Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici

Abstract

Deployment of fast-evolving disease-resistance genes is one of the most successful strategies used by plants to fend off pathogens1,2. In gene-for-gene relationships, most cloned disease-resistance genes encode intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) recognizing pathogen-secreted isolate-specific avirulence (Avr) effectors delivered to the host cytoplasm3,4. This process often triggers a localized hypersensitive response, which halts further disease development5. Here we report the map-based cloning of the wheat Stb6 gene and demonstrate that it encodes a conserved wall-associated receptor kinase (WAK)-like protein, which detects the presence of a matching apoplastic effector6,7,8 and confers pathogen resistance without a hypersensitive response9. This report demonstrates gene-for-gene disease resistance controlled by this class of proteins in plants. Moreover, Stb6 is, to our knowledge, the first cloned gene specifying resistance to Zymoseptoria tritici, an important foliar fungal pathogen affecting wheat and causing economically damaging septoria tritici blotch (STB) disease10,11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map-based cloning of the Stb6 resistance gene.
Fig. 2: Functional analysis of candidate genes through barley stripe mosaic virus (BSMV)-mediated VIGS.
Fig. 3: Mutational analysis of TaWAKL4 and TaWAKL3.
Fig. 4: TaWAKL4 confers resistance to Z. tritici IPO323 when stably transferred into a susceptible wheat background.
Fig. 5: Sequence and biochemical characterization of natural and induced Stb6 haplotypes.

Similar content being viewed by others

References

  1. Michelmore, R. W., Christopoulou, M. & Caldwell, K. S. Impacts of resistance gene genetics, function, and evolution on a durable future. Annu. Rev. Phytopathol. 51, 291–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Krattinger, S. G. & Keller, B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 212, 320–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Jones, J. D. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Dickman, M. B. & Fluhr, R. Centrality of host cell death in plant-microbe interactions. Annu. Rev. Phytopathol. 51, 543–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Brading, P. A., Verstappen, E. C. P., Kema, G. H. J. & Brown, J. K. M. A gene-for gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathology 92, 439–445 (2002).

    Article  PubMed  Google Scholar 

  7. Zhong, Z. et al. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. New Phytol. 214, 619–631 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Kema, G.H.J. et al. Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance. Nat. Genet. https://doi.org/10.1038/s41588-018-0052-9 (2018).

  9. Rudd, J. J., Keon, J. & Hammond-Kosack, K. E. The wheat mitogen-activated protein kinases TaMPK3 and TaMPK6 are differentially regulated at multiple levels during compatible disease interactions with Mycosphaerella graminicola. Plant Physiol. 147, 802–815 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fones, H. & Gurr, S. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fungal Genet. Biol. 79, 3–7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Torriani, S. F. et al. Zymoseptoria tritici: a major threat to wheat production, integrated approaches to control. Fungal Genet. Biol. 79, 8–12 (2015).

    Article  PubMed  Google Scholar 

  12. Kettles, G. J. & Kanyuka, K. Dissecting the molecular interactions between wheat and the fungal pathogen Zymoseptoria tritici. Front. Plant Sci. 7, 508 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Zipfel, C. Plant pattern-recognition receptors. Trends Immunol. 35, 345–351 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Thomma, B. P., Nürnberger, T. & Joosten, M. H. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cook, D. E., Mesarich, C. H. & Thomma, B. P. H. J. Understanding plant immunity as a surveillance system to detect invasion. Annu. Rev. Phytopathol. 53, 541–563 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Sánchez-Vallet, A., McDonald, M. C., Solomon, P. S. & McDonald, B. A. Is Zymoseptoria tritici a hemibiotroph? Fungal Genet. Biol. 79, 29–32 (2015).

    Article  PubMed  Google Scholar 

  17. Kema, G. H. J., Yu, D. Z. & Rijkenberg, F. H. J. Histology of the pathogenesis of Mycosphaerella graminicola in wheat. Phytopathology 86, 777–786 (1996).

    Article  Google Scholar 

  18. Torriani, S. F. F., Brunner, P. C., McDonald, B. A. & Sierotzki, H. QoI resistance emerged independently at least 4 times in European populations of Mycosphaerella graminicola. Pest Manag. Sci. 65, 155–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Cools, H. J. & Fraaije, B. A. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manag. Sci. 69, 150–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Estep, L. K. et al. Emergence and early evolution of fungicide resistance in North American populations of Zymoseptoria tritici. Plant Pathol. 64, 961–971 (2015).

    Article  CAS  Google Scholar 

  21. Brown, J. K., Chartrain, L., Lasserre-Zuber, P. & Saintenac, C. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet. Biol. 79, 33–41 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tabib Ghaffary, S. M. et al. New broad-spectrum resistance to septoria tritici blotch derived from synthetic hexaploid wheat. Theor. Appl. Genet. 124, 125–142 (2012).

    Article  PubMed  Google Scholar 

  23. McDonald, B. A. & Mundt, C. C. How knowledge of pathogen population biology informs management of Septoria tritici blotch. Phytopathology 106, 948–955 (2016).

    Article  PubMed  Google Scholar 

  24. Chartrain, L., Brading, P. A. & Brown, J. K. M. Presence of the Stb6 gene for resistance to septoria tritici blotch (Mycosphaerella graminicola) in cultivars used in wheat-breeding programmes worldwide. Plant Pathol. 54, 134–143 (2005).

    Article  CAS  Google Scholar 

  25. Arraiano, L. S. & Brown, J. K. M. Identification of isolate-specific and partial resistance to Septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol. 55, 726–738 (2006).

    Article  Google Scholar 

  26. Arraiano, L. S. et al. Contributions of disease resistance and escape to the control of Septoria tritici blotch of wheat. Plant Pathol. 58, 910–922 (2009).

    Article  Google Scholar 

  27. Ghaffary, S. M. et al. Genetic analysis of resistance to septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor. Appl. Genet. 123, 741–754 (2011).

    Article  PubMed  Google Scholar 

  28. Saintenac, C., Jiang, D., Wang, S. & Akhunov, E. Sequence-based mapping of the polyploid wheat genome. G3 (Bethesda) 3, 1105–1114 (2013).

    Article  Google Scholar 

  29. Bolot, S. et al. The ‘inner circle’ of the cereal genomes. Curr. Opin. Plant Biol. 12, 119–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Antolín-Llovera, M., Ried, M. K., Binder, A. & Parniske, M. Receptor kinase signaling pathways in plant-microbe interactions. Annu. Rev. Phytopathol. 50, 451–473 (2012).

    Article  PubMed  Google Scholar 

  31. Lee, W. S., Hammond-Kosack, K. E. & Kanyuka, K. Barley stripe mosaic virus-mediated tools for investigating gene function in cereal plants and their pathogens: virus-induced gene silencing, host-mediated gene silencing, and virus-mediated overexpression of heterologous protein. Plant Physiol. 160, 582–590 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, W. S., Rudd, J. J. & Kanyuka, K. Virus induced gene silencing (VIGS) for functional analysis of wheat genes involved in Zymoseptoria tritici susceptibility and resistance. Fungal Genet. Biol. 79, 84–88 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 123, 439–442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. King, R. et al. Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One 10, e0137549 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Krasileva, K. V. et al. Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. USA 114, E913–E921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dardick, C., Schwessinger, B. & Ronald, P. Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. Curr. Opin. Plant Biol. 15, 358–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Stotz, H. U., Mitrousia, G. K., de Wit, P. J. G. M. & Fitt, B. D. L. Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci. 19, 491–500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Wit, P. J. G. M. Apoplastic fungal effectors in historic perspective; a personal view. New Phytol. 212, 805–813 (2016).

    Article  PubMed  Google Scholar 

  39. Diener, A. C. & Ausubel, F. M. RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171, 305–321 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hurni, S. et al. The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc. Natl. Acad. Sci. USA 112, 8780–8785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zuo, W. et al. A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 47, 151–157 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Brutus, A., Sicilia, F., Macone, A., Cervone, F. & De Lorenzo, G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. USA 107, 9452–9457 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ferrari, S. et al. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 4, 49 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kohorn, B. D. & Kohorn, S. L. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant Sci. 3, 88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kohorn, B. D. Cell wall-associated kinases and pectin perception. J. Exp. Bot. 67, 489–494 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Park, A. R. et al. Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. J. Biol. Chem. 276, 26688–26693 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Shi, G. et al. The hijacking of a receptor kinase-driven pathway by a wheat fungal pathogen leads to disease. Sci. Adv. 2, e1600822 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Endo, T. R. & Gill, B. S. The deletion stocks of common wheat. J. Hered. 87, 295–307 (1996).

    Article  CAS  Google Scholar 

  49. Sourdille, P. et al. An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor. Appl. Genet. 106, 530–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Allen, A. M. et al. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol. J. 9, 1086–1099 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, S. et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Keon, J. et al. Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host. Mol. Plant Microbe Interact. 20, 178–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Yuan, C. et al. A high throughput barley stripe mosaic virus vector for virus induced gene silencing in monocots and dicots. PLoS One 6, e26468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rieu, I. & Powers, S. J. Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell 21, 1031–1033 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, W.-S., Rudd, J. J., Hammond-Kosack, K. E. & Kanyuka, K. Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol. Plant Microbe Interact. 27, 236–243 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Tassy, C., Partier, A., Beckert, M., Feuillet, C. & Barret, P. Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression. Plant Cell Tissue Organ Cult. 119, 171–181 (2014).

    Article  CAS  Google Scholar 

  57. Christensen, A. H. & Quail, P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5, 213–218 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Sparks, C. A. & Jones, H. D. Genetic transformation of wheat via particle bombardment. Methods Mol. Biol. 1099, 201–218 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Eriksen, L., Borum, F. & Jahoor, A. Inheritance and localisation of resistance to Mycosphaerella graminicola causing septoria tritici blotch and plant height in the wheat (Triticum aestivum L.) genome with DNA markers. Theor. Appl. Genet. 107, 515–527 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Chartrain, L., Brading, P. A., Widdowson, J. P. & Brown, J. K. Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathology 94, 497–504 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Balfourier, F. et al. A worldwide bread wheat core collection arrayed in a 384-well plate. Theor. Appl. Genet. 114, 1265–1275 (2007).

    Article  PubMed  Google Scholar 

  62. Gouesnard, B. et al. MSTRAT: an algorithm for building germ plasm core collections by maximizing allelic or phenotypic richness. J. Hered. 92, 93–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Nallamsetty, S., Austin, B. P., Penrose, K. J. & Waugh, D. S. Gateway vectors for the production of combinatorially-tagged His6-MBP fusion proteins in the cytoplasm and periplasm of Escherichia coli. Protein Sci. 14, 2964–2971 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Taylor, I., Seitz, K., Bennewitz, S. & Walker, J. C. A simple in vitro method to measure autophosphorylation of protein kinases. Plant Methods 9, 22 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kettles, G. J., Bayon, C., Canning, G., Rudd, J. J. & Kanyuka, K. Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana. New Phytol. 213, 338–350 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Marín-de la Rosa, N. et al. Genome wide binding site analysis reveals transcriptional coactivation of cytokinin-responsive genes by DELLA proteins. PLoS Genet. 11, e1005337 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Biological Resource Centre on Small Grain Cereals (INRA, Clermont-Ferrand, France), the National Plant Germplasm System (USDA, US), the Germplasm Resources Unit (John Innes Centre, Norwich, UK), and the breeding companies KWS, Limagrain, RAGT Seeds, Saaten Union, Senova, Syngenta, Agri Obtentions, and Saatzucht Josef Breun GmbH & Co. KG for providing seed samples of different wheat species and varieties; E. Paux and H. Rimbert (INRA GDEC) for providing Stb6 expression data at different developmental stages; A. Doherty, A. Huttly, and C. Sparks (Rothamsted Research, Harpenden, UK) for vectors and wheat transformation; P. Isaac (iDNA Genetics Ltd., Norwich, UK) for transgene copy number analyses; INRA GDEC facilities for genotyping (GENTYANE) and wheat transformation; and S. Thomas (Rothamsted Research, Harpenden, UK) for providing vectors and protocols, and advice on the Y2H assay. We are also grateful to the International Wheat Genome Sequencing Consortium and K. Eversole for prepublication access to the IWGSC v1.0 wheat genome assembly. Research was funded by the Institute Strategic Program Grants ’20:20 Wheat’ (BB/J/00426×/1) and Designing Future Wheat (BB/P016855/1) from the Biotechnology and Biological Sciences Research Council of the UK (BBSRC) and the French National Institute for Agricultural Research (INRA).

Author information

Authors and Affiliations

Authors

Contributions

K.K., K.E.H.-K., C.S., and T.L. conceived the project. W.M. and H.B. screened the wheat BAC library. A.L.P., R.C.K., and C.U. provided the TILLING data. R.C.K. performed bioinformatics analyses and analyzed RNA-seq data. W.-S.L. performed VIGS. J.J.R. performed biochemical assays. S.J.P. performed statistical analysis. F.C., C.S., and K.K. carried out all other experiments and analyzed the data. K.K. and C.S. wrote the manuscript, and all authors revised the manuscript.

Corresponding authors

Correspondence to Cyrille Saintenac or Kostya Kanyuka.

Ethics declarations

Competing interests

Rothamsted Research filed an International Patent Application (no. PCT/GB2016/053929 entitled ‘Plant Fungal Resistance Gene’) related to the content of this manuscript, on behalf of K.K., C.S., F.C., T.L., W.-S.L., and K.E.H.-K.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Note and Supplementary Tables 1–10

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saintenac, C., Lee, WS., Cambon, F. et al. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet 50, 368–374 (2018). https://doi.org/10.1038/s41588-018-0051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0051-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing