 
sample filtering were considered. Variant annotations (LoF, Synony-
mous and Missense|LC) were obtained from the Genebass database50 
through Hail (gene-level results, results.mt). Briefly, these variants 
had been annotated by Ensembl VEP v.95 (ref. 51) and LoF variants 
(stop-gain, frameshift and splice donor/acceptor sites) were further 
processed by LOFTEE4, separating high-confidence (used as ‘LoF’) 
from low-confidence (used in the ‘Missense|LC’ category). Only unique 
canonical transcripts for protein-coding genes were considered. LoF, 
synonymous and missense variants were gathered in the UKB cohort 
using bcftools (v.1.15.1) isec function, with the ‘-c none’ parameter to 
match variants by chromosome, position, reference and alternative 
alleles. Singleton variants were excluded from this analysis.

Identification of compound heterozygous events was performed 
with custom Python (v.3.7) scripts. Briefly, for each variant type (LoF, 
synonymous, missense) and for each gene, individuals with at least two 
mutations were assessed for compound heterozygosity by having at 
least one variant in each of the two haplotypes. In addition, for each 
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gene, we calculated the expected number of individuals with compound 
heterozygosity as ∑n

i=11 −
1
2

(v−1)
, where v indicates the number of variants 

in individual i in the gene. To compare the number of LoF compound 
heterozygous genes and events without phasing, we randomized phas-
ing at all variants by attributing 0.5 probability for each variant to fall 
in either of the two haplotypes, independently for each variant.

Essential and nonessential gene lists
We obtained lists of essential and nonessential genes from several 
sources (described below). For each of these gene lists, we performed 
Fisher’s exact tests (two-sided) for several categories of compound 
heterozygous genes versus noncompound heterozygous genes, con-
sidering a background of 2,150 genes with at least one individual with 
two LoF mutations. For synonymous and missense variants, the back-
ground included 10,119 and 14,914 genes, respectively. The following 
lists of genes were obtained: (1) essential in mice (n = 2,454) from Georgi 
et al.52 includes genes where homozygous knockout in mice results in 
pre-, peri- or postnatal lethality and was extracted with ortholog human 
gene symbols from McArthur’s laboratory53; (2) essential in culture 
(n = 360) core essential genes from genomic perturbation screens 
were obtained from Hart et al.33; (3) nonessential in culture (n = 927) 
putatively nonessential genes (shRNA screening) were obtained from 
Hart et al.33; (4) essential CRISPR (n = 684) genes essential in culture 
from CRISPR screening were obtained from Hart et al.54; (5) essential 
ADaM (n = 1,075) genes annotated by the ADaM analysis of a large col-
lection of gene dependency profiles (CRISPR-Cas9 screens) across 
855 human cancer cell lines (Project Score and Project Achilles 20Q2) 
were obtained from Vinceti et al.55; (6) essential gnomAD (n = 1,920) 
genes at the bottom LOEUF decile from gnomAD v.2.1.1 (that is, most 
constrained genes) were obtained from https://gnomad.broadinstitute.
org/ (ref. 4); (7) nonessential gnomAD (n = 1,919) genes at the top LOEUF 
decile from gnomad AD v.2.1.1 (that is, least constrained genes) were 
obtained from https://gnomad.broadinstitute.org/ (ref. 4); and (8) 
homozygous LoF tolerant (n = 1,815) genes with homozygous LoF vari-
ants observed in the gnomAD cohort were obtained from Karczewski 
et al.4 (Supplementary Data 7).

Statistics and reproducibility
This study was based on the UKB SNP array, WES and WGS datasets. 
Variants and samples were selected based on quality controls and 
ancestry as described in the SNP array, WES and WGS data processing 
methods. In certain analyses, only individuals including both WGS/
WES and SNP array data were included. Statistical analyses, including 
Fisher’s exact tests, binomial and Wilcoxon tests were performed with 
R v.4.2. All code to reproduce analyses is publicly available.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The lists of compound heterozygous events and genes are available in 
Supplementary Data 1. The phased WGS reference panel can be accessed 
via the UKB RAP: https://ukbiobank.dnanexus.com/landing. RAP is open 
to researchers who are listed as collaborators on UKB-approved access 
applications. Liftover was performed using a chain file provided by 
UCSC (https://hgdownload.cse.ucsc.edu/goldenpath/hg19/liftOver/). 
The publicly available subset of the Haplotype Reference Consortium 
dataset is available from the European Genome-Phenome Archive at 
the European Bioinformatics Institute, accession EGAS00001001710. 
Source data are provided with this paper.

Code availability
SHAPEIT5 is available under MIT license at https://github.com/odela-
neau/shapeit5. This includes code to the phase_common, phase_rare, 

ligate and switch tools and the scripts used to phase WES and WGS data 
on the UKB RAP. The documentation is available at https://odelaneau.
github.io/shapeit5. Code and source data to reproduce analysis and 
plots have been deposited in the linked Zenodo repository: https://
doi.org/10.5281/zenodo.7828479 (ref. 56).
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Extended Data Fig. 1 | Switch error rates and running times on the UK 
Biobank Axiom array data. (a) SER computed at all variants typed on the UK 
Biobank Axiom array in duos and trios. (b) Phasing running times on the UK 
Biobank Axiom array. SER and running times have been computed for multiple 

downsampling experiments comprising 5000, 10000, 20000, 50000, 100000, 
200000, 300000, 400000, 480000 samples (x-axis). SHAPEIT5 and Beagle5.4 
are shown in blue and black, respectively.
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Extended Data Fig. 2 | Chromosome 20 switch error locations. Switch error 
locations for 50 validation samples when phased as part of 480 k samples across 
the entire chromosome 20 (x-axis) with SHAPEIT5. A switch between dark and 
light blue represents a switch error. At the top is shown the Axiom array phasing 
when using Axiom array genotypes as validation and at the bottom when using 

the WGS data as validation genotypes. Many of the small segments in the top 
panel are due to genotyping errors in the duo/trio parents, which involve 
incorrect duo/trio phasing as validation. When using the WGS as validation, many 
of these inconsistencies disappear.
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Extended Data Fig. 3 | Singleton phasing. (a) Numbers of genotyped parents 
in duos being homozygous for the major allele (0/0) or heterozygous (0/1) for 
offspring being heterozygous at the singleton (0/1). Of note, a given variant is 
assumed to be a singleton here once the genotyped parent is excluded from  

the dataset to phase. (b) Numbers of parents in each genotype class for trios.  
(c-d) Numbers of singletons being incorrectly and correctly phased using duos 
(c) or trios (d) as validation. Binomial p-values were computed using the two 
sided Exact binomial test as implemented in R.

http://www.nature.com/naturegenetics
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Extended Data Fig. 4 | Non-reference discordance rate comparison 
between SHAPEIT5 and Beagle5.4. Non-reference discordance rate (NRD, 
y-axis) stratified by minor allele count (x-axis) for 1,000 white British samples 
genotyped with the Axiom array when using reference panels phased with 

either SHAPEIT5 (blue) or Beagle5.4 (black) whole genome sequencing (a) or 
whole exome sequencing (b). In (a) the NRD is also reported for the imputation 
experiment using the HRC reference panel (gray).
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Extended Data Fig. 5 | Performance of SHAPEIT5 phasing confidence score. 
Switch Error Rate (SER, y-axis) for WGS (a) and WES (c) datasets stratified by 
minor allele count (x-axis) at different phasing confidence score thresholds. 

Number of heterozygous sites filtered out at different phasing confidence score 
thresholds in the WGS (b) and WES (d) datasets. Filtering for a confidence score 
of 0.5 is equivalent to no filtering.
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Extended Data Fig. 6 | Frequency of loss-of-function (LoF) variants in the UK Biobank. (a) Number of LoF variants per protein-coding gene. 69 outlier values were 
excluded. (b) Number of LoF variants per allele count bin (N = 383,637). (c) Number of LoF variants per UK Biobank individual (N = 374,826). 11 outlier values were 
excluded.
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Extended Data Fig. 7 | Number of compound heterozygous events across several categories. ‘Full data’: all LoF variants in the study, except singletons, ‘High 
confidence’: LoF variants excluding calls with phasing confidence score < 0.99, ‘Random phasing’: shuffling phasing of all LoF variants.
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Extended Data Fig. 8 | Compound heterozygous identification in the 
UK Biobank WES data phased with Beagle5.4. (a) Number of genes with 
a compound heterozygous event in at least one individual (N = 374,826 
individuals). (b) Number of compound heterozygous events (N = 374,826 
individuals). (c) Two-way Fisher’s Exact test odds ratios ± 95% confidence 

interval (log2-scaled) of compound heterozygous genes versus non-compound 
heterozygous genes presence in multiple lists of essential genes (see Methods). 
Background is composed of genes with ≥2 LoF mutations. X-axis is capped at −6. 
(d) Same as previous, but across lists of non-essential genes.
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Extended Data Fig. 9 | Comparison of compound heterozygous results with 
LoF, missense or synonymous variants. (a) Number of genes with a compound 
heterozygous event in at least one individual (N = 374,826 individuals).  
(b) From a total of 18,595 protein coding genes, number of genes with compound 
heterozygous events (blue), number of genes with individuals with ≥2 mutations 
but found only in one haplotype (orange), number of genes for which individuals 

with ≥2 mutations did not occur (green). (c) Two-way Fisher’s Exact test odds 
ratios ± 95% confidence interval (log2-scaled) of compound heterozygous  
genes versus non-compound heterozygous genes presence in multiple lists  
of essential genes (see Methods). Background is composed of 17,679 genes with 
≥2 LoF mutations. X-axis is capped at −6. (d) Same as previous, but across lists  
of non-essential genes.
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