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Computational scoring and experimental 
evaluation of enzymes generated by  
neural networks

Sean R. Johnson    1,7, Xiaozhi Fu    2,7, Sandra Viknander2, Clara Goldin    2, 
Sarah Monaco    3, Aleksej Zelezniak    2,4,5  & Kevin K. Yang    6 

In recent years, generative protein sequence models have been developed to 
sample novel sequences. However, predicting whether generated proteins 
will fold and function remains challenging. We evaluate a set of 20 diverse 
computational metrics to assess the quality of enzyme sequences produced 
by three contrasting generative models: ancestral sequence reconstruction, 
a generative adversarial network and a protein language model. Focusing 
on two enzyme families, we expressed and purified over 500 natural and 
generated sequences with 70–90% identity to the most similar natural 
sequences to benchmark computational metrics for predicting in vitro 
enzyme activity. Over three rounds of experiments, we developed a 
computational filter that improved the rate of experimental success by 
50–150%. The proposed metrics and models will drive protein engineering 
research by serving as a benchmark for generative protein sequence models 
and helping to select active variants for experimental testing.

Nature provides a wealth of proteins that can be used as biocatalysts 
to produce valuable products ranging from commodity chemicals to 
lifesaving pharmaceuticals1. Advances in DNA synthesis and recombi-
nant DNA techniques have made it possible to clone genes that encode 
proteins into industrial organisms such as Escherichia coli2. Therefore, 
the use of recombinant proteins for industrial and therapeutic purposes 
has been highly successful3,4; however, the requirements associated 
with human applications are often not satisfied by natural proteins 
and engineering is needed to adapt them to human needs5.

A conventional method for moving beyond natural sequence and 
function space is to use directed evolution by starting from a natural 
protein and iteratively screening mutations until the protein acquires 
the desired properties5,6. Many mutations result in nonfunctional pro-
teins7,8 and up to 70% of random single-amino acid substitutions result 
in decreased activity9–12. Computational models enable the generation 
of new and diverse sequences from a protein family, thereby uncovering 

previously untapped functional sequence diversity and reducing the 
number of nonfunctional sequences that need to be tested13. Typically, 
these generative models are trained either on large collections of pro-
tein sequences, for example the entire UniProt database of millions of 
sequences14–16, or on a set of proteins from a specific family17,18, with the 
goal of learning the training distribution to sample novel sequences 
with desired properties. The underlying assumption of these models 
is that natural proteins are under evolutionary pressure to be func-
tional; therefore, novel sequences drawn from the same distribution 
will also be functional19. Many generative protein models have been 
proposed, including models based on deep neural networks, such as 
generative adversarial networks (GANs)17, variational autoencoders 
(VAEs)18,20, language models15,16,21–24 and other neural networks25,26, as 
well as statistical methods such as ancestral sequence reconstruction 
(ASR)27,28 and direct coupling analysis (DCA)29–31. However, comparing 
the ability of these methods to generate functional proteins remains 
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(CuSOD). Both MDH and CuSOD have substantial sequence diver-
sity, have numerous members in the Protein Data Bank (PDB) and are 
physiologically significant53,54. They are also relatively small (300–350 
residues for MDH and 150–250 residues for CuSOD) but are complex 
proteins active as multimers, and their activity can be assayed by spec-
trophotometric readout.

Round 1: Naive generation results in mostly inactive sequences
For round 1, we constructed training sets to train the generative mod-
els of CuSOD and MDH. We collected 6,003 CuSOD and 4,765 MDH 
sequences from UniProt (Supplementary Table 2) with the Pfam 
domains for each protein family. CuSOD sequences had only a single 
Sod_Cu domain, whereas MDH sequences had an Ldh_1_N domain fol-
lowed by an Ldh_1_C domain and no other Pfam domains. Nontypical 
domain architectures occurred in 6.3% and 1.7% of sequences in CuSOD 
and MDH, respectively. Sequences were truncated around the anno-
tated domains to remove possible signal peptides, transmembrane 
domains and extraneous unannotated domains. Signal peptides are 
N-terminal leader sequences that facilitate secretion and are present in 
many proteins55. Signal peptides are frequently cleaved after secretion 
and are not present in the mature protein. In heterologous expres-
sion systems, signal peptides may not efficiently direct secretion or 
be cleaved, thereby interfering with protein expression56. Proteins 
with transmembrane domains are difficult to express and purify in 
heterologous systems57. We generated >30,000 sequences from the 
ASR, ProteinGAN and ESM-MSA models (Supplementary Table 3) 
and selected 144 sequences for experimental validation: 18 for each 
model and a set of natural test sequences. All generated and natural 
test sequences were selected to have 70−80% identity to the closest 
natural training sequence (Supplementary Table 4).

Of all experimentally tested sequences, including natural 
sequences, 19% were active (Extended Data Table 1 and Supplemen-
tary Figs. 1–6). None of the CuSOD ESM-MSA or test sequences and 
only two of the CuSOD GAN sequences were active. None of the MDH 
GAN or ESM-MSA sequences were active, but six of the MDH test 
sequences were active. In contrast, ASR generated 9 of 18 and 10 of 18 
active enzymes for CuSOD and MDH, respectively.

We investigated the potential reasons for poor performance. We 
observed that natural test sequences with predicted signal peptides or 
transmembrane domains in the pretruncation sequences (Methods) 
were significantly overrepresented in the nonactive set (one-tailed 
Fisher test, P = 0.046). For CuSOD, a literature search58,59 combined with 
examination of the assayed sequences and the available CuSOD crystal 
structure (PDB: 4B3E)60 showed that CuSOD is active as a homodimer 
(or sometimes a tetramer) and that the truncations we made to the 
natural sequences often removed residues at the dimer interface, likely 
interfering with expression and activity. Thus, we made equivalent trun-
cations to our positive-control enzymes, human SOD1 (ref. 61) (hSOD, 
GenBank: NP_000445.1), Potentilla atrosanguinea CuSOD62 (paSOD, 
GenBank: AFN42318.1) and E. coli SOD63 (E.SOD, GenBank: NP_416173.1), 
and confirmed loss of activity for hSOD and paSOD (Supplementary 
Figs. 7 and 8). Overtruncation also affected ASR sequences, yet many 
were still active, possibly due to the widely reported stabilizing effect 
of ASR27,64,65.

To further test the hypothesis that overtruncation led to a lack 
of activity in the round 1 natural CuSOD test sequences, we assayed 
an additional 14 natural CuSOD proteins and 2 proteins from the evo-
lutionarily distinct FeSOD family (pretest group). In nature, eukary-
otic CuSOD proteins are typically cytosolic and lack a signal peptide, 
whereas bacterial CuSOD proteins are typically secreted via a signal 
peptide58. CuSOD sequences were selected on the basis of kingdom 
(eukaryotic, viral or bacterial), and the presence of a signal peptide was 
predicted using Phobius66. Sequences with predicted signal peptides 
were truncated at the predicted cleavage site. Both of the chosen bac-
terial FeSOD proteins lacked a predicted signal peptide, as does E. coli 

a challenge because of limited experimental work evaluating model 
performance; likewise, there is no experimental validation supporting 
common computational metrics.

Typically, protein generative models are evaluated by compar-
ing the distribution of generated sequences to natural controls using 
alignment-derived scores, for example, identity to the closest natural 
sequence15,17. The few reported results from biological assays15,20,23,29,32,33 
used different experimental systems, making comparisons difficult 
because many factors can contribute to poor expression and activity 
(Supplementary Table 1), ranging from mutations disrupting pro-
tein folding and stability34 to codon usage hindering expression35,36. 
Thus, computational metrics for predicting the activity of generated 
sequences should account for as many factors as possible. For exam-
ple, alignment-based metrics such as sequence identity or BLOSUM62 
scores37 rely on homology to natural sequences and are good at detect-
ing general sequence properties. However, they do not account for epi-
static interactions and give equal weight to all positions38. In contrast, 
alignment-free methods do not require homology searches, are fast to 
compute and can potentially identify all sequence defects based on the 
likelihoods computed by protein language models39. Protein language 
models are sensitive to pathogenic missense mutations40, predict 
evolutionary velocity41 and capture viral immune-escape mutations42. 
Structure-supported metrics, including Rosetta-based scores43, Alpha-
Fold2 (ref. 44) residue confidence scores and likelihoods computed 
by neural network inverse folding models45–47, use atomic coordinates 
to capture protein function; however, they can be expensive to use, 
especially when evaluating thousands of sequences. Although it is 
important to rationally choose metrics for computationally evaluat-
ing sequences, it is crucial to experimentally validate the ability of the 
metrics to predict function.

In this study, we focused on assessing computational metrics to 
predict the functionality of computer-generated protein sequences. 
We experimentally evaluated in silico metrics for the ability to predict 
in vitro enzyme activity using sequences produced by three generative 
models trained on two enzyme families. Over three rounds of experi-
ments (Fig. 1a) we developed and experimentally validated compos-
ite metrics for protein sequence selection (COMPSS), a framework 
that allows the selection of up to 100% of phylogenetically diverse 
functional sequences. COMPSS is generalizable to any protein fam-
ily, and we provide examples as Google Colab notebooks. Our study 
demonstrates a composite computational metric for evaluating gen-
erated sequences that predicts experimental success. In addition to 
selecting active sequences for experimental validation, the proposed 
metrics are a first step toward establishing a standard for evaluating 
the performance of current and future protein generative models and 
will hopefully be a catalyst for driving progress in protein engineering.

Results
In this work, a protein is considered experimentally successful if it can 
be expressed and folded in E. coli and has activity above background in 
an in vitro assay (Methods). We tested three protein generative mod-
els: (1) the transformer-based multiple-sequence alignment (MSA) 
language model ESM-MSA48; (2) a convolutional neural network with 
attention trained as a GAN (ProteinGAN)17; and (3) a phylogeny-based 
statistical model for ASR28. Although ESM-MSA is not trained as a gen-
erative model, it can be used to generate new sequences via iterative 
masking and sampling49,50. ASR is also not a truly generative model as 
it is constrained within a phylogeny to traverse backward in evolution 
without the ability to navigate sequence space in a new direction. How-
ever, it has successfully resurrected ancient sequences51 and increased 
enzyme thermotolerance52. To combine the strengths of the different 
methodologies, we considered alignment-based, alignment-free and 
structure-based metrics (Fig. 1b).

We experimentally evaluated the metrics on two enzyme fami-
lies, malate dehydrogenase (MDH) and copper superoxide dismutase 
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FeSOD63 (SodB, GenBank: NP_416173.1, positive control). Activity was 
noted in 8 of the 14 CuSOD sequences, including 3 of the 4 eukaryotic 
enzymes and a single viral enzyme, all of which lacked a predicted signal 
peptide and were expressed in their full-length form (Supplementary 
Figs. 9−11). Three of the seven signal peptide-clipped bacterial CuSOD 
enzymes also had activity. For MDH, overtruncation was less prob-
lematic and 6 of 17 natural test sequences were active (Extended Data 
Table 1 and Supplementary Figs. 1a, 2a and 3a).

Round 2: Calibration data for COMPSS
Consolidating the lessons learned in round 1, we retrained the models 
and tested additional sequences to calibrate the computational metrics. 
Specifically, for the training set and natural test sequences, we used 
only full-length natural sequences, removing sequences with predicted 
transmembrane domains and signal peptides. We also increased the 
identity band, choosing generated sequences with 80−90% identity to 
the closest training sequence. For CuSOD, we selected only eukaryotic 
or viral proteins (Supplementary Table 2). For sequence generation, 
we used the same method as in round 1 for generating ASR and GAN 
sequences but modified the ESM-MSA sampling procedure to improve 
the quality of generated sequences (Supplementary Table 3). ESM-MSA 
sampling for round 1 used MSAs composed of randomly selected train-
ing sequences masked and sampled across the entire MSA. For round 
2, only one training sequence from the MSA was masked and sampled 
at a time based on an MSA composed of the training sequences most 
similar to the resampled sequence. Sequences generated with the 
revised ESM-MSA sampling method had higher metric scores, including 
ESM-1v and identity to the closest training sequence (Supplementary 
Fig. 12d). We selected 18 sequences each from ASR, GAN and ESM-MSA. 
Only 13 natural test sequences were selected, because we had already 

screened 5 similar natural sequences in the remediation for round 1. 
Natural test sequences were selected using the same criteria as used 
for model-generated sequences. The number of expressed enzymes 
with activity above the background was substantially higher than that in 
round 1, with 66% of natural controls showing activity when expressed 
in E. coli, and at least 50% of generated sequences were active for every 
model−enzyme family combination except for GAN−MDH, where only 
2 of 18 sequences were active (Extended Data Table 1 and Supplemen-
tary Figs. 13–16).

To calibrate the metrics against enzymatic activity, we com-
puted alignment-based (identity, BLOSUM62 (ref. 37), PFASUM15  
(ref. 67), phmmer top 30 average score, ESM-MSA) and sequence-only 
alignment-free (CARP-640M68, ESM-v1 (ref. 39), net charge23, abs(net 
charge), charged fraction) metrics. We also predicted AlphaFold2 
structures44,69 and used the predicted structures to calculate 
structure-based Rosetta energies43, solvent-accessible surface area 
(SASA)23,70, ProteinMPNN45, ESM-IF46 and MIF-ST47. The experimentally 
tested sequences were selected to span the entire range of scores for 
each metric (Supplementary Table 4). To identify metrics capable of 
detecting failure modes undetectable by an expert human, we manually 
excluded candidates with large insertions, deletions or long repeats 
and added an N-terminal methionine to seven generated sequences. 
Apart from the alignment-based ESM-MSA metric, none of the metrics 
strongly correlated with sequence identity, suggesting that our chosen 
metrics are orthogonal to sequence identity (Supplementary Fig. 17). 
In contrast, structure-based metrics were substantially correlated, 
with the highest correlations between inverse folding neural network 
scores (Fig. 2b and Supplementary Fig. 18).

Area under the curve receiver operating characteristic values 
(AUC-ROCs) between activity and each metric (Fig. 2a, Table 1 and 
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Supplementary Figs. 18−20) indicate that the metrics are predictive 
of activity, but none stands out as superior to the others. Inverse fold-
ing metrics, on average, best predicted enzymatic activity, showing 
an AUC-ROC of 0.72 when combining all models and families. Alpha-
Fold2 residue confidence pLDDT scores were significantly predictive 
for CuSOD (Fig. 2c; Wilcoxon rank sum P = 5 × 10−4), but not for MDH 
(Table 1). Sequence identity did not predict activity (Table 1, Fig. 2c and 
Supplementary Fig. 18).

Round 3: Validation: COMPSS enriches active protein 
generation
Next, we devised an in silico filter to virtually screen large numbers of 
generated sequences to identify probable active sequences with <80% 
identity to the closest natural sequence. Based on round 2 (Fig. 2, and 
Table 1), no single metric was sufficiently general against multiple failure 
modes (Supplementary Table 1); therefore, we tested a filter composed 
of a combination of the ESM-1v and ProteinMPNN metrics (Fig. 3a and 
Supplementary Fig. 21). This combination was attractive because ESM-1v 
is sequence based, ProteinMPNN considers structural information and 
neither metric is strongly correlated with sequence identity (Fig. 2a). 
Although most inverse folding or energy function-based metrics per-
formed similarly (Table 1), ProteinMPNN was the most computationally 
efficient. Rosetta-relax performed best on MDH sequences but is more 
computationally expensive than other structure-based metrics. The fast- 
to-compute ESM-1v protein language sequence model showed the best 

performance for alignment-free metrics, with an average AUC-ROC of 
0.68. Furthermore, the two metrics were only moderately correlated, 
with Spearman’s ρ = 0.60 (Fig. 2a), suggesting that they capture distinct 
features.

To select a threshold for ESM-1v scores, we analyzed the results 
for the natural test sequences from round 2. We found that the high-
est enrichment of active sequences occurred at approximately the 
20th percentile of the ESM-1v scores (the top 38% and 17% for CuSOD 
and MDH, respectively) (Supplementary Fig. 22). For prospective 
validation of our sequence prioritization strategy, in round 3, we used 
the 10th percentile of the natural sequences, making the threshold 
more stringent because, in practice, the score should be derived from 
untested natural sequences. To validate our strategy, we focused on 
the GAN and ESM-MSA models because ASR sequences performed 
consistently well in rounds 1 and 2 and in the literature. The filter begins 
with automated quality checks for sequences starting with methio-
nine and lacking long repeats and transmembrane domains, intended 
to approximate human intuition. Next, we randomly selected 200 
ESM-1v threshold-passing sequences with 50−80% identity to natural 
sequences for each model and enzyme family, predicted their structure 
using AlphaFold2 and randomly selected 18 of the top 40 sequences 
based on ProteinMPNN scores for each model and enzyme family 
combination. For each sequence selected for experimental validation, 
a negative control was randomly chosen from the sequences failing the 
ESM-1v filter with an identity to the closest training sequence within 
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1% of that for the passing sequence. The stringency of the ESM-1v filter 
led to phylogenetic bias, particularly for MDH; nevertheless, the set of 
screened enzymes covered approximately the same space in round 3 
as in round 2 (Fig. 3f,g and Supplementary Figs. 23 and 24).

A total of 144 selected and control sequences were expressed in 
E. coli, purified and assayed for activity (Supplementary Figs. 25–30). 
The selected enzymes had an identity to the closest natural sequence of 
>69%. Most of the selected sequences showed in vitro activity, includ-
ing 94% (17 of 18) and 100% of ESM-MSA CuSOD and MDH enzymes, 
respectively (Fig. 3b–e and Extended Data Table 1). Furthermore, when 
combining sequences from both models and enzyme families, 74% 
were active, which is a 77% higher success rate (two-tailed Fisher test, 
P = 0.00018) than for the sequence-filter-failing control sequences 
(Fig. 3e and Supplementary Fig. 31). Furthermore, 83% (44 of 53) of active 
generated sequences selected by COMPSS had activity levels within an 
order of magnitude of those of the wild-type controls (Fig. 3d), suggest-
ing that COMPSS enriches sequences of sufficient activity and diversity 
to be possible starting points for engineering with directed evolution.

We also used ProGen15, a 1.2-billion-parameter protein language 
model, to generate lysozyme sequences from the glucosamini-
dase and transglycosylase families. We selected 18 passing and 18 
identity-matched controls from each family, as well as 12 previously 
reported active lysozymes, four natural and eight generated by ProGen. 
In our study, 14 of 84 sequences expressed and could be purified from 
E. coli (Supplementary Fig. 32), but only the previously reported L056 
and L070, generated by ProGen from the phage lysozyme (PF00959) 
family, showed activity (Supplementary Table 6). The ProGen study 
used multiple language models, including TAPE-BERT discriminators 
fine-tuned on lysozymes, to select sequences, suggesting that gener-
ating and selecting active enzymes from ProGen requires fine-tuning 
both the generative and discriminative models for each family.

To further validate COMPSS, we tested it against previously pub-
lished datasets of experimentally characterized sequences from six 

additional families generated by models with different architectures 
from those trained in this work (Supplementary Table 5), including 
enzymes from five evolutionarily distinct lysozyme families gener-
ated by ProGen15 and chorismate mutases generated by bmDCA29. 
When applying COMPSS to these sequences, we omitted the identity 
and ‘starts with M’ filters as they would eliminate most sequences in 
these datasets. For five of the six families, there was a higher fraction 
of functional enzymes among those passing the COMPSS sequence 
filter than among those failing the filter, and ProteinMPNN AUC-ROCs 
ranged from 0.6 to 1.0 (Fig. 4).

The critical importance of training data curation is evident from the 
improved success rates between round 1, round 2 and control round 3  
sequences. Furthermore, none of the 42 natural and 61 synthetic 
chorismate mutases with predicted signal peptides were active. Simple 
sequence quality checks also contributed to the success rate. Applying 
the round 3 sequence quality checks to round 2 sequences showed 
that 13 of 24 (54%) check-failing sequences were active, compared 
with 78 of 115 (68%) check-passing sequences. In round 3, 10 of 21 (48%) 
check-failing negative-control sequences were active, compared with 
20 of 51 (39%) check-passing negative-control sequences, and 53 of 72 
(74%) of sequences selected by the combined COMPSS filter, including 
quality checks, ESM-1v scores and ProteinMPNN scores.

To deconvolve the relative contributions of ESM-1v and Pro-
teinMPNN to the success of the round 3 selections, we considered 
sequences generated and assayed in rounds 2 and 3 (which used the 
same training sets and generative models), as well as the chorismate 
mutase and lysozyme literature datasets. We divided the CuSOD, MDH 
and chorismate mutase datasets into quadrants based on median 
ProteinMPNN and ESM-1v scores and calculated the metric AUC-ROCs, 
Spearman correlations and percentage of active enzymes for the whole 
datasets as well as for each quadrant (Supplementary Fig. 33). The 
ProteinMPNN to ESM-1v Spearman correlation was higher in the whole 
dataset than in any individual quadrant. Furthermore, the lower-left 

Table 1 | AUC-ROCs of each metric versus experimentally measured activity in round 2

Input Metric type Metric CuSOD MDH Average

Test ASR GAN ESM-MSA All Test ASR GAN ESM-MSA All All

Single 
sequence

Residue counting

Net charge 0.73 0.24 0.28 0.28 0.30 0.57 0.50 0.21 0.51 0.48 0.39

Abs(net charge) 0.27 0.76 0.72 0.75 0.70 0.18 0.17 0.75 0.49 0.39 0.55

Charged fraction 0.44 1.00 0.42 0.69 0.57 0.36 0.47 0.33 0.49 0.43 0.50

Language model

CARP-640M 0.73 0.94 0.74 0.70 0.76 0.57 0.67 0.66 0.43 0.60 0.68

ESM-1v 0.85 0.88 0.69 0.75 0.76 0.61 0.58 0.66 0.48 0.60 0.68

ESM-1v mask6 0.83 0.94 0.71 0.76 0.78 0.55 0.53 0.50 0.48 0.53 0.66

ESM-MSA 0.63 0.53 0.65 0.37 0.53 0.80 0.60 0.79 0.45 0.70 0.61

Sequence 
alignment

Substitution matrix

Avg(phmmer top 30) 0.60 0.41 0.60 0.79 0.68 0.61 0.40 0.71 0.60 0.50 0.59

BLOSUM62 0.38 0.62 0.67 0.71 0.61 0.46 0.60 0.57 0.75 0.63 0.62

PFAMSUM15 0.35 0.18 0.63 0.68 0.61 0.46 0.60 0.54 0.75 0.62 0.62

Identity Identity 0.59 0.35 0.74 0.65 0.62 0.80 0.53 0.79 0.26 0.60 0.61

Structure

Energy function Rosetta-relax 0.65 0.94 0.67 0.89 0.78 0.55 0.73 0.59 0.88 0.75 0.76

Inverse folding

ESM-IF 0.75 0.88 0.64 0.85 0.76 0.73 0.53 0.61 0.51 0.65 0.70

ProteinMPNN 0.78 0.88 0.65 0.90 0.80 0.64 0.67 0.75 0.55 0.70 0.75

MIF-ST 0.75 0.88 0.68 0.79 0.77 0.70 0.60 0.68 0.55 0.68 0.72

Surface area

SASA 0.28 0.18 0.43 0.24 0.30 0.59 0.18 0.32 0.58 0.47 0.39

Polar SASA 0.28 0.53 0.56 0.31 0.40 0.38 0.24 0.46 0.62 0.50 0.45

Apolar SASA 0.30 0.12 0.35 0.23 0.27 0.71 0.27 0.25 0.56 0.47 0.37

Percent polar SASA 0.40 0.88 0.75 0.49 0.60 0.29 0.42 0.52 0.57 0.52 0.56

Prediction confidence AlphaFold2 pLDDT 0.77 0.88 0.61 0.88 0.77 0.46 0.58 0.71 0.49 0.55 0.66

The ESM-1v and ProteinMPNN metrics shown in bold were selected to be part of the filter for round 3.
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quadrant (lowest scores on both metrics) had the lowest success rate. 
For chorismate mutase and CuSOD, the upper-right quadrant (high-
est scores on both metrics) had the highest success rates, whereas for 

MDH, the upper-left and upper-right quadrants (high ProteinMPNN 
scores) had similar success rates. Thus, it is clear that sequences with 
low ESM-1v scores are likely to also have low ProteinMPNN scores and 
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be inactive, confirming that only computing ProteinMPNN scores for 
sequences with high ESM-1v scores and selecting candidates from the 
top right quadrant efficiently improves success rates while limiting the 
number of expensive structure predictions.

The tested lysozyme sequences all passed a stringent filter based 
on TAPE-BERT and ProGen: there were no negative controls15. Thus, we 
treated them as though they had already passed through a language 
model filter and were comparable to the two right-hand quadrants 
(ESM-1v score above the median) of the other datasets and compared  
the statistics of sequences with ProteinMPNN scores above and below 
the median (Supplementary Fig. 33). We observed trends similar to those  
in the half with high ESM-1v scores of the other datasets. Combining 
the five lysozyme families, sequences with a ProteinMPNN score above 
the median had a 38% higher success rate than those below the median 
(39 of 46 versus 27 of 44). Therefore, Madani et al.15 may have improved 
their success rate by including a filter based on an inverse folding 
model. ProteinMPNN provides orthogonal information, increasing the 
success rate over language model-based selection alone.

We also used the published datasets to assess the effectiveness of 
an ESM-1v- and ProteinMPNN-based filter on sequences having less than 
70% identity to the closest training sequence. Dividing the sequences 
with less than 70% identity into quadrants, we observed the same trends 
as in the full dataset (Supplementary Fig. 34), with AUC-ROCs of 0.91 
and 0.92 for ProteinMPNN and ESM-1v for the chorismate mutase data, 
respectively, and 0.67, 0.67 and 0.67 for ProteinMPNN on the three 
lysozyme datasets with more than one sequence in the bin with less 
than 70% identity.

Discussion
Discovering new enzymes is difficult because it requires an under-
standing of the molecular mechanisms, expression and folding while 
operating within biological and physical constraints. Generative pro-
tein sequence models mimic these constraints by learning to sample 

from natural sequence distributions. Deep neural networks have led 
to advances in generative protein design71, enabling the design of 
de novo proteins with specified folds45,72. Because of the emergent 
complexity underlying catalysis (Supplementary Table 1), predicting 
which enzyme sequences will express and fold in soluble and active 
forms remains challenging, limiting the discovery of novel enzymes. 
To facilitate enzyme discovery from non-natural sequence spaces, we 
experimentally evaluated a diverse set of in silico metrics to determine 
their efficacy in predicting sequence activity. We selected a subset of 
the metrics to form COMPSS. We validated the filter’s effectiveness 
by prospectively testing synthetic proteins, which resulted in up to a 
twofold increase in the number of active protein sequences (Extended 
Data Table 1). Similar results were obtained by independently validating 
COMPSS on previously published datasets15,29 of six enzyme families 
generated by models not trained in this study (Fig. 4).

Our experimentally validated end-to-end framework for gen-
erating and selecting new active enzyme variants (Tables 1 and 2) 
consists of three steps. The first step is curating sequences to obtain 
a high-quality training dataset. Machine learning is a data-centric 
practice as much as it is algorithmic; therefore, dataset curation was 
crucial. Neither ESM-MSA nor the local and much smaller ProteinGAN 
model performed well in the naive round 1 setting (Extended Data 
Table 1). In round 2, we observed that removing sequences contain-
ing transmembrane domains and signal peptides enriched the data-
set for soluble proteins and allowed both models to generate active 
enzymes at rates above 60%. In round 2, we also selected sequences 
with a broad range of scores on the metrics and observed which metrics 
predicted activity (Fig. 2). For the round 3 validation measurements, 
we combined sequence-based quality checks, the sequence-based 
ESM-1v metric and the structure-based ProteinMPNN metric to select 
generated sequences, resulting in enrichment of active sequences 
(Fig. 3a and Supplementary Fig. 21). While AlphaFold2 (ref. 44) accu-
rately predicts protein structures from MSAs73, the residue confidence 
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pLDDT score does not consistently predict enzyme activity within 
sets of homologous synthetic sequences (Table 1 and Supplementary 
Fig. 18). AlphaFold2 predicts high-confidence structures even for 
inactive sequences (Fig. 2c and Supplementary Fig. 17). Likewise, for 
sequences with 70–90% identity to natural sequences, neither identity 
nor sequence similarity captures functional differences (Table 1 and 
Fig. 2a,c). In contrast, likelihoods from protein language models and 
inverse folding models moderately predicted in vitro enzyme activity 
and were weakly correlated with each other (Table 1 and Fig. 2a). There-
fore, we used one language model (ESM-1v) and one inverse folding 
model (ProteinMPNN) in COMPSS.

Our study does not benchmark generative models against each 
other but instead evaluates metrics to identify those widely applicable 
across models and enzyme families. Nevertheless, we found that ASR 
outperforms neural network models in naive generation, indicat-
ing room for improvement in protein deep generative models. We 
observed a wide range of AUC-ROC scores for different combinations of 
the generative model, enzyme family and metric. Different models and 
enzyme families may have different failure modes captured by different 
metrics. Some metrics use underlying models similar to the generative 
models, which may lead to overfitting. Despite evaluating over 2,200 
enzyme variants from eight families, given the sheer size of the protein 
sequence space, a more extensive dataset could help tease apart the 
complex interplay between generative models, metrics and protein 
families and explain that interplay in biologically meaningful terms.

The core idea of COMPSS is to select sequences by prefiltering with 
fast, biologically motivated quality checks and protein language model 
scores, followed by a slower step of structure prediction and inverse 

folding model scoring. Many variations on this core idea are possible, 
and we do not recommend blindly applying COMPSS to new protein 
families without considering their biological complexities. In addition 
to adjusting the ESM-1v score cutoff using natural sequences, biologi-
cally motivated quality filters should be chosen on a per-family basis. 
For example, long repeats or transmembrane domains are required 
for function in some protein families. The ‘starts with M’ filter was 
a good marker of full-length sequences for our dataset because all 
training sequences started with methionine. In cases where the train-
ing sequences have N-terminal truncations, a minimum length filter 
would similarly eliminate fragments.

We showed that, by carefully curating training data for sequence 
generation and prioritizing sequences for experimental testing using 
a multipart filter, as high a proportion as 100% of enzymes with in vitro 
activity can be achieved, with sequence identities between 70% and 
80% to the closest naturally occurring enzymes. We provide Google 
Colab notebooks for generating new sequences using ESM-MSA and 
calculating metrics for any user-supplied sequences or structures. Our 
dataset of more than 500 experimentally tested enzymes and metrics 
can serve as reference benchmarks for predicting the function of the 
generated sequences. The presented end-to-end workflow provides 
a powerful and flexible framework for generating diverse libraries 
of active enzymes, enabling deeper explorations of the functional 
sequence space.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 

Table 2 | Overview of the steps and considerations in a typical workflow for generating new active enzyme variants

Step Description Examples and considerations

Curate training 
data

Gather a list of natural sequences likely 
to have the target activity and express in 
the target system.

In addition to UniProt and/or NCBI nr, search expanded databases, such as Mgnify for prokaryotic 
enzymes or NCBI TSA for eukaryotic enzymes.

Pay attention to the domain content. Unusual domain content indicates neofunctionalization. In 
some cases, the domain with the activity of interest will retain its function in the absence of the other 
domains; therefore, it may be safe to remove extraneous domains.

Pay attention to the presence of localization tags and transmembrane domains. In many cases, these 
interfere with expression. In some cases, they can be removed without impacting enzyme function.

Filter out unusually short or long sequences, or sequences with other indications that they may be 
pseudogenes, fragments or derived from poor gene calling.

Use hmm-profile or structure searches in addition to sequence searches to find a broader diversity of 
training sequences.

Use a clustering algorithm, such as CD-HIT, to reduce the overrepresentation of enzymes from highly 
sequenced phyla.

Generate new 
sequences

Use generative models to generate 
additional members of the enzyme 
family. Most of these generative models 
rely on training or fine-tuning of natural 
sequences curated in the first step of the 
workflow.

ASR

Generative adversarial networks (ProteinGAN)

Language models (such as ProtGPT2, ProGen or ESM-MSA

VAE

DCA-based methods

Inverse folding models (ProteinMPNN, ESM-IF)

Select 
sequences

Select a subset of natural and generated 
sequences for experimental evaluation. 
In campaigns where all sequences are 
natural or ancestral reconstructions, 
random selection of candidates may be 
effective, particularly if care is taken in 
training data curation. For generative 
models that produce a lower proportion 
of active sequences, additional filtering 
may be required.

Randomly select candidate sequences.

Select sequences with high similarity to the best candidates from previous screening rounds or the 
literature (phylogeny-based selection).

Select sequences with mutations known to be associated with the target phenotype.

The same curation criteria for natural sequences are also applicable to generated sequences.

Additional criteria may be used to address failure modes common to the generative models used. For 
example, models may tend to produce overly short or repetitive sequences.

Sequences can be scored and ranked based on various metrics. Reasonable scores for these metrics 
can be estimated from natural sequences. Alternatively, candidates can be selected from the 
highest-scoring sequences.

In this study, we settled on a filter composed of six criteria.
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Methods
See the Supplementary Methods for additional details throughout.

Data curation
Round 1 CuSOD. UniProt74 sequences containing exactly one Sod_Cu 
Pfam75 domain were downloaded. Hmmsearch (Hmmer, http://hmmer.
org/; ref. 76) identified the Sod_Cu domain envelopes. Sequences were 
truncated to remove extraneous sequences beyond the bounds of the 
Sod_Cu match. Additional quality filtering was performed. Sequence 
duplicates were removed using CD-HIT77 at an identity threshold of 
80%, and 80% and 20% were randomly sorted into a ‘training’ and a 
‘test’ set, respectively. A training MSA was generated by an iterative 
process using MUSCLE (v3.8)78.

Round 1 MDH. All UniProt sequences containing an Ldh_1_N Pfam 
domain followed by an Ldh_1_C domain were downloaded. LDH and 
MDH enzymes, based on enzyme commission number79, 1.1.1.27 for 
LDH and 1.1.1.37 for MDH, were downloaded from SwissProt. MUS-
CLE and hmmbuild were used to build profile hidden Markov models 
of both sets. Hmmsearch was used to score each UniProt Ldh_1_N/
Ldh_1_C sequence against the MDH and LDH profiles and sequences 
that had a stronger match to the MDH profile were retained. Additional 
processing was performed exactly as with the round 1 CuSOD data  
curation.

Quantification of domain architectures. See the Supplementary 
Methods.

Round 2 CuSOD pretest. UniProt CuSOD proteins were obtained as 
described above (round 1 CuSOD). The kingdom of origin for each 
sequence was obtained from the UniProt annotation. Transmem-
brane domains and signal peptides were predicted using Phobius66. 
Sequences with transmembrane domains were discarded. Signal pep-
tides were removed from sequences predicted to contain them. A set of 
14 representative CuSOD and 2 FeSOD proteins were manually selected 
for experimental screening, including eukaryotic, viral and bacterial 
proteins predicted to not contain signal peptides, and bacterial pro-
teins with predicted signal peptides removed.

Rounds 2 and 3 CuSOD. All eukaryotic transcriptomes available from 
the NCBI Transcriptome Shotgun Assembly (TSA) sequence database80 
were downloaded. Transdecoder (https://github.com/TransDecoder/
TransDecoder) was used to extract the protein sequences from tran-
scriptomes. Hmmsearch76 was used to identify proteins with exactly 
one Sod_Cu domain. This set of proteins was combined with the list of 
eukaryotic and viral CuSOD proteins from UniProt. Additional quality 
filtering was performed. Sequences that were more than 85% identical 
(based on usearch81 search_global) to a sequence screened in a previous 
round were discarded. The remaining sequences were deduplicated 
at 90% using CD-HIT and then split 90% and 10% into training and test 
groups, respectively. A training MSA was generated.

Rounds 2 and 3 MDH. Hmmsearch76 was used to search Mgnify82 for 
sequences containing exactly one Ldh_1_C and one Ldh_1_N domain. 
The list of Mgnify proteins was added to the list of UniProt (cura-
tion described above). Additional quality filtering was performed. 
Sequences were deduplicated at 90% using CD-HIT. Sequences 
with identity greater than 85%, based on usearch search_global, to a 
sequence experimentally screened in round 1 were discarded. The 
remaining sequences were split into training (90%) and test (10%) sets. 
A training MSA was generated.

Phylogenetic trees. Trees were constructed using FastTree from 
MSAs generated by MAFFT83. Trees were rooted and the midpoint was 
rendered using ETE3 (ref. 84).

Chorismate mutase and lysozymes. See the Supplementary Methods.

Generative models
ESM-MSA-1b sampling. Sequences were generated by iterative mask-
ing and sampling using the ESM-MSA-1b model48. ESM-MSA-1b is a 
neural network model trained to fill in the wild-type amino acids in 
masked positions of a protein MSA. The model can be used to generate 
new sequences by running MSA masking and prediction iteratively, 
each time replacing the wild-type amino acids at the masked positions 
with an amino acid drawn from the probability distribution returned 
by the model. The use of masked language models to generate new 
sequences was first proposed by Wang and Cho50, and the strategy has 
been applied to protein sequences in at least three prior works22,49,85.

See the Supplementary Methods for more detail on the param-
eters used.

ProteinGAN. Generative adversarial models were trained using the 
training sets for CuSOD and MDH. Then, for each family, sequences 
were generated by sampling vectors from the latent space using a trun-
cated normal distribution. For rounds 1 and 2, 10,048 sequences were 
generated for each family. For round 3, 560,016 and 160,064 sequences 
were generated for CuSOD and MDH, respectively.

Ancestral sequence reconstruction. Maximum-likelihood trees 
were generated from the training set reference MSAs using FastTree86. 
Ancestral sequence reconstructions were generated from the trees 
using the joint reconstruction function of the GRASP28 command line 
tool. Metrics were calculated, and candidates were selected from the 
entire set of reconstructed sequences.

ProGen. See the Supplementary Methods.

Computational metrics
AlphaFold2. AlphaFold2 (ref. 44) was used to predict the structures 
of test sequences and all generated sequences that passed the first 
filtering step.

Phobius. The jphobius66 (https://phobius.sbc.su.se/data.html) execut-
able was used to predict the presence of signal peptides or transmem-
brane domains.

ESM-1v and CARP-640M. Scores calculated from the ESM-1v39 and 
CARP-640M68 models were the average of the log probabilities of the 
amino acid in each position. Without masking, this calculation can be 
done with a single forward pass over each sequence. With partial mask-
ing, it can be done in a number of passes equal to one per masked_fraction.

ESM-MSA. Scores from the ESM-MSA-1b48 model were calculated in a 
manner similar to that for ESM-1v scores, using the average log prob-
ability across the whole sequence. The metric was calculated using 
phmmer76 to find the 31 closest training sequences to each query, align 
the 32 sequences with MAFFT and calculate the average log probabili-
ties from six passes with a masking interval of six.

ProteinMPNN, ESM-IF and MIF-ST. The proteinMPNN45 and ESM-IF46 
scores are the average log likelihood of the query residues using the 
AlphaFold2-predicted structure. The MIF-ST47 score was calculated 
using the extract_mif.py script from the protein sequence models 
repository (https://github.com/microsoft/protein-sequence-models).

Rosetta-relax. The Rosetta (v2020.08.61146)43 relax program was used 
to relax the AlphaFold2 structures.

Distance to the closest training sequence. The most similar train-
ing sequence was found using ggsearch36 from the FASTA package87, 
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the BLOSUM62 scoring matrix and a gap open penalty of 10 and gap 
extend penalty of 2. The Hamming distance was then calculated from 
the gapped alignment between the query and the top hit sequences. 
Identity was calculated as 1 − Hamming_distance.

BLOSUM62 and PFASUM15 mutant position mean. The closest train-
ing sequence was found using ggsearch36 as described above. From 
the alignment to the closest training sequence, the mean BLOSUM62 
score37 across all mismatched positions was calculated, ignoring  
positions where either the query or the reference had a gap. We also 
calculated the alignments and scores using an alternative matrix, the 
PFASUM15 matrix67.

Longest repeat. Scores were calculated for the longest single-amino 
acid repeat and the longest 2-mer, 3-mer and 4-mer repeat in each 
sequence. The scores were calculated as −1 ⨯ the number of repeat 
units. Therefore, the sequence AAAAAA would have a single-amino 
acid repeat score of −6, a 2-mer score of −3, a 3-mer score of −2 and a 
4-mer score of −1. The sequence LALALALA would have a 1-mer score 
of −1, a 2-mer score of −4, a 3-mer score of −1 and a 4-mer score of −2.

SASA. SASA, polar SASA and apolar SASA were calculated from 
the AlphaFold2-predicted structures using the freesasa package  
(https://freesasa.github.io/). The percentage of polar SASA was calcu-
lated using the formula 100 ⨯ polar SASA/SASA.

Net charge, Abs(net charge) and charged fraction. Charges were 
calculated by summing the numbers of glutamate and aspartate resi-
dues and lysine and arginine residues for negative and positive charges, 
respectively.

Avg(phmmer top 30). The phmmer top 30 average score was cal-
culated by running a phmmer search of the experimentally tested 
sequences against the training sequences and averaging the scores 
of the top 30 hits.

Selection of sequences for in vitro assays
Round 1. The selected sequences had 70% and 80% identity to the 
closest training sequence and diverse scores on the ESM-1v metric.

Round 2 pretest. CuSOD sequences were selected on the basis of the 
kingdom of origin (eukaryotic, viral or bacterial) and the presence of 
Phobius-predicted signal peptides. Sequences with predicted signal 
peptides were truncated at the predicted signal peptide cleavage site. 
Two bacterial FeSOD proteins, both lacking a predicted signal peptide, 
and the previously characterized63 E. coli FeSOD (as a positive control) 
were also assayed.

Round 2. The selected sequences had between 80% and 90% identity  
to the closest training set sequence and diverse scores on the ESM-1v 
and ESM-MSA metrics. Sequences were also filtered by manual inspec-
tion to remove those with large insertions or deletions compared to 
the closest reference sequences or long repeats, and a methionine was 
added to the start of a few of the sequences.

Round 3. Sequences were selected on the basis of a series of filters. The 
first filter removed sequences having (1) less than 50% or greater than 
80% identity to the closest training sequence; (2) an ESM-1v score below 
the top 10th percentile threshold compared to the test sequences; 
(3) no starting methionine; (4) a predicted transmembrane domain; 
and (5) a single-amino acid repeat longer than three amino acids or 
an amino acid pair repeat longer than four amino acids, as repeats 
were more common in ESM-MSA-generated sequences than in natu-
ral sequences (Supplementary Fig. 35). For each enzyme family, 200 
ESM-MSA-generated sequences and 200 GAN-generated sequences 

were randomly selected from the sequences that passed the first filter, 
and their structures were predicted with AlphaFold2. ProteinMPNN 
scores were calculated for each structure, and the 40 sequences 
with the highest scores from each model−enzyme combination were 
retained. Of the top 40 sequences, 18 were randomly selected for 
expression and functional characterization. For each passing sequence 
that was selected for functional characterization, a corresponding 
control sequence was selected from the list of sequences that failed 
the sequence filter. Control sequences were identical to the closest 
training sequence within 1% of the passing sequence.

Newly generated ProGen lysozyme sequences. See the Supple-
mentary Methods.

Experimental assays
Bacterial strains, plasmids and growth conditions. E. coli BL21(DE3) 
was used as the host strain for MDH and SOD expression in this study. 
Cells were grown on LB medium at 37 °C and supplemented with 
100 μg ml−1 ampicillin (cat. no.171254, Merck).

Sequences were optimized based on E. coli-preferred codons 
using the Twist Bioscience web interface (www.twistbioscience.com).  
A 30-bp sequence (TTTGTTTAACTTTAAGAAGGAGATATACAT) com-
posed of ribosomal binding site sequences and a spacer were added at 
the 5′ terminus of all genes. Genes were ordered from Twist Bioscience 
as clones in pET-21(+) between the EcoRI and NotI sites.

The pET21b plasmid harboring the MDH4 gene from a previous 
study17 was used as a positive control for MDH enzymes. Human SOD1 
(ref. 61) (hSOD, GenBank: NP_000445.1), Potentilla atrosanguinea 
CuSOD62 (paSOD, GenBank: AFN42318.1) and E. coli SOD63 (E.SOD, Gen-
Bank: NP_416173.1) were codon optimized, synthesized as described 
above and used as positive controls for SOD enzymes. Blank plasmid 
pET21b was used as a negative control for both MDH and SOD enzymes.

Plasmid construction for truncated control sequences. See the 
Supplementary Methods and Supplementary Table 7.

Competent cell preparation and plasmid transformation. Compe-
tent cells of E. coli BL21(DE3) were prepared using the calcium chloride 
method88.

See the Supplementary Methods for details.

Protein expression and purification. Protein expression was achieved 
by diluting the overnight cultures 1:30 into 2.5 ml autoinduction Ter-
rific Broth (TB) medium including trace elements (cat. no. AIMTB0210, 
Formedium) and supplemented with 100 μg ml−1 ampicillin in a 24-well 
format. All cells were cultivated in 24-well plates in an Eppendorf Ther-
moMixer C. For MDH expression, cells were grown for 4 h at 37 °C, 
followed by overnight growth at 16 °C while shaking at 200 rpm. For 
SOD expression, cells were grown for 4 h at 37 °C, followed by another 
3 h at 25 °C with shaking at 200 rpm.

Cells were collected by centrifugation at 3,000g for 10 min. Cell 
pellets were suspended in 200 μl BugBuster reagent (cat. no. 70584, 
Merck) supplemented with 1 μl 2,000 U ml−1 DNase I (cat. no. 79254, 
Qiagen) and incubated at 37 °C with shaking at 200 rpm for 30 min. 
After incubation, 10-μl mixtures were aliquoted and kept in −20 °C 
as the total protein (T) sample for gel electrophoresis. The mixture 
was centrifuged at maximum speed for 10 min and the pellets were 
discarded. Then, 10 μl of the supernatant was aliquoted and kept at 
−20 °C as the soluble protein (S) sample for gel electrophoresis. The 
supernatants were used for protein purification using the following 
procedures.

Talon resins (cat. no. 635653, Takara Bio) were washed twice with 
a binding buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole,  
pH 7.4) and then suspended in the same volume of binding buffer as the 
resin bed amount. Talon resin (50 μl) was loaded into Pierce microspin 
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columns (cat. no. 89879, ThermoFisher). Each supernatant sample 
was added to the loaded column and incubated at 4 °C for 30 min in 
a thermomixer.

The columns were then centrifuged at 20g for 30 s and the flow 
waste was discarded. Resins were washed with 600 μl of wash buffer 
three times (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 7.4) 
and centrifuged at 20g for 30 s each time. Finally, the resins were incu-
bated with 100 μl of elution buffer at 4 °C for 30 min in a thermomixer 
and proteins were then eluted with centrifugation at 20g for 1 min. 
Another 100 μl of elution buffer was added to repeat the elution steps, 
and the two portions of elutions were individually mixed. The two elu-
ate fractions were then combined and transferred to a 96-well desalting 
plate (cat. no. 89807, Thermo Scientific), which was pre-equilibrated 
with the sample buffer (50 mM NaH2PO4, 300 mM NaCl, pH 7.4). Pro-
tein samples were kept at −80 °C after adding 1⨯ protein-stabilizing 
cocktail (cat. no. 89806, Thermo Scientific). Then, 10 μl of the proteins 
was aliquoted and kept at −20 °C as the purified protein (P) sample for 
gel electrophoresis.

For enzymes from round 2 and round 3 and the truncated enzymes 
from the round 2 pretest, protein concentrations were measured by 
Qubit Protein Assay (cat. no. Q33211, Thermo Scientific).

Gel electrophoresis. Total, soluble and purified proteins of each 
sample were mixed with 1⨯ loading buffer (4⨯ loading buffer recipe: 
0.2 M Tris-HCl, 0.4 M DTT, 277 mM SDS, 6 mM bromophenol blue, 
4.3 M glycerol) and then heated at 85 °C for 5 min in a PCR cycler. Dena-
tured proteins were analyzed by SDS–PAGE with precast gels (cat. 
no. WG1403A, Thermo Scientific), followed by Coomassie staining 
with InstantBlue (cat. no. ISB1L-53, Kem-en-tec). Spectra multicolor 
broad-range protein ladder (cat. no. 26634, Thermo Scientific) was 
also loaded to analyze the protein sizes.

Enzymatic assay. To test for MDH activity, 2 μl or 100 μg ml−1 of puri-
fied protein in round 1 was added to a reaction mixture containing 
approximately 1.5 mM NADH (cat. no. 10128023001, Merck), 2.0 mM 
oxaloacetic acid (cat. no. O4126, Sigma) and 20 mM HEPES buffer 
(pH 7.4). Assays were performed in triplicate in a 96-well format. All 
components were added using multichannel pipettes to avoid the 
reaction time lag of each well. The final reaction volume was 100 μl, 
and the reaction was carried out at room temperature in a transpar-
ent 96-well microplate (cat. no. 0020821, Sarstedt). MDH activity was 
measured in triplicate by following NADH oxidation to NAD+, with an 
absorbance reading at 340 nm performed in kinetics mode for 15 min 
in a BMG Labtech SPECTROstar nano spectrophotometer. Unspecific 
oxidation of NADH was monitored in the no-substrate controls, and 
these values were subtracted from the other samples. Conversion 
from absorption values to NADH concentration was carried out using 
Beer−Lambert law c = A/(d ⨯ ε), in which the extinction coefficient ε 
value is 6.22 mM−1 cm−1, and the path length for 100 μl in a 96-well plate 
(d) is 0.29 cm. For samples that did not show any catalytic activities, a 
tenfold volume, which is 20 μl of purified proteins, was used to perform 
the assay for a second time.

For MDH in round 2 and round 3, 20 μg ml−1 enzymes together with 
the positive-control MDH4 were used in the assay as described above 
for quantitative comparison of catalytic activities, excerpt for samples 
1564 and 1546 from round 2, for which the concentration of 0.2 μg ml−1 
was used due to low protein yields.

SOD activity was measured with a SOD assay kit (cat. no. 19160, 
Sigma) in a 96-well format, and all components were added using 
multichannel pipettes to avoid the reaction time lag of each well. For 
SOD from round 1, an aliquot (2 μl) of purified protein was added to 
each well containing 98 μl working solution. Assays of each sample 
were performed in triplicate and in one ‘No XO’ well. xanthine oxidase 
working solution (10 μl) was added to each well at the end, except for 
the ‘No XO’ wells. ‘No SOD’ and ‘blank’ assays were also performed in 

triplicate. ‘No SOD’ wells contained 10 μl dilution buffer, 80 μl working 
solution and 10 μl xanthine oxidase working solution, while ‘blank’ wells 
contained 20 μl dilution buffer and 80 μl working solution. Plates were 
incubated in the plate reader, which was preset at 37 °C. Absorbance at 
450 nm was measured in the kinetics mode for 30 min. For proteins that 
did not show any catalytic activity, a tenfold volume of 20 μl of purified 
proteins was used to perform the assay a second time.

For SOD from round 2 and round 3, 5 μg ml−1 of enzymes were 
used in the assay as described above for quantitative comparison of 
catalytic activity.

To assay the truncated proteins, 85 μg ml−1 of all samples were used 
in the enzymatic assay.

For details on the lysozyme assays see the Supplementary 
Methods.

Data analysis
For MDH, the absorbance value was plotted over time. The absorbance 
values of all samples at the endpoint of the assay were compared to the 
negative control by t-test analysis. Samples were considered active if  
the end absorbance value was significantly lower than that of the nega-
tive control, P ≤ 0.05.

For SOD, enzyme activity was measured as the percentage inhibi-
tion of the rate of WST-1 formazan formation and calculated using the 
following equation with absorbance value at 20 min. The inhibition 
rate was compared to the negative control by the t-test, and those with 
activity significantly higher than the negative control were considered 
active with P ≤ 0.05.

SOD activity (inhibition rate %) = ((A − B) − (C − D))/(A − B) ⨯ 100, 
where A is the absorbance value of the ‘no SOD’ control, B is the absorb-
ance value of the blank, C is the absorbance value of the sample and  
D is the absorbance value of the ‘no XO’.

Assay data were analyzed using GraphPad Prism v8.0.0 for Win-
dows, GraphPad Software (www.graphpad.com).

Semiquantitative comparisons of enzyme activities. Data from 
round 3 enzyme assays using 20 μg ml−1 MDH or 5 μg ml−1 SOD, as 
described above, were used for semiquantitative comparisons of 
enzyme-specific activity (Fig. 3d).

For MDH, MDH4 was used as a wild-type positive control, and for 
SOD, hSOD, paSOD and E.SOD were used as wild-type positive controls.

For MDH, absorbance at 340 nm was converted to NADH concen-
tration and the average difference in the concentration between the  
0 and 90 s time points of the assay was used as a measure of enzyme 
activity. Some enzymes, including the MDH4 control, converted sub-
strate very quickly, such that most of the substrate was converted 
before the first time point. Therefore, we replaced any values below 
275 μM at time 0 with the mean value from the negative control. Values 
were averaged over three technical replicates and divided by the aver-
age of the MDH4 samples.

For SOD, the inhibition rate (%), calculated as described above, 
was used as a measure of enzyme activity. Values were averaged over 
three technical replicates and divided by the average of the hSOD, 
paSOD and E.SOD samples.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Training sequences were curated from sequences available from Uni-
Prot (release 2022_05) (https://ftp.uniprot.org/pub/databases/uni-
prot/previous_releases/release-2022_05/knowledgebase/), the NCBI 
Transcriptome Shotgun Assembly database (https://www.ncbi.nlm.
nih.gov/genbank/tsa/) or Mgnify (2022_05) (https://ftp.ebi.ac.uk/pub/
databases/metagenomics/peptide_database/2022_05/). All generated 
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sequences, curated natural sequences, train/test splits, predicted 
structures, metrics scores, phylogenetic trees and tabulations of 
experimental results are available on Zenodo (https://doi.org/10.5281/
zenodo.7688667)89.

Code availability
Code for regenerating figures and links to Colab notebooks for cal-
culating metrics and generating sequences using ESM-MSA are avail-
able on Github (https://github.com/seanrjohnson/protein_scoring)90. 
Locally executable code for generating sequences from ESM-MSA 
is also available on GitHub (https://github.com/seanrjohnson/
protein_gibbs_sampler)91.
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Extended Data Table 1 | CuSOD and MDH experimental results from all rounds

Expressed: new visible band on SDS-PAGE gel of total protein compared with empty vector control. Soluble: new visible band on SDS-PAGE gel of soluble protein compared with empty 
vector control. Active: Measured activity significantly different from empty vector control. In some cases, no bands were visible, but activity was detected. For some rows, the total is less than 
18, for the following reasons: in Round 1, three of the genes could not be synthesized by Twist; in Round 2, we selected only 13 CuSOD test sequences because we had already tested some 
similar natural sequences in Round 2 pre-test.
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