Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding

Abstract

Genebanks have the long-term mission of preserving plant genetic resources as an agricultural legacy for future crop improvement. Operating procedures for seed storage and plant propagation have been in place for decades, but there is a lack of effective means for the discovery and transfer of beneficial alleles from landraces and wild relatives into modern varieties. Here, we review the prospects of using molecular passport data derived from genomic sequence information as a universal monitoring tool at the single-plant level within and between genebanks. Together with recent advances in breeding methodologies, the transformation of genebanks into bio-digital resource centers will facilitate the selection of useful genetic variation and its use in breeding programs, thus providing easy access to past crop diversity. We propose linking catalogs of natural genetic variation and enquiries into biological mechanisms of plant performance as a long-term joint research goal of genebanks, plant geneticists and breeders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genebank genomics as a tool for collection management.
Fig. 2: Identification of duplicates is complicated by heterogeneity within accessions.
Fig. 3: Selection of the most promising genotypes for pre-breeding.

Similar content being viewed by others

References

  1. Peres, S. Saving the gene pool for the future: seed banks as archives. Stud. Hist. Philos. Biol. Biomed. Sci. 55, 96–104 (2016).

    Article  Google Scholar 

  2. Swarts, K. et al. Genomic estimation of complex traits reveals ancient maize adaptation to temperate North America. Science 357, 512–515 (2017).

    Article  CAS  Google Scholar 

  3. Mascher, M. et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat. Genet. 48, 1089–1093 (2016).

    Article  CAS  Google Scholar 

  4. Frankel, O. H. Genetic conservation: our evolutionary responsibility. Genetics 78, 53–65 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hedden, P. The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003).

    Article  CAS  Google Scholar 

  6. Jørgensen, I. H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 63, 141–152 (1992).

    Article  Google Scholar 

  7. Pistorius, R. Scientists, Plants and Politics: a History of the Plant Genetic Resources Movement (Bioversity International, 1997).

  8. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture (FAO, 2010).

  9. Romay, M. C. et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 14, R55 (2013).

    Article  Google Scholar 

  10. Milner, S. G. et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326 (2019).

    Article  CAS  Google Scholar 

  11. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  Google Scholar 

  12. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article  CAS  Google Scholar 

  13. Van Treuren, R., Van Soest, L. & Van Hintum, T. J. Marker-assisted rationalisation of genetic resource collections: a case study in flax using AFLPs. Theor. Appl. Genet. 103, 144–152 (2001).

    Article  Google Scholar 

  14. Phippen, W. B., Kresovich, S., Candelas, F. G. & McFerson, J. R. Molecular characterization can quantify and partition variation among genebank holdings: a case study with phenotypically similar accessions of Brassica oleracea var. capitata L. (cabbage) ‘Golden Acre’. Theor. Appl. Genet. 94, 227–234 (1997).

    Article  CAS  Google Scholar 

  15. van Hintum, T. J. L. & Visser, D. L. Duplication within and between germplasm collections. Genet. Resour. Crop Evol. 42, 135–145 (1995).

    Article  Google Scholar 

  16. Gruber, K. Agrobiodiversity: the living library. Nature 544, S8–S10 (2017).

    Article  CAS  Google Scholar 

  17. Parzies, H. K., Spoor, W. & Ennos, R. A. Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84, 476–486 (2000).

    Article  CAS  Google Scholar 

  18. Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens. R. Soc. Open Sci. 3, 160239 (2016).

    Article  Google Scholar 

  19. Alamerew, S., Chebotar, S., Huang, X., Röder, M. & Börner, A. Genetic diversity in Ethiopian hexaploid and tetraploid wheat germplasm assessed by microsatellite markers. Genet. Resour. Crop Evol. 51, 559–567 (2004).

    Article  CAS  Google Scholar 

  20. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

  21. Abbeloos, R. et al. BrAPI: an application programming interface for plant breeding applications. Bioinformatics https://doi.org/10.1093/bioinformatics/btz190 (2019).

  22. Ćwiek-Kupczyńska, H. et al. Measures for interoperability of phenotypic data: minimum information requirements and formatting. Plant Methods 12, 44 (2016).

    Article  Google Scholar 

  23. Marden, E. International agreements may impact genomic technologies. Nat. Plants 4, 2–4 (2018).

    Article  Google Scholar 

  24. Crnokrak, P. & Barrett, S. C. Perspective: purging the genetic load: a review of the experimental evidence. Evolution 56, 2347–2358 (2002).

    Article  Google Scholar 

  25. Romero Navarro, J. A. et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49, 476–480 (2017).

    Article  CAS  Google Scholar 

  26. Böhm, J., Schipprack, W., Utz, H. F. & Melchinger, A. E. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize. Theor. Appl. Genet. 130, 861–873 (2017).

    Article  Google Scholar 

  27. Nelson, R., Wiesner-Hanks, T., Wisser, R. & Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21–33 (2018).

    Article  CAS  Google Scholar 

  28. Corwin, J. A., Subedy, A., Eshbaugh, R. & Kliebenstein, D. J. Expansive phenotypic landscape of Botrytis cinerea shows differential contribution of genetic diversity and plasticity. Mol. Plant Microbe Interact. 29, 287–298 (2016).

    Article  CAS  Google Scholar 

  29. Yano, K. et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 48, 927–934 (2016).

    Article  CAS  Google Scholar 

  30. Bhullar, N. K., Street, K., Mackay, M., Yahiaoui, N. & Keller, B. Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. Proc. Natl. Acad. Sci. USA 106, 9519–9524 (2009).

    Article  CAS  Google Scholar 

  31. Shan, Q., Wang, Y., Li, J. & Gao, C. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395–2410 (2014).

    Article  CAS  Google Scholar 

  32. Nelson, P. T. & Goodman, M. M. Evaluation of elite exotic maize inbreds for use in temperate breeding. Crop Sci. 48, 85–92 (2008).

    Article  Google Scholar 

  33. Longin, C. F. H. & Reif, J. C. Redesigning the exploitation of wheat genetic resources. Trends Plant Sci. 19, 631–636 (2014).

    Article  CAS  Google Scholar 

  34. Yu, X. et al. Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat. Plants 2, 16150 (2016).

    Article  CAS  Google Scholar 

  35. Buckler, E. S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    Article  CAS  Google Scholar 

  36. Lorenz, A., Smith, K. & Jannink, J.-L. Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci. 52, 1609–1621 (2012).

    Article  Google Scholar 

  37. Akdemir, D., Sanchez, J. I. & Jannink, J.-L. Optimization of genomic selection training populations with a genetic algorithm. Genet. Sel. Evol. 47, 38 (2015).

    Article  Google Scholar 

  38. Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 4, 23–29 (2018).

    Article  Google Scholar 

  39. Gaynor, R. C. et al. A two-part strategy for using genomic selection to develop inbred lines. Crop Sci. 57, 2372–2386 (2017).

    Article  Google Scholar 

  40. Zhao, Y. et al. Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proc. Natl. Acad. Sci. USA 112, 15624–15629 (2015).

    CAS  PubMed  Google Scholar 

  41. Wulff, B. B. H. & Dhugga, K. S. Wheat-the cereal abandoned by GM. Science 361, 451–452 (2018).

    CAS  PubMed  Google Scholar 

  42. Zsögön, A. et al. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211–1216 (2018).

    Article  Google Scholar 

  43. Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–116 (2018).

    Article  CAS  Google Scholar 

  44. Lemmon, Z. H. et al. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4, 766–770 (2018).

    Article  CAS  Google Scholar 

  45. Blancke, S., Grunewald, W. & De Jaeger, G. De-problematizing ‘GMOs’: suggestions for communicating about genetic engineering. Trends Biotechnol. 35, 185–186 (2017).

    Article  CAS  Google Scholar 

  46. Alberch, P. From genes to phenotype: dynamical systems and evolvability. Genetica 84, 5–11 (1991).

    Article  CAS  Google Scholar 

  47. Davidson, E.H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Elsevier, 2010).

  48. Bernardo, R. & Yu, J. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47, 1082–1090 (2007).

    Article  Google Scholar 

  49. Lemmon, Z. H. et al. The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Res. 26, 1676–1686 (2016).

    Article  CAS  Google Scholar 

  50. Kloosterman, B. et al. Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature 495, 246–250 (2013).

    Article  CAS  Google Scholar 

  51. Simmonds, N. Variability in crop plants, its use and conservation. Biol. Rev. Camb. Philos. Soc. 37, 422–465 (1962).

    Article  Google Scholar 

  52. Strigens, A., Schipprack, W., Reif, J. C. & Melchinger, A. E. Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS One 8, e57234 (2013).

    Article  CAS  Google Scholar 

  53. Milner, S. G. et al. Genebank genomics highlights the diversity of a global barley collection. Nat. Genet. 51, 319–326 (2019).

    Article  CAS  Google Scholar 

  54. von Bothmer, R., Sato, K., Komatsuda, T., Yasuda, S. & Fischbeck, G. The domestication of cultivated barley. in Diversity in Barley (Hordeum vulgare) 9–27 (Elsevier, 2003).

  55. Oppermann, M., Weise, S., Dittmann, C. & Knüpffer, H. GBIS: the information system of the German Genebank. Database (Oxf.) 2015, bav021 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the German Federal Ministry of Research and Education (BMBF) to N.S., J.C.R., U.S. and M.M. (FKZ 031B0190; ‘SHAPE’; FKZ 031B0184 ‘Genebank 2.0’; FKZ 031A536A ‘de.NBI’) and a grant from the Leibniz Association to N.S., A.G., U.S., J.C.R. and M.M. (SAW-2015-IPK-1 ‘BRIDGE’). We thank M. Oppermann for tracing the origin of the Ethiopian accessions.

Author information

Authors and Affiliations

Authors

Contributions

The concept of this work was developed in discussions among N.S., A.G., J.C.R., U.S., M.S. and M.M. M.M. and J.C.R. wrote the paper, and all co-authors provided input. M.S. designed figures.

Corresponding authors

Correspondence to Martin Mascher or Nils Stein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascher, M., Schreiber, M., Scholz, U. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat Genet 51, 1076–1081 (2019). https://doi.org/10.1038/s41588-019-0443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-019-0443-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing