Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Insights into imprinting from parent-of-origin phased methylomes and transcriptomes

Abstract

Imprinting is the preferential expression of one parental allele over the other. It is controlled primarily through differential methylation of cytosine at CpG dinucleotides. Here we combine 285 methylomes and 11,617 transcriptomes from peripheral blood samples with parent-of-origin phased haplotypes, to produce a new map of imprinted methylation and gene expression patterns across the human genome. We demonstrate how imprinted methylation is a continuous rather than a binary characteristic. We describe at high resolution the parent-of-origin methylation pattern at the 15q11.2 Prader–Willi/Angelman syndrome locus, with nearly confluent stochastic paternal methylation punctuated by ‘spikes’ of maternal methylation. We find examples of polymorphic imprinted methylation unrelated (at VTRNA2-1 and PARD6G) or related (at CHRNE) to nearby SNP genotypes. We observe RNA isoform-specific imprinted expression patterns suggestive of a methylation-sensitive transcriptional elongation block. Finally, we gain new insights into parent-of-origin-specific effects on phenotypes at the DLK1/MEG3 and GNAS loci.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the study strategy.
Fig. 2: Ideogram showing the genomic locations of PofO-specific methylation (PofO-DMRs) and allele-specific expression (PofO-ASE).
Fig. 3: Mean methylation levels of PofO-DMRs in gametes, blood, and blastocysts.
Fig. 4: VTRNA2-1 PofO-DMR shows polymorphic imprinting whereas ZNF331 does not.
Fig. 5: Selected examples of imprinted loci.
Fig. 6: LINC00664 locus zoomed in (above) (chr19:21475770–21503852) and zoomed out (below) (chr19:20494411–21567958), showing a maternally methylated PofO-DMR at the LINC00664 promoter and preferential expression of the paternal allele.
Fig. 7: PofO-specific phenotypic associations and methylation at the DLK1/MEG3 and GNAS loci.

Data availability

We have made available data files with average methylation levels per CpG site (methylationFraction.tsv), P values for PofO-specific methylation per CpG site (PofO_ASM.tsv), and P values for PofO-specific expression per exonic SNP (PofO_ASE.tsv). Data are available at http://figshare.com, https://doi.org/10.6084/m9.figshare.6816917.

References

  1. Babak, T. et al. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat. Genet. 47, 544–549 (2015).

    Article  CAS  Google Scholar 

  2. Baran, Y. et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 25, 927–936 (2015).

    Article  CAS  Google Scholar 

  3. Morison, I. M., Paton, C. J. & Cleverley, S. D. The imprinted gene and parent-of-origin effect database. Nucleic Acids Res. 29, 275–276 (2001).

    Article  CAS  Google Scholar 

  4. Ferguson-Smith, A. C. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575 (2011).

    Article  CAS  Google Scholar 

  5. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  Google Scholar 

  6. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32 (2001).

    Article  CAS  Google Scholar 

  7. Eggermann, T. et al. Imprinting disorders: a group of congenital disorders with overlapping patterns of molecular changes affecting imprinted loci. Clin. Epigenetics 7, 123 (2015).

    Article  Google Scholar 

  8. Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature 462, 868–874 (2009).

    Article  CAS  Google Scholar 

  9. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424 (2017).

    Article  CAS  Google Scholar 

  10. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

    Article  CAS  Google Scholar 

  11. Hanna, C. W. & Kelsey, G. The specification of imprints in mammals. Heredity (Edinb) 113, 176–183 (2014).

    Article  CAS  Google Scholar 

  12. Messerschmidt, D. M., Knowles, B. B. & Solter, D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 28, 812–828 (2014).

    Article  CAS  Google Scholar 

  13. Smith, Z. D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    Article  CAS  Google Scholar 

  14. Stewart, K. R., Veselovska, L. & Kelsey, G. Establishment and functions of DNA methylation in the germline. Epigenomics 8, 1399–1413 (2016).

    Article  CAS  Google Scholar 

  15. Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

    Article  CAS  Google Scholar 

  16. Okae, H. et al. Genome-wide analysis of DNA methylation dynamics during early human development. PLoS Genet. 10, e1004868 (2014).

    Article  Google Scholar 

  17. Proudhon, C. et al. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol. Cell 47, 909–920 (2012).

    Article  CAS  Google Scholar 

  18. Sanchez-Delgado, M. et al. Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting. PLoS Genet. 12, e1006427 (2016).

    Article  Google Scholar 

  19. Court, F. et al. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res. 24, 554–569 (2014).

    Article  CAS  Google Scholar 

  20. Joshi, R. S. et al. DNA methylation profiling of uniparental disomy subjects provides a map of parental epigenetic bias in the human genome. Am. J. Hum. Genet. 99, 555–566 (2016).

    Article  CAS  Google Scholar 

  21. Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).

    Article  CAS  Google Scholar 

  22. Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).

    Article  CAS  Google Scholar 

  23. Jónsson, H. et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci. Data 4, 170115 (2017).

    Article  Google Scholar 

  24. Booth, M. J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    Article  CAS  Google Scholar 

  25. McCullagh, P. & Nelder, J. A. Generalized Linear Models. 2nd edn, (Chapman and Hall/CRC, London, 1989).

    Book  Google Scholar 

  26. Landan, G. et al. Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat. Genet. 44, 1207–1214 (2012).

    Article  CAS  Google Scholar 

  27. Landau, D. A. et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell. 26, 813–825 (2014).

    Article  CAS  Google Scholar 

  28. Jeltsch, A. & Jurkowska, R. Z. New concepts in DNA methylation. Trends Biochem. Sci. 39, 310–318 (2014).

    Article  CAS  Google Scholar 

  29. Romanelli, V. et al. Variable maternal methylation overlapping the nc886/vtRNA2-1 locus is locked between hypermethylated repeats and is frequently altered in cancer. Epigenetics. 9, 783–790 (2014).

    Article  CAS  Google Scholar 

  30. Silver, M. J. et al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol. 16, 118 (2015).

    Article  Google Scholar 

  31. Treppendahl, M. B. et al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood 119, 206–216 (2012).

    Article  CAS  Google Scholar 

  32. Bunzel, R. et al. Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Brain Res. Mol. Brain Res. 59, 90–92 (1998).

    Article  CAS  Google Scholar 

  33. Giannoukakis, N., Deal, C., Paquette, J., Kukuvitis, A. & Polychronakos, C. Polymorphic functional imprinting of the human IGF2 gene among individuals, in blood cells, is associated with H19 expression. Biochem. Biophys. Res. Commun. 220, 1014–1019 (1996).

    Article  CAS  Google Scholar 

  34. Xu, Y., Goodyer, C. G., Deal, C. & Polychronakos, C. Functional polymorphism in the parental imprinting of the human IGF2R gene. Biochem. Biophys. Res. Commun. 197, 747–754 (1993).

    Article  CAS  Google Scholar 

  35. Docherty, L. E. et al. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J. Med. Genet. 51, 229–238 (2014).

    Article  CAS  Google Scholar 

  36. Rochtus, A. et al. Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects. Clin. Epigenetics 8, 10 (2016).

    Article  Google Scholar 

  37. Lev Maor, G., Yearim, A. & Ast, G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 31, 274–280 (2015).

    Article  CAS  Google Scholar 

  38. Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479, 74–79 (2011).

    Article  CAS  Google Scholar 

  39. Cowley, M., Wood, A. J., Böhm, S., Schulz, R. & Oakey, R. J. Epigenetic control of alternative mRNA processing at the imprinted Herc3/Nap1l5 locus. Nucleic Acids Res. 40, 8917–8926 (2012).

    Article  CAS  Google Scholar 

  40. Wood, A. J. et al. Regulation of alternative polyadenylation by genomic imprinting. Genes Dev. 22, 1141–1146 (2008).

    Article  CAS  Google Scholar 

  41. Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429.e19 (2016).

    Article  CAS  Google Scholar 

  42. Perry, J. R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).

    Article  CAS  Google Scholar 

  43. Mantovani, G. Clinical review: pseudohypoparathyroidism: diagnosis and treatment. J. Clin. Endocrinol. Metab. 96, 3020–3030 (2011).

    Article  CAS  Google Scholar 

  44. Kelsey, G. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus. Am. J. Med. Genet. C Semin. Med. Genet. 154C, 377–386 (2010).

    Article  CAS  Google Scholar 

  45. Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  Google Scholar 

  46. Strimmer, K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24, 1461–1462 (2008).

    Article  CAS  Google Scholar 

  47. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  Google Scholar 

  48. Ziebarth, J. D., Bhattacharya, A. & Cui, Y. CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res. 41, D188–D194 (2013).

    Article  CAS  Google Scholar 

  49. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  50. Stacey, S. N. et al. New basal cell carcinoma susceptibility loci. Nat. Commun. 6, 6825 (2015).

    Article  CAS  Google Scholar 

  51. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  52. Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by deCODE genetics/AMGEN Inc.

Author information

Authors and Affiliations

Authors

Contributions

F.Z., O.T.M., U.T., B.V.H., S.N.S., and K.S. designed the study and interpreted the results. D.N.M., N.J.W., T.J.M., O.T.M., and A.S. carried out the sequencing and genotyping. J.G., T.R., I.J., H.H., G.I.E., O.S., I.O., U.T., and S.N.S. assessed the participants and collected the data. F.Z., G.H.H., S.A.G., P.M., H.I., S.K., K.F.A., A.H., G.M., D.F.G., B.V.H., and S.N.S. carried out the statistical and bioinformatics analysis. F.Z., S.N.S., and K.S. drafted the manuscript. All authors contributed to the final version of the paper.

Corresponding authors

Correspondence to Simon N. Stacey or Kari Stefansson.

Ethics declarations

Competing interests

All deCODE authors are employees of the biotechnology company deCODE genetics/AMGEN. N.J.W. and T.J.M. are employees of Cambridge Epigenetix Ltd. Cambridge Epigenetix Ltd retains the rights for diagnostic use of the oxBS-seq technology and receives royalties from the sale of oxBS kits under the terms of a partnership agreement with NuGEN Technologies.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18

Reporting Summary

Supplementary Tables

Supplementary Tables 1–9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zink, F., Magnusdottir, D.N., Magnusson, O.T. et al. Insights into imprinting from parent-of-origin phased methylomes and transcriptomes. Nat Genet 50, 1542–1552 (2018). https://doi.org/10.1038/s41588-018-0232-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0232-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research