Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs

Abstract

Genome-wide association studies have identified thousands of genetic variants that are associated with disease1. Most of these variants have small effect sizes, but their downstream expression effects, so-called expression quantitative trait loci (eQTLs), are often large2 and celltype-specific3,4,5. To identify these celltype-specific eQTLs using an unbiased approach, we used single-cell RNA sequencing to generate expression profiles of ~25,000 peripheral blood mononuclear cells from 45 donors. We identified previously reported cis-eQTLs, but also identified new celltype-specific cis-eQTLs. Finally, we generated personalized co-expression networks and identified genetic variants that significantly alter co-expression relationships (which we termed ‘co-expression QTLs’). Single-cell eQTL analysis thus allows for the identification of genetic variants that impact regulatory networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cis-eQTL analysis in single-cell RNA-seq data.
Fig. 2: Most significant co-expression QTL in the CD4+ T cells.

Similar content being viewed by others

References

  1. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown, C. D., Mangravite, L. M. & Engelhardt, B. E. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet. 9, e1003649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fairfax, B. P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu, J. et al. Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression. PLoS Genet. 8, e1002431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kasela, S. et al. Pathogenic implications for autoimmune mechanisms derived by comparative eQTL analysis of CD4+ versus CD8+ T cells. PLoS Genet. 13, e1006643 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Naranbhai, V. et al. Genomic modulators of gene expression in human neutrophils. Nat. Commun. 6, 7545 (2015).

    Article  PubMed  Google Scholar 

  8. Ishigaki, K. et al. Polygenic burdens on cell-specific pathways underlie the risk of rheumatoid arthritis. Nat. Genet. 49, 1120–1125 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Westra, H. J. et al. Cell specific eQTL analysis without sorting cells. PLoS Genet. 11, e1005223 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Venet, D., Pecasse, F., Maenhaut, C. & Bersini, H. Separation of samples into their constituents using gene expression data. Bioinformatics 17 (Suppl. 1), S279–S287 (2001). 

    Article  PubMed  Google Scholar 

  11. Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573, https://doi.org/10.1126/science.aah4573 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wills, Q. F. et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat. Biotechnol. 31, 748–752 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Tigchelaar, E. F. et al. Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics. BMJ Open 5, e006772 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhernakova, D. V. et al. DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts. PLoS Genet. 9, e1003594 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, L. et al. Genetic drivers of epigenetic and transcriptional variation in human immune cells. Cell 167, 1398–1414.e24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Flutre, T., Wen, X., Pritchard, J. & Stephens, M. A statistical framework for joint eQTL analysis in multiple tissues. PLoS Genet. 9, e1003486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sul, J. H., Han, B., Ye, C., Choi, T. & Eskin, E. Effectively identifying eQTLs from multiple tissues by combining mixed model and meta-analytic approaches. PLoS Genet. 9, e1003491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duong, D. et al. Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eQTLs and increase the number of eGenes. Bioinformatics 33, i67–i74 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Knowles, D. A. et al. Allele-specific expression reveals interactions between genetic variation and environment. Nat. Methods 14, 699–702 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Dijk, D. et al. MAGIC: A diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data. Preprint at bioRxiv https://doi.org/10.1101/111591 (2017).

  23. Huang, M. et al. Gene expression recovery for single cell RNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/138677 (2017).

  24. Li, W. V. & Li, J. J. An accurate and robust imputation method scImpute for single-cell RNA-seq data. Nat. Commun. 9, 997 (2018). 

  25. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Article  Google Scholar 

  26. Simpson, E. H. The interpretation of interaction in contingency tables. J. R. Stat. Soc. Ser. B Methodol. 13, 238–241 (1951).

    Google Scholar 

  27. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loh, P. R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet. 48, 1443–1448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Rosser, Z. H., Balaresque, P. & Jobling, M. A. Gene conversion between the X chromosome and the male-specific region of the Y chromosome at a translocation hotspot. Am. J. Hum. Genet. 85, 130–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ilicic, T. et al. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 17, 29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. van de Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

Download references

Acknowledgements

We are very grateful to all the volunteers who participated in this study. Moreover, we thank J. Dekens for arranging informed consent and contact with LifeLines. We thank A. Maatman and M. Platteel for their assistance in the lab. M.A.S. and L.F. are supported by grants from the Dutch Research Council (ZonMW-VIDI 917.164.455 to M.S. and ZonMW-VIDI 917.14.374 to L.F.), and L.F. is supported by an ERC Starting Grant, grant agreement 637640 (ImmRisk). The Biobank-Based Integrative Omics Studies (BIOS) Consortium is funded by BBMRI-NL, a research infrastructure financed by the Dutch government (NWO 184.021.007).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.G.P.v.d.W. generated the scRNA-seq data. M.G.P.v.d.W., H.B., and D.H.d.V. performed bioinformatics and statistical analyses. P.D. and the BIOS Consortium performed replication of co-expression QTLs. M.G.P.v.d.W. and L.F. designed the study and wrote the manuscript. M.A.S. and the LifeLines Cohort Study provided biomaterials, genotype data, and computational resources. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Lude Franke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 5–7 and Supplementary Notes 1 and 2

Life Sciences Reporting Summary

Supplementary Table 1

scRNA-seq eQTL analysis and concordance check confined to previously reported top-eQTLs from whole blood DeepSAGE and RNA-seq data.

Supplementary Table 2

Genome-wide scRNA-seq eQTL analysis and replication of previously reported top-eQTLs from whole blood RNA-seq data.

Supplementary Table 3

Replication in purified cell type RNA-seq data of 19 eQTLs not found in the bulk-like PBMC scRNA-seq or whole blood RNA-seq data.

Supplementary Table 4

Co-expression QTLs in the CD4+ T cells.

Supplementary Table 8

Sample metadata (including sample name, sample batch/lane of chip, gender and age).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Wijst, M.G.P., Brugge, H., de Vries, D.H. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat Genet 50, 493–497 (2018). https://doi.org/10.1038/s41588-018-0089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0089-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing