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The covariance environment defines cellular 
niches for spatial inference

Doron Haviv1,2, Ján Remšík    3, Mohamed Gatie    4, Catherine Snopkowski1, 
Meril Takizawa1, Nathan Pereira5, John Bashkin5, Stevan Jovanovich    5, 
Tal Nawy    1, Ronan Chaligne    1, Adrienne Boire3,6,7, 
Anna-Katerina Hadjantonakis4 & Dana Pe’er    1,8 

A key challenge of analyzing data from high-resolution spatial  
profiling technologies is to suitably represent the features of cellular 
neighborhoods or niches. Here we introduce the covariance environment 
(COVET), a representation that leverages the gene–gene covariate structure 
across cells in the niche to capture the multivariate nature of cellular 
interactions within it. We define a principled optimal transport-based 
distance metric between COVET niches that scales to millions of cells. Using 
COVET to encode spatial context, we developed environmental variational 
inference (ENVI), a conditional variational autoencoder that jointly embeds 
spatial and single-cell RNA sequencing data into a latent space. ENVI 
includes two decoders: one to impute gene expression across the spatial 
modality and a second to project spatial information onto single-cell data. 
ENVI can confer spatial context to genomics data from single dissociated 
cells and outperforms alternatives for imputing gene expression on diverse 
spatial datasets.

Intense interest in cellular interactions and tissue context has spurred 
the growth of multiplexed spatial transcriptomics and antibody-based 
technologies, sparking the need for computational approaches to 
identify biological patterns within tissues1–5. The local neighborhood, 
or niche, of a cell is a useful resolution for defining cell interactions; it 
may represent functional anatomical subunits (such as stem cell niches) 
and is a basis for identifying larger spatial patterns. However, efficient 
representations of the cellular microenvironment that retain the full 
richness of the data and can be used to effectively compare niches 
are lacking6. At the same time, there is a need to address the limited 
molecular plexity of high-resolution spatial profiling technologies7.

Most methods for analyzing spatial data characterize each niche 
by tabulating discrete cell types within a given region8–11. Although 
these have generated important discoveries2,8, they were developed for 

low-plex antibody-based imaging methods that devote most markers 
to cell typing. Spatial transcriptomics methods, including commer-
cial platforms, can now profile hundreds of genes12–18, meaning that 
analysis at the cell type level leads to substantial information loss. In 
single-cell genomics, the switch from discrete cell typing to continuous 
approaches, such as diffusion maps19 and pseudotime20,21, has driven 
remarkable discovery. Moreover, setting thresholds for continuous 
cellular phenotypes is subjective and invokes problems of instability 
and bias. Even within highly discrete cell types, vast and meaningful 
variation often exists, such as the spectrum of activated and metabolic 
states within immune cell types22–24.

Thus, a niche representation is needed that considers the full 
measured expression and its continuous nature and that enables 
robust, efficient comparisons. We propose a representation that goes 
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for which the Fréchet distance provides a closed-form solution29. How-
ever, calculating Fréchet distance is computationally intractable, so 
we developed an approximation (approximate optimal transport 
(AOT)) that reduces runtime by over an order of magnitude and is 
substantially faster than another common metric, the Bhattacharyya 
distance30 (Extended Data Fig. 1a). AOT yields similar results to true 
optimal transport, and a GPU implementation takes under 1 min to 
compute the cell–cell AOT distance matrix of 100,000 cells (Extended 
Data Fig. 1b–d).

As AOT can be computed via Euclidean distance, which underlies 
many standard single-cell analyses, such as clustering31, diffusion 
components32 and uniform manifold approximation and projec-
tion (UMAP)33, niches can now be analyzed with the same algorithms 
designed to analyze phenotypes. Clustering niches can characterize 
canonical environments; visualization can be used to observe their 
relationships; and trajectory analysis can capture continuous trends, 
enabling facile interpretation. COVET thus provides a rich, robust and 
computationally efficient representation of cellular niches, derived 
from a mathematically principled formulation based on optimal 
transport.

The ENVI algorithm
ENVI employs a conditional variational autoencoder to infer spatial 
context in scRNA-seq data and impute missing genes in spatial data, 
by mapping both modalities to a common embedding (Fig. 1b and 
Methods). Unlike other CVAEs used for spatial inference25,34,35, which 
only model genes measured in both modalities, ENVI explicitly models 
spatial information and gene expression genome wide. More impor-
tantly, it uses the COVET matrix to represent spatial information and 
simultaneously trains on samples from both spatial and single-cell 
datasets, optimizing a single latent space to decode the full transcrip-
tome and spatial context for both modalities.

ENVI architecture includes a single encoder for both spatial and 
single-cell genomics data and two decoder networks: one for the full 
transcriptome and the second for the COVET matrix, providing spatial 
context. The requisite for decoding the spatial niche (and the use of a 
second decoder) is a unique aspect of ENVI. Intuitively, ENVI uses gene 
expression in the cell paired with its niche information (COVET) to learn 
an ‘environment’ regression model, which infers spatial context from 
gene expression input, and, simultaneously, an ‘imputation’ regression 
model trained to reproduce the full scRNA-seq dataset from the gene 
subset profiled by spatial transcriptomics. The nonlinear network 
architecture can capture complex dependencies between the variables.

Sequencing and spatial technologies measure different param-
eters and produce different data distributions and dynamic ranges 
(Extended Data Fig. 2a). ENVI takes this into account by marginalizing 
technology-specific effects on expression, augmenting the standard 
variational autoencoder (VAE) by adding an auxiliary binary neuron to 
the input layers of encoding and decoding networks for each modality. 
Moreover, ENVI parameterizes each modality with different probabil-
istic distributions, modeling single-cell data with a negative binomial 
by default to account for dropout36, and spatial data with a Poisson by 
default to reflect the high capture rate of fluorescence in situ hybridi-
zation (FISH)-based technologies3. ENVI thus integrates, imputes and 
reconstructs spatial context with a single end-to-end model, using deep 
learning for high-dimensional regression and variational inference for 
optimal integration of scRNA-seq and spatial data. The method scales 
to atlas-size datasets including millions of cells with constant time 
computational complexity (Extended Data Fig. 2b) while being robust 
to technology-specific artifacts, such as data sparsity (Extended Data 
Fig. 2c,d and Methods).

ENVI imputes spatial patterns underlying gastrulation
We used ENVI to analyze a 350-gene sequential FISH (seqFISH)37 of mouse 
organogenesis at embryonic day 8.75 (E8.75) and matched scRNA-seq 

beyond cell typing and preserves complex patterns of gene expression, 
including covariation in genes across cell states. Specifically, we devel-
oped the covariance environment (COVET), a compact representation 
of a cell’s niche that assumes that interactions between the cell and its 
environment create biologically meaningful covariate structure in gene 
expression between cells of the niche. We developed a corresponding 
distance metric that unlocks the ability to compare and analyze niches 
using the full toolkit of approaches currently employed for cellular 
phenotypes, including dimensionality reduction, spatial gradient 
analysis and clustering.

Imaging-based spatial transcriptomics technologies face issues 
that practically limit quantification to hundreds of genes. Some meth-
ods can impute spatial information for genes not measured in the 
spatial modality, by integrating matched single-cell RNA sequencing 
(scRNA-seq) data9,25,26. However, integration methods do not explic-
itly model cellular microenvironment context from the spatial data, 
thereby limiting inference power.

To achieve transcriptome-wide spatial inference, we developed 
environmental variational inference (ENVI), a conditional variational 
autoencoder (CVAE)27,28, that simultaneously incorporates scRNA-seq 
and spatial data into a single embedding. ENVI leverages the covariate 
structure of COVET as a representation of cell microenvironment and 
achieves total integration by encoding both genome-wide expression 
and spatial context (the ability to reconstruct COVET matrices) into its 
latent embedding. Our approach is effective on data from a variety of 
multiplexed spatial technologies and outperforms other methods in 
accurately imputing the expression of genes in diverse developmental 
contexts. ENVI can also be used to project valuable spatial information 
onto dissociated scRNA-seq data and can capture continuous variation 
along spatial axes across large complex tissue regions.

Results
COVET defines spatial neighborhoods
To move beyond cell type fraction and to characterize niches in a man-
ner that leverages measured genes and enables quantitative compari-
son, we developed the COVET framework. Our core assumption is that 
a cell affects—and is also affected by—cells in its vicinity, generating 
covarying patterns of expression among the interacting cells. Our 
framework includes three components: (1) COVET, a robust per-cell 
representation of neighborhood information based on a modified 
formulation of gene–gene covariance among niche cells; (2) a distance 
metric that is essential for comparing and interpreting niches; and (3) 
an algorithm to efficiently compute this distance metric. Unlike mean 
expression, gene–gene covariance captures the relationships among 
genes and cell states that are shaped by cellular interplay within the 
niche. These relationships are rich, stable and enriched for biological 
signal; moreover, they contain substantial hidden information from 
unmeasured genes, providing an advantage for imputation tasks.

To calculate COVET, we first define the niche of each cell in a data-
set by the k spatial nearest neighbors of that cell and then compute 
each niche’s gene–gene shifted covariance matrix (Fig. 1a and Meth-
ods). Shifted covariance modifies the classic covariance formulation 
by using mean expression across the entire dataset rather than local 
mean expression as a reference. This constructs each cell’s covariance 
matrix relative to the entire population and critically enables direct 
comparison between niches, highlighting their shared and unique 
features. Gene–gene covariance provides the additional benefit of 
being more robust to technical artifacts23, facilitating integration 
across technologies.

Despite being a compact and powerful representation of the niche, 
COVET requires a metric for comparison. Niche similarity cannot be 
determined by simply subtracting the cell-by-gene expression of matri-
ces of two niches, because the result depends on cell order, which is set 
arbitrarily (it will change if an image is rotated, for example). We, thus, 
seek to quantify niche similarity in a permutation-invariant manner, 
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dataset38 at E8.5 (Fig. 2a). Unlike the discrete layers of adult brain tis-
sue3,39,40 that dominate current spatial transcriptomic datasets, cells in 
developing embryos undergo rapid proliferation, differentiation and 
movement to create complex patterns and spatial gradients, present-
ing a challenging context for performance assessment. The most basic 
evaluation of any embedding-based data integration method is how well 
data across technologies co-embed, because this is critical for success-
ful information transfer between modalities. The embedding learned 
by ENVI correctly maps major cell types to the combined latent space 
(Fig. 2b), as measured by average batch silhouette score41 (Methods).

Current FISH-based technologies only quantify the expression of 
hundreds of genes12,37,40, prompting the development of algorithms 
to impute the spatial patterns of unmeasured genes9,25,26,42,43. Previ-
ous studies9,25,44 used Pearson correlation and mean squared error 
between imputed and ground truth expression to evaluate the quality 
of imputation. However, both metrics are computed on a per-cell basis 
and ignore spatial context. To evaluate concordance between spatial 
patterns, we developed the multiscale spectral similarity index (MSSI), 
a metric that can capture similarity between spatial patterns by taking 
cell–cell proximity into account (Fig. 2c and Methods). MSSI borrows 
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Fig. 1 | A covariance-based framework characterizes spatial niches and 
powers single-cell and spatial data integration for robust transcriptome-
wide spatial inference. a, Schematics indicate steps in spatial covariance 
computation and ENVI operation. Each COVET matrix characterizes a cell’s 
niche, comprising k nearest spatial neighbors, based on the shifted covariance 
of gene expression within the niche. Shifted covariance is calculated relative 
to mean expression in the sample, enabling meaningful comparison of niches. 
Distance between niches is determined by an efficient approximation of optimal 
transport. The COVET adjacency matrix, based on AOT as the spatial similarity 
metric, can be used directly for other downstream spatial analyses, such as 

dimensionality reduction and clustering, where cells are grouped together 
by similar environment rather than by expression. b, ENVI is a conditional 
autoencoder that simultaneously embeds scRNA-seq and multiplexed spatial 
transcriptomic data into a unified latent embedding. ENVI models all genes 
(including those not imaged with spatial transcriptomics) and uses the 
COVET framework to represent information about cellular environment. An 
environment decoder allows ENVI to project spatial information onto single-cell 
data, and an expression decoder, which also includes genes captured only in the 
single-cell data, enables imputation of spatial expression transcriptome wide.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02193-4

from the multiscale structure similarity index measure (MS-SSIM)45, a 
spatial pattern similarity metric widely used in computer vision that 
iteratively subsamples an image and assesses similarity at multiple 
resolutions. Our MSSI metric uses a cell–cell neighbor graph based on 
spatial proximity to generate a series of images at progressively lower 
resolutions by aggregating proximal cells and then applies SSIM to 
compare similarity at each resolution. MSSI is, thus, a spatially aware 
similarity metric that uses full count matrices and incorporates pattern-
ing at the cellular rather than pixel level and has multiple use cases, such 
as comparing the similarity of different gene expression patterns46.

We used five-fold cross-validation (Methods) to compare ENVI 
imputation with measurements of held-out genes using both MSSI 
and Pearson correlation. The imputed expression of representative 
genes with clear spatial expression in endoderm (Krt18), neural stem 
(Sox2) and posterior section (Hoxb9) was visually similar to ground 
truth (Fig. 2d) and expressed in the correct organ. We found that some 
genes with correctly predicted organ-specific expression have high 
MSSI score but low Pearson correlation, supporting the importance 
of a spatially aware metric (Extended Data Fig. 3a).

We compared ENVI against Tangram9, gimVI25 and uniPort47, which 
were recently shown to outperform other integration methods44; Novo-
SpaRc26, because it uses fused optimal transport to explicitly model 
spatial context; deepCOLOR48, because it uses a deep generative model; 
and Harmony49, for its widespread use as a batch correction method50. 
ENVI significantly outperforms all other methods based on both MSSI 
and Pearson correlation (Fig. 2e).

Finally, we evaluated ENVI’s ability to impute genes beyond the 
350-gene panel by assessing canonical markers of the developing lung 
(Ripply3)51, heart (Nkx2-5)52 and intestine (Tlx2)53. The expression of 
all three genes was validated as organ specific at E8.75 (before organ 
formation) by in situ hybridization chain reaction (HCR) imaging54 and 
was correctly imputed by ENVI (Fig. 2f). By contrast, Tangram and gimVI 
predicted weaker expression in the relevant region and anomalous 
expression beyond the organ (Extended Data Fig. 3b).

ENVI ascribes spatial patterns to single-cell genomics data
In addition to gene imputation, ENVI can uniquely project spatial 
information onto dissociated cells profiled by scRNA-seq, by using 
its second decoder to reconstruct COVET matrices from the latent 
space. This approach can use limited spatial profiling data to confer 
spatial context onto the millions of cells in single-cell atlases. COVET 
represents gene–gene covariation between neighboring cells; thus, 
beyond deducing the cell type of neighbors, it can also infer their gene 
expression.

To demonstrate this ability, we used the mouse embryo dataset 
and focused on the gut tube, which generates the thymus, thyroid,  
lung, liver, pancreas, small intestine and colon in a stereotypical 
anterior-to-posterior sequence. Although E8.75 gut tube cells are 
anatomically indistinguishable, spatially delimited expression 

reveals that precursors are poised for their organ fates55. We com-
puted COVET matrices for (measured) seqFISH data and used ENVI 
to infer COVET matrices for scRNA-seq data and then applied the 
AOT metric to co-embed matrices from both modalities (Fig. 3a). 
The rich transcriptional information in scRNA-seq data facilitated 
the assignment of endodermal organ identity to these cells55, and 
ENVI’s highly concordant co-embedding allowed for label transfer 
to those cells measured with seqFISH, as confirmed by anatomical 
localization; thymus and thyroid cells fall into the most anterior ven-
tral gut tube, followed by dorsal and ventral lung clusters and, finally,  
intestine (Fig. 3b).

Using only endodermal scRNA-seq data, we plotted the average 
COVET matrices of dorsal and ventral lung and observed that these 
closely match empirical matrices computed from the seqFISH data 
(Fig. 3c). These COVET matrices infer modules of covarying genes 
in the niche environment and notably include genes expressed by 
adjacent mesodermal cells, which are known to provide spatial pat-
terning cues to the endoderm56. To validate these inferred gene 
modules, we used the seqFISH data from mesodermal cells proxi-
mal to the gut tube (ignoring endodermal cells) and found that 
average ventral COVET gene expression is enriched in the ventral 
pharyngeal mesoderm, whereas average dorsal COVET gene expres-
sion is enriched in the dorsal brain and paraxial mesoderm (Fig. 3d). 
Our observations validate the predicted dorsal and ventral subdo-
mains within the gut tube and demonstrate that ENVI can identify 
biologically important signaling originating from cells that were  
not sampled directly.

Using spatial covariance can also markedly improve the simpler 
task of labeling organ identity for cells from the spatial modality, as 
seqFISH measures fewer genes and cells than scRNA-seq and is, thus, 
more difficult to label. Labeling scRNA-seq cells from the gut tube with 
organ-specific gene sets55 (Methods) revealed an almost one-to-one 
matching between organ precursors and COVET clusters, whereas 
ENVI without COVET failed to generate accurate labels, and alternative 
approaches were even less accurate (Extended Data Fig. 4). ENVI-based 
label transfer is also robust to variation in neighborhood size when 
computing COVET (Extended Data Fig. 5).

ENVI learns spatial gradients from single-cell data
Although the gut tube is defined by relatively discrete primordial 
organs, many processes—such as the specification of spinal cord cells 
and their precursors, the neuromesodermal progenitors (NMPs), along 
the anteroposterior (AP) axis—are organized by continuous spatial gra-
dients57. To highlight ENVI’s ability to model gradients, we co-embedded 
empirical seqFISH COVET matrices with ENVI-inferred scRNA-seq 
COVET matrices for NMPs and spine cells using a force-directed 
layout (FDL)58 and calculated their diffusion components (DCs) 
(Fig. 4a). The first DC is highly congruent with the AP axis (Pearson 
correlation = 0.86), demonstrating that COVET can capture gradual 

Fig. 2 | ENVI accurately recovers the expression of embryonic genes not 
imaged by multiplexed FISH. a, seqFISH37 image of an E8.75 mouse embryo 
sagittal section (left) and UMAP embedding of matched scRNA-seq data38 at E8.5 
(right), both colored by major cell type compartment. b, UMAPs of ENVI latent 
embedding learned from mouse embryo data. Cells from seqFISH (left) and 
scRNA-seq (right) data are colored as in a. Average batch silhouette score 
bASW = 0.86 (Methods). c, Schematic of MSSI computation (Methods) for 
comparing two spatial expression profiles. Each profile is iteratively 
downsampled using spectral pooling on the cell proximity graph, and the SSIM is 
computed at each scale. MSSI is a weighted geometric mean of the SSIM 
computed at five scales, providing a spatially aware similarity metric on a scale 
from 0 to 1. d, seqFISH measurement in log counts (ground truth) and ENVI 
imputation for three withheld genes, marking endoderm (Krt18), neural stem 
(Sox2) and posterior section (Hoxb9) cells. MSSI values for each gene appear in 
parentheses. e, Pearson correlation and MSSI scores between log of seqFISH and 

imputed expression across all genes predicted from five-fold cross-validation, 
comparing four algorithms run with default parameters (Methods). Novo, 
NovoSpaRc; Tg, Tangram; Unip; uniPort. Boxes and lines represent interquartile 
range (IQR) and median, respectively; whiskers represent ±1.5× IQR. In order, 
MSSI\Pearson correlation P values (one-sided t-test, n = 351) are:  
4.45 ⋅ 10−11\4.75 ⋅ 10−9, 3.45 ⋅ 10−58\ 3.02 ⋅ 10−94, 1.44 ⋅ 10−76\6.68 ⋅ 10−93,
4.83 ⋅ 10−18\3.44 ⋅ 10−50, 4.12 ⋅ 10−79\15.47 ⋅ 10−85 and 6.48 ⋅ 10−32\4.51 ⋅ 10−69. 
f, ENVI imputation (bottom) of organ marker genes not profiled by seqFISH: 
Ripply3 (lung), Nkx2-5 (heart) and Tlx2 (intestine). Imputed expression matches 
associated organs and is validated by whole-mount HCR in situ (top). AST, 
anterior somitic tissue; B., blood; C, caudal; D., definitive; Ex., extraembryonic; 
HEP, hematoendothelial progenitor; I., intermediate; L.P., lateral plate; Novo, 
NovoSpaRc; P., paraxial; PGC, primordial germ cell; Ph., pharyngeal; R.N., rostral 
neuro; S. Ectoderm, surface ectoderm; S. Mesoderm, somitic mesoderm; Unip, 
uniPort; V., visceral.
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spatial trends (Fig. 4a,b and Extended Data Fig. 6a). As the COVET 
DC is calculated from both seqFISH and scRNA-seq datasets, we can 
use it to assign AP pseudo-coordinates to NMPs and spine cells from  
scRNA-seq data.

The first COVET DC correctly reveals that scRNA-seq cells are 
enriched for Hoxd4 (refs. 55,59) (anterior) and Hoxb9 (ref. 60) (pos-
terior) markers in their respective domains, consistent with seqFISH 
expression in NMPs and spine cells (Fig. 4c). Furthermore, ENVI 

correctly mapped high expression of Hoxd3 (ref. 59) (anterior) and 
Hoxb5os61 (posterior) markers to scRNA-seq cells in their correspond-
ing AP domains, demonstrating that ENVI spatial modeling extends to 
genes that are not imaged (Fig. 4d). Conversely, ENVI-imputed Hoxb5os 
and Hoxd3 expression for the seqFISH data mirrors the predicted spa-
tial context of the scRNA-seq data.

We found that the major axis of variation (first DC) between the 
COVET matrices that model the niche reflects the spatial organization 
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of the tissue; ordering NMPs and spine cells along DC 1 recovers a 
pseudo-AP axis that can be used to visualize predicted expression 
trends57 (Fig. 4e). Similar analysis using the gimVI latent space and 

Scanorama62 integration (Methods) led to inferior alignment with the 
true AP axis (Extended Data Fig. 6b), despite selecting the gimVI and 
Scanorama DCs most correlated (r = 0.76 and r = 0.7070, respectively) 
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with true AP polarity. This slightly lower correlation with the AP 
axis propagates into more pronounced inaccuracies in expression 
patterns; only ENVI correctly derived expected AP trends for Rfx4  
(ref. 63), Hoxaas3 (ref. 61) and Hoxb7 (ref. 64) (Fig. 4e). More generally, 
both anterior and posterior canonical markers are more correlated (or 
anti-correlated) with ENVI COVET pseudo-AP than with axes defined 
by gimVI and Scanorama (Extended Data Fig. 6c). ENVI can, thus, cor-
rectly uncover AP polarity within single-cell NMPs and spine cells and 
correctly place them along this spatial axis.

ENVI delineates tissue-scale patterning in the motor cortex
Although data integration is typically evaluated on abundant neural 
cell types that dominate spatial regions, we challenged ENVI to recover 

rare cell types. Somatostatin (Sst)-expressing interneurons are a car-
dinal class of inhibitory neurons in the cortex65 that are implicated 
in Alzheimer’s disease and depression66 and encompass substantial 
diversity67–69. Although we know that Sst interneurons influence their 
environment, their localization and its relationship to function and 
transcriptional states have not been fully explored.

To localize Sst interneurons, we analyzed the scRNA-seq 
(71,183-cell) and 252-gene MERFISH (276,556-cell) atlases of the motor 
cortex of the Brain Initiative Cell Census Network (BICCN)40,70. ENVI 
outperformed all other tested methods in both speed (training on this 
large atlas in minutes) and imputation (Extended Data Figs. 2b and 7), 
and it successfully co-embedded the 22 BICCN-annotated coarse cell 
types (Fig. 5a). Notably, only scRNA-seq data can distinguish the nine 
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distinct Sst subpopulations, as the MERFISH panel lacks requisite 
marker genes (Fig. 5b and Methods).

Using ENVI-imputed COVET matrices, we mapped Sst interneurons 
labeled in the scRNA-seq dataset to their location within the cortex. 
We found that—despite being interspersed throughout the cortex, 
where cell types, such as excitatory neurons, dominate—the first DC of 

COVET matrices is highly correlated with cortical depth, thus defining 
a ‘pseudodepth’ axis (Fig. 5c,d), and that Sst subtypes are predicted 
to stratify by depth (Fig. 5e). Molecular imaging by genetic strategies 
targeting Sst subtypes71 validates a number of our predictions, includ-
ing the localization of Calb2 interneurons to the L2/3 layers and Crh 
interneurons to L6. Beyond these, ENVI predicted the cortical depth of 
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Fig. 6 | ENVI integrates Xenium and snRNA-seq data to localize neuroimmune 
cell types during metastasis. a, Xenium image and UMAP embedding of 
snRNA-seq data from mouse brain bearing a melanoma metastasis, colored 
by major cell type. b, UMAP embeddings of ENVI latent space showing cells 
from the spatial (left) and snRNA-seq (right) datasets. Similar cell types, 
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interval. d, Density plots of microglia and macrophage cell signature expression 
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embedding of the ENVI-predicted COVET representation of snRNA-seq immune 
cells, colored by subtype. f, COVET UMAP (left) and spatial coordinates (right) of 
Xenium immune cells, colored by COVET clusters representing major immune 
cell microenvironments: cortex (C0), basal ganglia (C1) and tumor (C2). COVET 
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http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02193-4

many subtypes identified in the scRNA-seq atlas with unknown locali-
zation. For example, it placed Sst interneurons expressing high levels 
of the neurotransmitter metabolism gene Tyrosine hydroxylase in the 
deep L6 layer, as might be expected, suggesting that ENVI can articulate 
the interplay between transcriptional state and microenvironment.

ENVI can also capture spatial patterns within the cortex from data-
sets that include only a few imaged genes. Applied to a 33-gene osmFISH 
and matched scRNA-seq dataset of the somatosensory cortex3, ENVI 
successfully integrated the small datasets (fewer than 10,000 cells 
combined) into a unified embedding (Extended Data Fig. 8a,b) and 
outperformed alternative methods in cell type resolution and spatial 
gene imputation (Extended Data Fig. 8c–e). To determine whether ENVI 
can impute unimaged genes, we leveraged Allen Brain Atlas ground 
truth data for mouse brain cortex (https://mouse.brain-map.org/) and 
confirmed that ENVI correctly imputes layer-specific spatial expression 
for Dti4l, Rprm and Ntst4 in the L2/3, L5/6 and CA1 regions, respectively 
(Extended Data Fig. 8f).

ENVI integrates Xenium data on brain metastasis
Leptomeningeal metastasis (LM) is a lethal condition in which distant 
tumor cells spread into the fluid-filled space surrounding the central 
nervous system72,73. The poor understanding of interactions among 
tumor, immune and underlying brain parenchyma cells limits the dis-
covery of therapeutics. We used the Xenium platform (10x Genomics)16 
to perform in situ hybridization (ISH) of 243 genes in a mouse model 
of melanoma LM74 and also sequenced cells from an adjacent section 
using a custom single-nucleus RNA sequencing (snRNA-seq) proto-
col (Methods) that we developed by optimizing RNA extraction from 
formalin-fixed paraffin-embedded (FFPE) samples, followed by 10x 
Genomics Flex probe-based library preparation. We separately clus-
tered and annotated the spatial and single-cell samples into major cell 
types based on marker genes (Fig. 6a and Extended Data Fig. 9a). Even 
in this pathological context, ENVI performance with default parameters 
matches or exceeds competing methods on gene imputation (Extended 
Data Fig. 9b) and harmonizes the two datasets into a unified latent 
space (Fig. 6b and Extended Data Fig. 9c).

Our approach provides two representations of the Xenium data; 
we can visualize and cluster each cell based either on its gene expres-
sion or on its COVET matrix (representing the local niche). Measuring 
the agreement between clustering of the two representations reveals 
that, as expected, excitatory neuron expression depends strongly on 
spatial context, due to the association between distinct cortical lay-
ers and molecular markers70, whereas tumor and immune cell types 
show little concordance between expression and environmental  
context (Fig. 6c).

Melanoma LM interacts with two key immune populations: 
tissue-resident brain macrophages, known as microglia, and 
monocyte-derived macrophages that are recruited to the tumor lesion 
and colonize it from the periphery74. The snRNA-seq data clearly dis-
tinguish these myeloid subtypes based on curated gene sets75, whereas 
the Xenium brain panel lacks the markers to distinguish macrophages 
and microglia (Fig. 6d). To resolve where the subtypes localize, we 
co-embedded ENVI-imputed snRNA-seq COVET matrices with observed 
Xenium COVET matrices and clustered the data, revealing three distinct 
immune microenvironments consisting of cortical, basal ganglia or 
tumor cells (Fig. 6e,f). The snRNA-seq data enabled the labeling of 
cluster 2 as non-resident macrophage, and the Xenium data allowed us 
to visualize the localization of cells from this COVET cluster. Confirming 
known patterns of neuroimmune cell types76–78, most microglia were 
assigned to the basal ganglia and cortex, whereas most macrophages 
were localized to the tumor and its boundary. COVET allowed us to 
infer the niche composition for each immune cell in the snRNA-seq 
data, which corroborates that macrophages are found mainly near 
tumor cells, whereas microglia are found mainly near neurons and 
other glial cells (Fig. 6g).

Beyond localizing macrophages and microglia, ENVI can dis-
tinguish the transcriptional patterns of tumor-infiltrating mac-
rophages from those on the boundary by imputing gene expression 
in the Xenium data (Fig. 6h). For instance, imputation of Ccr2, a 
chemokine receptor that recruits monocytes to the tumor and pro-
motes their differentiation into tumor-associated macrophages78, 
was enriched in immune cells within the tumor and its vicinity. In con-
trast, clustering-based analysis of the gimVI latent on the immune 
cells does not clearly assign macrophages to a malignant microen-
vironment, and its gene imputation is also inaccurate, predicting 
that tumor infiltration genes are broadly expressed across the brain 
(Extended Data Fig. 9d,e). Harmony and gimVI also fail to localize 
infiltration marker expression to immune cells within the tumor  
(Extended Data Fig. 10).

Discussion
ENVI robustly integrates scRNA-seq and spatial transcriptomics data, 
overcoming technical biases while retaining biological information. 
The algorithm provides superior performance for imputing missing 
gene expression in spatial modalities; it scales to millions of cells; and 
it has the distinctive ability to infer the spatial context of dissociated 
cells, even across multiple cell types in complex tissues.

ENVI’s capabilities rely on COVET as a representation of spa-
tial niches. Although most spatial representations are based on 
discrete cell typing, COVET takes full advantage of the quantitative 
nature of gene expression data. The COVET matrix captures covari-
ation between markers in a cell’s niche and uses optimal transport 
to derive a principled and quantitative model of cellular neighbor-
hoods. COVET powers a shift from discrete cell type to continuous 
cell state paradigms and the discovery of continuous trends in spatial  
microenvironments.

ENVI performance is primarily driven by three factors: (1) deep 
Bayesian inference to regress out modality-related confounders 
while learning nonlinear relationships between genes and niches; 
(2) explicit modeling of the entire transcriptome from scRNA-seq 
data; and (3) direct incorporation of spatial context via COVET. 
Whereas current methods only learn the genes that overlap between 
scRNA-seq and spatial datasets, ENVI models all available informa-
tion and does not rely on post hoc inference. This proves invaluable, 
as the ENVI model is imbued with both spatial context and full tran-
scriptome information, allowing for reliable transfer of information  
between modalities.

The ENVI COVET space can correctly predict primordial organ 
niches from seqFISH and scRNA-seq data of mouse gastrulation, and 
COVET-based DC analysis can highlight continuous AP trends of both 
expression and environment in the developing spine. ENVI’s critical 
ability to confer spatial context onto dissociated single cells drives the 
inference of circuits of Sst interneuron subtypes in the motor cortex. 
Moreover, it provides an accurate representation of both discrete and 
diffuse signals in healthy and pathological tissue contexts, enabling 
spatial reasoning along the full transcriptome, including the spatial 
distinction of subtly different tumor and non-tumor-associated mac-
rophage cell states in metastatic tissue.

One caveat is that the range of spatial factors can vary, whereas 
COVET is currently defined at a single scale set by the neighborhood 
size, k. Although COVET is relatively robust to small changes of k, larger 
differences may lead to different outcomes, and its value should be 
tuned to the spatial questions of interest.
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Methods
Computational methods
MSSI. When comparing the spatial distribution of genes or markers 
across a tissue, it is imperative to have a robust metric that takes spatial 
structure into account. Although ubiquitous metrics, such as Pear-
son correlation, SSIM and root mean square error, can provide some 
insight, they lack spatial context (for example, cell–cell proximity or 
spatial patterns) and measure only per-cell discrepancy.

To devise a metric for spatial data, we borrowed the MS-SSIM45, a 
ubiquitous metric for the quality of image reconstruction, from com-
puter vision. Given two images, MS-SSIM iteratively downsamples each 
image, creating an image pyramid79—a multiscale signal representation 
consisting of the same image at multiple resolutions. MS-SSIM returns 
a weighted geometric average of the standard SSIM scores between 
the two images at each scale of the pyramid. Standard SSIM for two 
images, x and y, is

SSIM(x, y) = l(x, y) ⋅ c(x, y) ⋅ s(x, y),

where

l(x, y) =
2μxμy + (0.01 ⋅M)2

μ2x + μ2y +
0.01
M

, c(x, y) =
2σxσy + (0.03 ⋅M)2

σ2x + σ2y + (0.03 ⋅M)2
,

s(x, y) =
σxy +

(0.03 ⋅M)2

2

σxσy +
(0.03 ⋅M)2

2

M represents the maximum values between x and y; μx and μy are their 
average values; σx and σy measure how each varies; and σxy repre-
sents how much they covary. l(x,y), c(x,y) and s(x,y) are measures of 
‘luminance’ (signal brightness), contrast and structure, respectively. 
Although SSIM is meant for images, it can also be calculated between 
any two vectors of similar sizes.

We introduce the MSSI as an adaptation of MS-SSIM to spatial 
transcriptomics that compares count matrices from segmented cells, 
rather than pixels, using a neighbor graph of spatially neighboring cells 
to capture structure. Intuitively, MSSI is a spectral analog of MS-SSIM; 
by rephrasing image coarsening to its graph-based counterpart, we can 
apply it to segmented cells and produce a multiscale, spatially driven 
score of expression reconstruction quality.

MSSI compares the expression profiles of two genes from a 
multiplexed image: X = {xi}

N
i=1 and Y = {yi}

N
i=1, where the index i enumer-

ates segmented cells, and x and y can be either (1) two different genes 
or (2) a ground truth gene and its imputed value. In addition, the 
spatial coordinate of each cell is D = {Di}

N
i=1. We first compute the k 

nearest neighbor (kNN) graph G1 of segmented cells from {Di}
N
i=1. To 

generate a subsampled version of the kNN graph, we use a graph 
coarsening algorithm80, which pools nodes together based on their 
connectivity pattern, similarly to how image downsampling groups 
pixels together (Fig. 2c). We iteratively coarsen and blur the graph 
four times by a factor of 2 and produce the expression of every gene 
at each scale.

Mathematically, each coarsening step produces a pooled version 
of the graph {Gs}5s=2 and a coarsening operator {Cs}5s=2, which is the map-
ping between nodes at one scale to nodes at the next and allows us to 
generate pooled versions of the gene expression signals:

Xs+1,Ys+1 = CsXs,CsYs

After MS-SSIM, we compute the MSSI between the expression pro-
files at each scale and return their weighted geometric mean. In detail, 
we compute the l, c and s SSIM-related values at each scale and derive 
MSSI based on their weighted product, as for the MS-SSIM:

MSSI(X,Y,D) = l5(X
5,Y 5)

α5 4
∏
s=1

c(Xs,Y s)
αs s(X s,Y s)

αs ,

where the weights are equivalent to those in MS-SSIM45:

α = (0.0448, 0.2856, 0.3001, 0.2363, 0.1333)

When Xi,Yi are anti-correlated (σxy < 0), s is negative, which pre-
vents computing the weighted geometric mean; we, thus, clip negative 
values to 0. This implies that if, at any scale, Xs,Ys are anti-correlated, 
the MSSI will be 0, its lowest possible value. We also normalize the 
original-scale gene expression to be between 0 and 1 but do not 
re-normalize at each coarsening scale.

Spatial covariance representation
Our spatial covariance framework includes three components: the 
COVET statistic, a similarity metric and an algorithm to robustly and 
efficiently compute the COVET metric. The COVET framework assumes 
that the interplay between the cell and its environment creates cova-
rying patterns of expression between the cell and its niche, which can 
be formulated via the gene–gene covariance matrix of niche cells. 
The COVET statistic constructs a shifted covariance matrix (which 
preserves algebraic properties of the covariance matrix) and, thus, 
enables the use of any measure of statistical divergence between 
covariances to define a principled quantitative similarity metric to 
compare niches. The key is to build the COVET statistic in such a man-
ner that two COVET matrices are comparable and to design a compu-
tationally efficient algorithm to quantify the statistical divergence  
between them.

COVET. The inputs to COVET are (1) the gene expression matrices 
(X ∈ Rn×g), where n is the number of cells and g is the number of genes 
profiled; (2) the location of each cell in situ; and (3) a parameter (k) that 
defines the number of nearest cells to be included in the niche. For each 
cell, we identify its k nearest cells (excluding the cell itself) based on 
their spatial proximity and construct a niche matrix Ei = {Yij ∈
Rg| j ∈ kNN(i)}, which represents the gene expression vector for each of 
those nearest neighbors. This produces an n × k × g tensor Ω = {Ei ∈
Rk×g|i = 1,… ,n}, which combines the niche matrices of every cell.

The fundamental goal of COVET is to transform those niche matri-
ces into effective representations of a cell’s niche. To this end, we cal-
culate the ‘shifted’ gene–gene covariance matrix between cells in each 
niche matrix, where, instead of using the classical formulation

Σi
classic = Cov(Ei) =

1
k
(Ei − Ei)T(Ei − Ei)

we swap the niche mean expression Ei with the total expression average 
X  (computing the mean over the entire dataset). This enables direct 
comparison between covariance matrices, as they are constructed 
relative to the same reference:

Σi = ShiftCov(Ei) =
1
k
(Ei − X)T(Ei − X).

This creates a representation relative to the entire population, 
which can better highlight the features that are unique to each niche 
while also holding the same algebraic properties that the standard 
covariance matrix holds, namely being positive semi-definite (PSD). 
Therefore, we can harness measures of statistical divergence to derive 
a metric on the COVET matrices and quantify differences and similari-
ties between niches. Although we can conceptually use any statistical 
divergence measure, metrics such as Kullback–Leibler (KL) divergence 
and Bhattacharyya30 distance are too computationally intensive and 
lack interpretability.
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Distance between COVET matrices. To meaningfully compare 
between niches, we cannot simply use the sum difference between 
two niche matrices Ei and Ej, as changing the cells’ order would change 
the result (whereas there is no meaning to any given order). An intui-
tive way to quantify niche similarity is by finding the best matching 
of cells between niche matrices by solving the assignment problem81. 
Optimal transport (OT)82 is a relaxed version of the assignment prob-
lem, where, instead of matching cells one to one, OT finds the best ‘soft 
assignment’ between cells. However, because this approach has no 
closed-form solution and does not scale to large datasets, we can use 
the closed-form solution of OT between covariance matrices, known 
as the Fréchet distance29, instead:

The Fréchet distance has time complexity of O(k3) and is, thus, 
computationally intractable for large-scale datasets, which would 
require billions of pairwise computations between all niches. To speed 
up computation, we swap the matrix square root (MSQR) and product 
operation in the last term of the Fréchet distance and define the AOT 
distance as:

ΔAOT(Ei, Ej) = Tr(Σi) + Tr(Σj) − 2 ⋅ Tr (√Σi√Σj)

If Σi and Σj are commutative, this is no longer an approximation 
and ΔAOT = ΔFréchet. Both the approximate and true Fréchet distance 
require O(k3) operations between each pair of niches and O(n2 k3) to 
compute the full distance matrix; however, using the identity that for 
symmetric matrices, Tr(AB) = ∑γ,δ Aγδ ⋅ Bγδ, we arrive at:

ΔAOT(Ei, Ej) = ∑
γ,δ
(√Σiγδ ⋅ √Σiγδ +√Σjγδ ⋅ √Σjγδ − 2 ⋅ √Σiγδ ⋅ √Σjγδ)

= ∑
γ,δ
(√Σiγδ −√Σjγδ)

2
= ||√Σi −√Σj || 22

Therefore, when working in square root space, we do not require 
any computationally extraneous matrix multiplication and many cal-
culations of MSQR. Instead, we first calculate the MSQR of each COVET 
matrix, which is O(nk3, and then simply calculate pairwise (squared) 
Euclidean distance for a total time complexity of O(nk3 + n2k2), which 
is substantially more efficient than O(n2k3) for large n. For a given PSD 
matrix A, there could be many possible solutions B that fulfill the 
equation B2 = A. Although this underdetermination is problematic, 
there is a unique symmetric PSD solution for the MSQR83. This solution 
can be found via spectral decomposition and reconstructing with 
standard square root of the matrix eigenvalues:

√A = ∑
i
√λivivTi ,

where λi, vi are the eigenvalues/vector of A.
Because AOT can be formalized as the L22 between MSQR of COVET 

matrices, it allows for direct use of any algorithm that is based on the 
squared Euclidean distance, such as UMAP, tSNE84 and FDL58, clustering31 
and DC32 analysis. We can simply compute MSQR of the COVET matrices, 
flatten the resulting matrices into one-dimensional (1D) vectors and 
apply the default implementations of all the mentioned algorithms. We 
can further leverage the squared Euclidean distance representation of 
the AOT metric and use computational accelerators designed to com-
pute classical pairwise distances for additional speed gains.

We demonstrate that AOT is a good approximation by benchmark-
ing against the true Fréchet distance and the Bhattacharyya distance, 
another common metric for distances between covariance matrices. 
Across various sizes of random sets of 64 × 64 covariance matrices, 
we test the runtime to compute the 10 nearest neighbors matrix in 

covariance space. As covariance matrices are PSD, to randomly gener-
ate n covariance matrices of 64 × 64 elements, we first sample n random 
64 × 64 matrices (using the standard normal) and multiply each by its 
transpose, as a matrix Gramian is always PSD:

Σi
n
i=1 = {Xi ⋅ XTi }

n

i=1
;Xi ∼ N(0, I642×642 ).

We find that, whereas AOT produces accurate similarities, its 
runtime is at least an order of magnitude smaller than that of other 
metrics, with Fréchet and Bhattacharyya failing on sample sizes larger 
than 3,000 matrices due to out-of-memory error. Using a GPU imple-
mentation of kNN distance built for the Euclidean metric, which can be 
easily adapted for AOT, the spatial covariance metric is indeed scalable 
to massive datasets, taking less than 1 min to compute the kNN matrix 
between 100,000 samples (Extended Data Fig. 1a).

We observe accurate approximation on real COVET matrices, 
calculated from the eight nearest neighbors of the pharyngeal meso-
derm cells from the seqFISH assay37, using the 64 most variable genes 
among the 350 imaged. Despite its efficiency, AOT does not sacrifice 
accuracy and concurs highly with Fréchet. We calculate the pairwise 
distance between the pharyngeal mesoderm COVET matrices accord-
ing to Fréchet, AOT, Bhattacharyya and naive L2 between matrices. For 
each pharyngeal mesoderm cell, we find its k nearest neighbors for 
every metric and compute their Jaccard index with the Fréchet nearest 
neighbors. Across a wide range of k, AOT-based kNN is highly congru-
ent with Fréchet kNN, whereas Bhattacharyya and naive L2 distances 
are not (Extended Data Fig. 1b). Qualitatively, using Fréchet, AOT and 
Bhattacharyya pairwise distances to compute two-dimensional (2D) 
embeddings and PhenoGraph clusters for the COVET matrices returned 
similar results (Extended Data Fig. 1c,d).

Choice of k. By default, we select k = 8 neighbors to construct COVET, 
which usually captures the immediate niche of a cell, but the exact 
choice of k should reflect the data. For all datasets analyzed in this 
study, we kept the value of k at the default, demonstrating how finding 
the optimal k is not required to gain insights from ENVI and COVET. Still, 
given the computational efficiency of both algorithms, we recommend 
that users attempt a range of k values at different scales, such as 8, 20 
and 50. Users can visualize the ENVI-learned COVET representations 
with AOT and choose the most appropriate scale for their biological 
question. We also implemented an option for COVET to be computed 
on all cells within a given radius, rather than constant number of neigh-
bors, to account for differences in cell density within a tissue.

ENVI algorithm
The ENVI algorithm integrates scRNA-seq and spatial transcriptomics 
data into a common latent embedding, in a manner that can infer spatial 
context for scRNA-seq and missing genes for spatial data. The core 
assumption of ENVI is that the interplay between a cell’s phenotype and 
its microenvironment, as captured by the COVET matrix, empowers 
better data integration.

ENVI is grounded on autoencoder variational inference but 
diverges from previous work9,25,47. Although current methods only 
model the expression of genes included in both single-cell and spatial 
datasets, ENVI explicitly incorporates both microenvironment context 
for spatial data and expression of the full transcriptome for scRNA-seq 
data. In addition, ENVI contains two decoders: one for expression, 
which includes additional neurons that learn gene expression only 
from scRNA-seq data, and one to predict spatial context. Using these 
decoders, ENVI trains the VAE27 to reconstruct both full transcriptome 
expression and spatial context from partial transcriptome samples.

To integrate scRNA-seq and spatial data, ENVI learns a com-
mon latent space for both data modalities by marginalizing the 
technology-specific effect on expression via a CVAE28. It achieves this 
by augmenting the standard VAE with an auxiliary binary neuron in 
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the input layers to the encoding and decoding networks representing 
each data modality. Integration is crucial, as each modality harbors 
technology-specific artifacts (Extended Data Fig. 2a). ENVI takes as 
input the scRNA-seq count matrix Xsc with nsc cells and their full tran-
scriptome of gsc genes as well as counts of segmented cells from spatial 
transcriptomics matrix Xst from nst cells and gst imaged genes. The 
algorithm is agnostic to the method used to segment cells before input. 
It uses the spatial data to compute the COVET matrix for each cell and 
their MSQR to align with the AOT distance formulation.

Next, ENVI’s conditional autoencoder builds a shared latent space 
for both data modalities. As the combined embedding must incor-
porate spatial context and full transcriptome information and must 
remove confounders relating to modality, we set the latent dimension 
to 512, substantially larger than standard VAEs in single-cell genomics, 
which usually contain around 10 neurons25,34,35. As input to the encoder, 
ENVI takes either spatial or scRNA-seq samples (the latter reduced to 
the subset of genes that have been imaged), along with the auxiliary 
neuron c having value 0 for the spatial data and 1 for scRNA-seq. The 
expression profile along with the auxiliary neuron are transformed 
into the latent variable l using the same encoding neural network, 
regardless of data modality:

l = {
Enc(xst, c = 0) xst ∈ Xst
Enc(xsc, c = 1) xsc ∈ Xsc[∶, gst]

,

where the encoder returns two vectors, μl and σl, which parameterize 
a Gaussian with diagonal covariance describing the posterior distribu-
tion of the latent. To calculate gradients through random samples, we 
use the reparameterization trick, which involves generating a sample 
from the standard normal ε ~ N(0,1) and describing the latent through 
a function of ε, μl and σl and treating ε as a constant:

Through the training process, our goal is to have the latent encode 
not only gene expression but also information about the spatial context 
of a given cell while removing confounding effects to allow transfer 
learning between modalities. This is achieved by optimizing a single 
latent space to accurately decode both the full transcriptome and 
COVET matrix for both data modalities, each missing one of these 
components. The requisite that the latent space be capable of decoding 
the spatial niche imbues sufficient spatial information into the latent 
space during training.

The latent of either modality, along with the appropriate auxiliary 
neurons, is fed into the ‘expression’ decoder network DecExp. The loss 
function, calculated by comparing the activations in the output layer 
to the true expression profiles, needs to reflect the underlying distribu-
tion of each data modality. We use the negative binomial distribution 
to model scRNA-seq data, similarly to previous work25,36, as it suffers 
from overdispersion and dropout. During training, the scRNA-seq data 
provide transcriptome-wide expression; therefore, we can include 
genes whose expression was not provided to the encoder in the loss 
function, allowing our encoder to model genome-wide expression.

The negative binomial has two parameters per gene: the number of 
failures, r, and success probability, p. Thus, the output layer of the 
decoder consists of 2 ⋅ gsc neurons, where the first gsc neurons are the 
parameter r and the latter gsc neurons are p, using the ‘softplus’ nonlinear-
ity for r and the sigmoid function for p to keep it a valid probability:

p( ̂xsc = k|NB(r,p)) =
k + r − 1
r − 1 (1 − p)kpr

where

r,p = DecExp(l, c = 1)[∶, ∶ gsc],DecExp(l, c = 1)[∶, gsc ∶ 2gsc]

We use the Poisson distribution to model FISH-based multi-
plexed imaging data due to its high molecular capture rate3 and have 
the first gst neurons in the output layer parameterize the per-gene 
rate parameter λ using ‘softplus’ nonlinearity to ensure that it is a 
valid rate value:

P( ̂xst = k|Pois(λ)) =
λke−λ
k!

where

λ = DecExp(l, c = 0)[∶, ∶ gst]

A standard CVAE, in which all neural parameters are shared aside 
from the auxiliary neurons, is sufficient to simply integrate between 
scRNA-seq batches, as demonstrated in scArches34. However, to suc-
cessfully integrate scRNA-seq and multiplexed FISH-based technolo-
gies, a single auxiliary neuron is not sufficient to regress out all biases. In 
ENVI, only the first gst neurons of the output layer are shared by the two 
data modalities, whereas the rest are solely trained on the scRNA-seq 
data. These additional technology-specific parameters improve the 
ability of ENVI to regress out confounders from the latent embedding, 
beyond the auxiliary neuron.

Finally, ENVI includes an additional ‘environment’ decoder net-
work DecEnv whose role is to reconstruct the COVET from the latent, 
which can be trained from the spatial data. The output layer of the 
environment decoder has gspatial⋅(gspatial+1)

2
 output neurons parameterizing 

the lower triangular Cholesky factor. The Gramian matrix of the output 
layer is the mean parameter of a standard normal, reflecting our AOT 
distance, as the log likelihood of the standard normal is the L22 
distance.

P (Σ̂
1
2 = Σ

1
2 |N(L ⋅ LT, I )) = (2π−

g2spatial
2 ) ⋅ e−

1
2
‖Σ

1
2 −L⋅LT‖22 ,

where L = DecEnv(l).
The output of the environment decoder is the MSQR of the 

COVET matrix, which is trained to minimize the L22 error with the MSQR 
of the true COVET matrix. Using the AOT metric in this manner 
involves computing the MSQR of the COVET samples during training, 
which can be computationally prohibitive. Instead, we first calculate  
the MSQR of all COVET matrices, which ENVI is directly trained  
to reconstruct.

We train ENVI simultaneously on samples from both spatial and 
single-cell datasets, using mini-batch gradient descent on the vari-
ational inference loss. With the learned ENVI model, we impute miss-
ing genes for the spatial data by treating the latent embedding of the 
spatial data as if it were from the single-cell data, using the single-cell 
auxiliary variable and parameterizing as a negative binomial instead of 
a Poisson. Conversely, we reconstruct spatial context for the single-cell 
data by applying the ‘environment’ decoder on its latent, as if it was the 
latent of the spatial data.

In more detail, we train ENVI to optimize the evidence lower bound 
(ELBO) with a standard normal prior on the latent, with the goal of 
increasing the likelihood of the observed data {Xsc, Xst,Σst}  for the 
parameterization of their decoded distributions { ̂Xsc, ̂Xst, ̂Σst}  while 
minimizing the KL divergence between the latent distribution and 
N(0, 1):

L = lnNB(Xsc|r,p) + ln Pois(Xst|λ) + lnN(Σst|μEnv, I )

−βDKL(N{μl,σl},N{0, 1} )

To train ENVI to impute missing genes for the spatial data, we 
generate the latent embedding lst by passing Xst through the encoder, 
and run the latent layer through the ‘expression’ decoder, but with the 

http://www.nature.com/naturebiotechnology
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inverse auxiliary neuron, as if the embedding came from scRNA-seq 
data:

X Impst = E[NB(rst,pst)],

where

r,p = DecExp(lst, c = 1)[∶, ∶ gsc],DecExp(lst, c = 1)[∶, gsc ∶ 2gsc].

Similarly, we reconstruct the spatial context for dissociated 
scRNA-seq samples by passing the scRNA-seq latent embedding lsc 
through the ‘environment’ decoder:

XEnvsc = E [N(μEnvsc , 1)] whereμEnvsc = Lsc ⋅ LTsc, Lsc = DecEnv(lsc).

To allow flexibility in modeling technologies with different count 
distributions and molecular capture rates, we implemented the nor-
mal, Poisson, negative binomial and zero-inflated negative binomial 
(ZINB)85 distributions, which can be chosen for either modality to 
reflect pre-processing steps or varying levels of noise or dropout. The 
rate or mean parameters (λ for Poisson, r for NB and ZINB and μ for 
normal) must all be defined per cell and per gene and shared across 
the single-cell and spatial data. However, all other parameters can be 
chosen to be either per cell and per gene or simply per gene and can be 
either shared between technologies or made distinct.

By default, the encoder and two decoder networks consist of three 
hidden layers, each with 1,024 neurons. The latent embedding consists 
of 512 neurons, and the prior coefficient is set to β = 0.3. For small data-
sets whose total samples size is fewer than 10,000 cells, we recommend 
increasing the reliance on the prior and set β = 1.0. We train ENVI for 
two14 gradient descent steps with the ADAM optimizer86 with learning 
rate 10−3 (lowered to 10−4 during the last quarter of training steps) and 
a batch consisting of 1,024 samples, half taken from scRNA-seq and the 
other half taken from spatial data. To reduce computational complex-
ity, we subset the scRNA-seq dataset to the union of the 2,048 highly 
variable genes and all genes included in the spatial dataset rather than 
the full transcriptome.

ENVI training is constant in both time and memory, whereas meth-
ods such as Tangram and NovoSpaRc scale quadratically with dataset 
size and cannot be GPU accelerated on datasets above a few thousand 
cells. We benchmarked the run times of ENVI, Tangram9, NovoSpaRc26, 
gimVI25, uniPort47, deepCOLOR48 and Harmony49 on scRNA-seq data-
sets of various sizes and on osmFISH, seqFISH, Xenium and MERFISH 
datasets. All models were trained with their default parameters using a 
single 12 GB GeForce RTX 2080 GPU, except Tangram, which produced 
an out-of-memory error above 10,000 cells and was trained with a CPU 
instead. Model training was stopped prematurely if it exceeded 5 h.

As expected, ENVI’s training time was consistently around 10 min 
regardless of dataset size (Extended Data Fig. 2b), and Harmony was 
also constant in time. gimVI runtime grew linearly with dataset size (the 
model trained for a predefined number of epochs over the datasets), 
and NovoSpaRc and Tangram were prohibitively slow on larger spatial 
and scRNA-seq datasets (they learn a cell-to-cell mapping between the 
spatial and single-cell datasets). We found that GPU acceleration is not 
possible for Tangram. deepCOLOR and uniPort were also substantially 
slower than ENVI at larger cell numbers.

Evaluation of integration quality
Batch average silhouette width (bASW), introduced in a recent bench-
marking of batch integration methods for scRNA-seq atlases41, evaluates 
latent integration based on mixing between batches and co-localization 
of similar cell types within the latent. In brief, bASW computes, for each 
cell type, how well-mixed batch labels are using the silhouette coef-
ficient and returns the average across all cell types. By treating each 
modality as a different batch, we could use the bASW score to measure 

the quality of ENVI’s learned latent. The latent of ENVI is large, consisting 
of 512 neurons; because silhouette coefficient is affected by the curse 
of dimensionality, we first compressed the ENVI latent to the top 10 
principal components and computed bASW on them.

Benchmarking imputation
We benchmarked ENVI gene imputation following previous 
approaches25,44 that generate a test set of held-out genes using 
cross-validation and compared imputed and true expression using 
Pearson correlation and our spatially aware MSSI metric. We evaluated 
log expression and imputation profiles, with pseudocount 0.1.

Many algorithms use scRNA-seq data to impute missing genes in 
spatial transcriptomics data42,43,87–89. We compared ENVI to gimVI, Tan-
gram and uniPort for their competitive performance44,47, NovoSpaRc 
for its use of spatial context and optimal transport for data integration, 
deepCOLOR48 for its use of a deep generative model and Harmony49 for 
its prevalence as a batch correction method50.

On the osmFISH dataset, which includes only 33 genes, we per-
formed a full leave-one-out cross-validation by hiding every gene in 
the imaging panel individually and predicting its expression. On the 
seqFISH, MERFISH and Xenium datasets, which assay hundreds of 
genes, we used five-fold cross-validation, whereby the imaged gene 
set was divided into five random groups, and each model was tested on 
one withheld group after training on four. To appraise performance, 
we used a ‘relative’ one-sided t-test, as scores are paired across genes.

We benchmarked all models using their default parameters and 
instructions on all datasets:

•	 gimVI: We trained for 200 epochs with a batch size of 128 and 
latent dimension, per author recommendations (https://docs.
scvi-tools.org/en/stable/), and parameterized spatial and 
scRNA-seq datasets with NB and ZINB distributions, respec-
tively. To impute genes with the trained model, we followed 
manuscript instructions and trained a kNN regression model on 
the scRNA-seq latent and full transcriptome expression, setting 
k as 5% of cells in the single-cell dataset. We then applied the 
regression model on the spatial data latent to predict the expres-
sion of unimaged genes.

•	 Tangram: We trained for 1,000 epochs using default parameters 
(https://github.com/broadinstitute/Tangram). For osmFISH, 
seqFISH and Xenium datasets, we used the default ‘cells’ mode, 
and, for the much larger MERFISH atlas, we used the ‘cell-type’ 
mode, per the tutorial. We set the density prior to be uniform, as 
our spatial benchmark datasets are single-cell resolution. With 
the learned mapping, we used the ‘project_genes’ function to 
impute genes from scRNA-seq onto the spatial dataset.

•	 NovoSpaRc: We followed the repository instructions (https://
github.com/rajewsky-lab/novosparc), using an ‘alpha’ coefficient 
on a spatial location prior of 0.25 and smoothness parameter 
‘epsilon’ of 0.005. To compute the scRNA-seq pairwise distance 
matrix, we used the union of the 2,048 most variable genes and 
all genes in the spatial dataset. For spatial datasets consisting of 
multiple samples, we trained a different model on each sample. 
Because NovoSpaRc does not scale well to large datasets, we 
reduced the MERFISH-related scRNA-seq dataset to a tenth of its 
size, sampling uniformly across each cell type. We applied the 
learned mapping to impute missing genes using the ‘tissue.sdge’ 
function.

•	 uniPort: We replicated tutorial instructions for integrating 
spatial and single-cell datasets (https://uniport.readthedocs.
io/) by normalizing each dataset according to library size, log 
transforming counts, executing the ‘batch_scale’ function, train-
ing the model for 30,000 iterations with a ‘lambda_kl’ value of 
5.0 and, finally, predicting the expression of hidden genes using 
the ‘predict’ function.

http://www.nature.com/naturebiotechnology
https://docs.scvi-tools.org/en/stable/
https://docs.scvi-tools.org/en/stable/
https://github.com/broadinstitute/Tangram
https://github.com/rajewsky-lab/novosparc
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https://uniport.readthedocs.io/
https://uniport.readthedocs.io/
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•	 deepCOLOR: We trained for 500 epochs using default param-
eters from the tutorial (https://github.com/kojikoji/deepcolor). 
deepCOLOR does not directly impute unimaged genes, so we 
multiplied the resulting mapping matrix with the scRNA-seq 
expression of the hidden genes to predict their expression.

•	 Harmony: We treated spatial and single-cell datasets as sepa-
rate batches and integrated them using the default Harmony 
implementation in scanpy90 (https://scanpy.readthedocs.io/). 
We only included genes from the scRNA-seq data that were 
also in the spatial data (and removed test genes) to produce 
Harmony embeddings from the principal components of the 
concatenated dataset. Mirroring gimVI’s imputation procedure, 
we performed kNN regression on the Harmony embeddings to 
reconstruct expression of the manually hidden genes.

Impact of data sparsity on ENVI
To validate ENVI’s robustness to single-cell or count data sparsity, 
which can affect integration9, we benchmarked the full embryogenesis 
seqFISH and scRNA-seq data against random subsampling to 90% or 
80% of counts according to the binomial distribution. For all three 
datasets, we performed five-fold cross-validation (see the ‘Benchmark-
ing imputation’ subsection for details), finding that removing even 
20% of counts does not greatly impact ENVI performance, which still 
surpasses Tangram on the full dataset (Extended Data Fig. 2c). Using 
a kNN (k = 5) classifier trained to predict cell type from the scRNA-seq 
latent space, we assigned labels to the seqFISH data and measured bal-
anced accuracy compared to the original assignment, finding that the 
ENVI latent space remains reliable upon downsampling; datasets with 
higher sparsity are only slightly less accurate (Extended Data Fig. 2d).

FDL and DCs
FDL58 and DCs32 capture and visualize continuous trends in single-cell 
data19. We calculated FDL following the implementation in Van Dijk 
et al.91, by computing a kNN matrix (using default k = 30), converting 
to an affinity matrix using an adaptive Gaussian kernel with width = 30 
and k = 10, symmetrizing the matrix and using the ForceAtlas92 function 
‘force_directed_layout’ for visualization. DC computation followed a 
similar process to compute a data affinity matrix, except that we multi-
plied the affinity matrix by the inverse of its degree matrix to compute 
the normalized Laplacian. The eigenvectors of the Laplacian matrix, in 
order of eigenvalue magnitude, are the DCs.

Applying ENVI to seqFISH embryogenesis data
We started with pre-processed data from the E8.75 mouse gastrula-
tion study37, which included 351 genes measured with seqFISH (57,536 
imaged cells), and paired it with E8.5 scRNA-seq data (12,995 cells) 
from a second study38. We further processed the scRNA-seq data by 
removing mitochondrial genes, genes expressed in less than 1% of cells, 
cells with library size greater than 33,000 (set manually to match the 
knee point) and cells annotated as ‘nan’ or representing doublets. To 
avoid confounding batch effects50, we used only the largest scRNA-seq 
batch (labeled ‘3’). For the seqFISH dataset, we used only the first of 
three imaged embryos (‘embryo1’), removed cells with abnormally 
high total expression (threshold set manually to 600) and removed 
the gene Cavin3, which did not appear in the scRNA-seq dataset. For 
both datasets, we used cell type annotations provided by the authors 
and visualized the seqFISH data using spatial coordinates and the 
scRNA-seq data using a UMAP embedding (Fig. 2a). We also renamed 
several cell types to resolve nomenclature differences, including chang-
ing presomitic mesoderm to somitic mesoderm and splanchnic meso-
derm to pharyngeal mesoderm.

We trained ENVI on the union of the 2,048 most variable genes 
in the scRNA-seq data, all seqFISH-measured genes, all HOX genes 
and several organ markers (Supplementary Table 1) using default 
parameters. We visualized the learned latent posterior of the seqFISH 

and scRNA-seq datasets using UMAP and found that cell types tend to 
co-embed regardless of modality (Fig. 2b).

To test the imputation of unimaged canonical organ markers 
Ripply3 (ref. 51) (lung), Nkx2-5 (ref. 52) (heart) and intestine Tlx2 (ref. 
53) (intestine), we visualized their imputed z-scored, logged expres-
sion and thresholded values lower than 2, finding almost exclusive 
expression in the correct organ (Fig. 2f). To confirm that expression in 
the correct location at E8.75, before organ formation, we imaged each 
marker gene using whole-mount HCR (Fig. 2f; see the ‘Whole-mount 
HCR’ subsection). HCR produces per-gene three-dimensional (3D) 
images, which we oriented coronally to match the seqFISH data. We 
similarly trained gimVI and Tangram on the complete scRNA-seq and 
seqFISH datasets to impute Ripply3, Nkx2-5 and Tlx2 and visualized 
as for ENVI imputation, finding that ENVI imputation more closely 
matches the experimental data (Extended Data Fig. 3b).

Spatial organization of emerging organs
At E8.5, scRNA-seq cell clusters correspond to primordial endodermal 
organs, ordered by where they will later emerge along the gut tube55. 
We identified organ-specific gene sets (Supplementary Table 2) by 
using the ‘rank_genes’ function in scanpy91 to apply a Wilcoxon test for 
differentially expressed genes in each organ in a reference scRNA-seq 
endodermal atlas55. Thymus and thyroid are not well delineated at 
this stage, so we collapsed them into a single thymus/thyroid label, 
and we assigned small intestine and colon cells to a single ‘intestine’ 
label to avoid inconsistencies, as the seqFISH tissue section does not 
include colon37.

We used PhenoGraph to cluster the scRNA-seq gut tube cells 
into 12 clusters and labeled clusters by best matching organ based 
on z-scored and logged expression of each gene set, averaged across 
all cells in that cluster. Most clusters are highly distinct, whereas 
some co-express several programs. We labeled clusters for which the 
(z-scored) ratio between the highest and second-highest expressed 
gene set is above 1.5 with the most highly expressed organ. To assign 
ambiguous clusters with ratios below 1.5, we inspected marker expres-
sion individually:

•	 Cluster5: Thymus/thyroid gene set expression is highest, but 
because lung marker Ripply3 (ref. 51) and Irx1 (ref. 93) expres-
sion is high (average z-score logged expression, 0.90) while thy-
mus/thyroid marker Nkx2-1 (refs. 52,94) is low (−0.15), we labeled 
Cluster5 as ‘dorsal lung’ (second-highest expressing organ).

•	 Cluster6: Dorsal lung gene set expression is highest, with pan-
creas a close second. Because the cluster has minimal Ripply3 
and Irx1 expression (0.18) but is enriched for pancreas marker 
Pdx1 (ref. 95) expression (0.43), we labeled Cluster6 cells as 
pancreas.

•	 Cluster7: Pancreas and liver gene set expression is highest and 
second highest, respectively. Due to high Pdx1 expression (0.99) 
and low liver marker Ppy96 expression (−0.12), we kept the pan-
creas label for this cluster.

We inferred COVET representations for the scRNA-seq gut tube 
cells using the trained ENVI model and then measured pairwise AOT 
distances between the conjoined set of seqFISH and scRNA-seq COVET 
matrices to generate UMAP embeddings and PhenoGraph clusters. The 
data generated seven COVET clusters (CC0–CC7), which are highly 
congruent with emerging organs in the scRNA-seq data, indicating 
their spatial delineation (Extended Data Fig. 4a): thymus/thyroid cells 
were assigned to CC0 (75%) or the spatially proximal CC1 (17%); dorsal 
lung cells were assigned to CC1 (52%) or CC0 (36%); ventral lung cells 
were assigned to CC2 (62%) or the highly related clusters CC1 (12%) or 
CC3 (19%); liver cells were assigned to CC2 (94%); pancreas cells were 
assigned to CC3 (58%) or the related cluster CC2 (26%); and intestine 
cells were assigned almost entirely to CC4–CC7, with only 1% assigned 
to CC3.

http://www.nature.com/naturebiotechnology
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Gut tube cells in the seqFISH data were assigned organ labels via 
their COVET representations. We fit an AOT metric kNN classifier (k = 5) 
on the scRNA-seq ENVI COVET matrices and their organ labels and 
used the classifier to assign budding organ labels to seqFISH COVET 
(Fig. 3a). Projecting labels back onto their seqFISH coordinates reveals 
the spatial pattern of organogenesis, from thymus/thyroid to the lung 
compartments, liver, pancreas and intestine and colon from anterior 
to posterior (Fig. 3b).

To calculate average COVET matrices predicted by ENVI 
(scRNA-seq organs) or measured directly (seqFISH), we compute the 
AOT average for the matrix set by calculating the matrix square of 
mean of their MSQR:

ĈOVET = ( 1n
n
∑
1
√COVETi)

2

Mean COVET matrices are highly congruent between the two 
datasets for both dorsal and ventral lung cells, although the scRNA-seq 
COVET matrices are slightly smoother as they were inferred by ENVI 
rather than measured (Fig. 3c). To find gene groupings, we performed 
hierarchal clustering on the 64 genes in each mean COVET matrix, 
finding that Dlk1, Gata4, Gata5, Aldh1a2 and Foxf1 covary in the ventral 
lung COVET but not in the dorsal lung, whereas Tagln, Six3, Thbs1, T and 
Epcam1 exhibit the opposite pattern.

We generated clusters of each COVET matrix by plotting their 
average expression in cells near the anterior gut tube (fewer than 50 
distance units away), but not the gut tube itself, and found that ven-
tral niche genes are enriched in the pharyngeal mesoderm, whereas 
dorsal niche genes localize to brain and cranial mesoderm (Fig. 3d). 
As pharyngeal mesoderm is ventral to the gut, and brain and cranium 
are dorsal, the uniquely covarying genes in the COVET matrices allow 
us to reconstruct each lung compartment’s spatial context.

We also assigned budding organs using integration methods that 
do not model spatial context (gimVI and Tangram) and computed ENVI 
without COVET to highlight the importance of explicit modeling of 
microenvironment:

•	 gimVI: We trained gimVI on the full embryogenesis scRNA-seq 
and seqFISH datasets using defaults in the ‘Benchmarking 
imputation’ subsection (10 latent dimension, 200 epochs, NB 
for spatial and ZINB for single cell). We took the subset of gut 
tube cells in each modality from the learned latent embedding 
of scRNA-seq and seqFISH data and similarly learned a kNN clas-
sifier (k = 5) from the single-cell latent and organ assignment, 
using it to predict labels on the spatial latent.

•	 Tangram: Using parameters in the ‘Benchmarking imputation’ 
subsection (1,000 epochs, uniform density prior, ‘cells’ mode), 
we trained Tangram to learn a mapping matrix from scRNA-seq 
to spatial data. We subset the Tangram matrix to the map-
ping from scRNA-seq gut tube to seqFISH gut tube cells and 
re-normalized the columns to sum to 1. We transferred organ 
labels using Tangram’s ‘ project_cell_annotations’ function, 
which uses the subsetted mapping matrix to calculate the prob-
ability of each organ being assigned to each seqFISH gut tube 
cell, and we labeled according to the most probable organ.

•	 ENVI without COVET: We retrained ENVI to solely reconstruct gene 
expression profiles, excluding any COVET-related information. 
A kNN classifier (k = 5) on the learned latent was used to transfer 
organ labels from the scRNA-seq gut tube onto seqFISH cells.

Due to the lack of gene vocabulary and small number of gut tube 
cells, other methods could not assign labels as reliably as ENVI: gimVI 
failed to delineate dorsal lung from thymus/thyroid cells and missed 
almost all liver cells, and Tangram’s labeling lacked coherent spatial 
structure (Extended Data Fig. 4b). Without COVET, ENVI was unable to 
distinguish between ventral lung and liver, although its results most 

closely resembled the COVET-based assignment and known organ 
organization.

ENVI robustness to neighborhood size
The optimal number of neighbors used to construct COVET depends on 
dataset features and desired analysis (see the ‘Spatial covariance repre-
sentation’ subsection), but ENVI is nevertheless robust to variations of 
this parameter. For the seqFISH dataset, we calculated COVET matrices 
with k = 6, 8, 10 or 12 nearest neighbors (original, k = 8) and retrained 
ENVI on each representation. For each of the four ENVI models, we 
assigned organ labels onto the seqFISH gut tube cells, again using 
a kNN classifier on COVET matrices in AOT space. Despite doubling 
neighborhood size and inherent stochasticity in training deep learn-
ing models with batch gradient descent, all versions reliably assigned 
cells to spatial context (Extended Data Fig. 5a). Although there are 
some differences, even the worst-performing mode (k = 6), which 
mislabeled many dorsal lung cells as thymus/thyroid, is more accurate 
than competing methods (Extended Data Fig. 4b).

AP polarity of developing spine and NMP cells
Spinal cord cells and their NMP precursors in the seqFISH data (total, 
2,830 cells) span the embryo AP axis and make up a substantial frac-
tion of cells in the scRNA-seq data (1,289 cells, 10% of total). To gauge 
whether ENVI can correctly map these cells and spatial trends along 
the AP axis, we first combined empirical seqFISH and ENVI-inferred 
scRNA-seq COVET matrices from spine and NMP cells and computed 
DCs via eigendecomposition of the Laplacian of the AOT kNN (k = 30) 
graph in COVET space. We then compared to DCs of spatial coordinates 
of seqFISH spine and NMP cells, calculated using a kNN (k = 30) graph 
with standard Euclidean distance, finding that pseudo-AP coordinates 
based on COVET DC are highly congruent with true AP coordinates 
based on seqFISH DCs (Fig. 4b and Extended Data Fig. 6a) and (logged) 
expression of known posterior and anterior genes (Fig. 4c,d).

We attempted to reconstruct pseudo-AP axes for gimVI and Scano-
rama. For gimVI, we used the model trained on the complete embryo-
genesis datasets and subset the learned gimVI combined latent to only 
the spine and NMP cells from the spatial and scRNA-seq datasets. We 
calculated the top three DCs from the latent embeddings and found 
that DC 2 was most correlated with true AP polarity (seqFISH spine 
and NMP cells), r = 0.76. Scanorama is designed for batch integra-
tion and uses mutual nearest neighbors to directly correct the gene 
expression count matrix and remove batch effect. Following scanpy 
instructions (https://scanpy.readthedocs.io/en/stable/), we applied 
Scanorama to produce integrated count matrices of the seqFISH and 
scRNA-seq spine and NMP cells. We computed DCs from the combined 
Scanorama-corrected scRNA-seq and spatial datasets and found that 
DC 3 is most correlated with true AP, r = 0.70. Unlike ENVI, both of 
these methods produced spine and NMP cells in the posterior with low 
DC values (Extended Data Fig. 6b). We note that, because DC order is 
arbitrary, we reversed any DC negatively correlated with the true AP. 
Tangram was excluded from this analysis as it does not calculate a 
combined embedding from which we can recover a pseudo-AP axis.

To assess the accuracy of pseudo-AP mapping, we ordered 
scRNA-seq spinal cells by pseudo-AP value and examined expression 
of canonical markers Rfx4 (ref. 63) (anterior), Hoxaas3 (ref. 61) (poste-
rior) and Hoxb7 (ref. 64) (posterior) (Fig. 4e). Gene expression values 
were logged and z-scored, and ordered profiles were smoothed with a 
first-order Savitzky–Golay filter with window size 128 for visual clarity.

To determine the quality of the pseudo-AP axis predicted for 
scRNA-seq spinal cells by each method, we calculated its correlation 
with the logged expression of known posterior genes Hoxaas3, Hox-
b5os61, Hoxb9 (ref. 60), Hoxb7 and Tlx2 (ref. 97) and anterior genes 
Foxa3 (refs. 98,99), Hoxd3 (ref. 59), Hoxa2 (refs. 100–102), Rfx4 and 
Hoxd4 (Extended Data Fig. 6c), providing a quantitative recapitulation 
of pseudo-AP-ordered expression (Fig. 4e).
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Inferring Sst neuron cortical depth with MERFISH
We used the BICCN’s 252-gene MERFISH primary motor cortex atlas40 
and its matching scRNA-seq reference70 to demonstrate ENVI in a 
tissue-wide context. For the single-cell data, we removed cells lacking 
cell type annotations or labeled as doublets or low quality, leaving 
71,183 cells across three samples, and removed genes that both (1) 
appear in less than 5% of cells and (2) are not in the MERFISH panel. 
For the MERFISH data, we included all 12 samples, for a total of 276,556 
cells from 64 motor cortex slices, and we removed cells lacking a cell 
type label and the genes Crispld2 and Igf2, as they were absent from 
the scRNA-seq data, but avoided any additional pre-processing. 
Both spatial and scRNA-seq datasets were labeled into neuronal and 
non-neuronal cell types. For brevity and consistency between data-
sets, we relabeled the MERFISH GABAergic neurons from ‘Sst-chodl’ 
to ‘Sst’ and collapsed the ‘PVM’, ‘macrophage’ and ‘microglia’ labels 
to ‘microglia’.

We used five-fold cross-validation to benchmark ENVI imputation 
against Tangram, gimVI, NovoSpaRc, uniPort, Harmony and deep-
COLOR with default parameters (see the ‘Benchmarking imputation’ 
subsection), except that we applied Tangram with ‘cell-type’ mode, 
which averages single-cell data per cell type, and ran NovoSpaRc inde-
pendently for each slice, subsampling scRNA-seq data to 10% of each 
original size, because these methods do not otherwise scale to these 
data. ENVI MSSI and Pearson correlations were significantly higher 
than other methods (Extended Data Fig. 7a), and ENVI imputation of 
unimaged genes matches ISH from the Allen Brain Atlas (Extended 
Data Fig. 7b).

The full transcriptome information in scRNA-seq data allowed 
finer subtyping than the 22 cell types in the MERFISH dataset. Specifi-
cally, we further divided the Sst interneurons into nine subtypes and 
extracted gene sets for each subtype using the scanpy ‘rank_genes_
group’ function. For the subset of MERFISH genes present in each 
gene set, we calculated average expression in every MERFISH Sst cell. 
We measured the pairwise correlation between gene sets within each 
modality and found that each subtype was delineated much more spe-
cifically in the single-cell data (Fig. 5b). We quantified this by computing 
the per-gene-set entropy across the pairwise correlation matrix, after 
normalizing with ‘softmax’. The entropy for each gene set was higher 
in the MERFISH data, demonstrating the lack of distinction between 
subtypes.

To map the labeled scRNA-seq Sst interneurons to their cortical 
depth, we embedded ENVI-imputed scRNA-seq COVET matrices and 
MERFISH COVET matrices into DCs and FDL via a kNN graph (k = 100) 
on AOT distance. The first COVET DC corresponds to pseudodepth and 
matches the cortical depth of MERFISH cells visualized on a single slice 
(Fig. 5c) and aligns with the primary axis of the COVET FDL (Fig. 5d). 
For each scRNA-seq Sst neuron, we predicted cortical depth using the 
pseudodepth axis (COVET DC 1), grouped the results by subtype and 
plotted their distribution (Fig. 5e).

osmFISH imaging of somatosensory cortex
We applied ENVI to a 33-gene osmFISH dataset (4,530 cells, one sample) 
and complementary scRNA-seq dataset (30,005 cells) of the soma-
tosensory cortex3, using the authors’ cell type annotations and no 
additional processing besides removing genes expressed in less than 
1% of cells in the scRNA-seq data (Extended Data Fig. 8a). As osmFISH 
data are more dispersed than MERFISH and seqFISH (Extended Data 
Fig. 2a), we modeled them with the negative binomial instead of the 
Poisson distribution. Due to the limited size of the scRNA-seq dataset, 
we changed its parameterizing distribution from NB to ZINB. Because 
the total sample size is small (fewer than 10,000 cells), we also increased 
the reliance on the prior latent distribution and increased the regu-
larization to β = 1.0, which is common practice in Bayesian modeling.

We visualized and compared the ENVI and gimVI learned latent 
spaces with a UMAP embedding labeled by cell type annotations from 

the osmFISH and scRNA-seq datasets. The ENVI embedding separates 
distinct cell types, with similar labels from the two data modalities 
occupying similar spaces (Extended Data Fig. 8b), whereas gimVI 
confuses oligodendrocytes and pyramidal neurons and cannot accu-
rately co-embed osmFISH and scRNA-seq endothelial cells (Extended  
Data Fig. 8c).

We quantified integration quality and calculated the average 
center-of-mass embedding for each cell type, from both seqFISH and 
MERFISH datasets, in the gimVI and ENVI embedding spaces. ENVI 
and gimVI latent dimensions are vastly different in size (512 for ENVI 
compared to only 10 for gimVI), so we normalized each column in the 
pairwise distance to a maximum value of 1. In the ENVI latent, the center 
of mass for each osmFISH cell type is distinctly closer to its counterpart 
in the scRNA-seq data compared to other cell types, whereas cell types 
are less well separated in the gimVI latent (Extended Data Fig. 8d). For 
each cell in the scRNA-seq data, we quantified this as the ratio of its five 
osmFISH nearest neighbors in the latent space that share its cell type 
and averaged across the six cell types. The latent cell type agreement 
was 0.58 for ENVI and 0.38 for gimVI.

Using leave-one-out cross-validation, ENVI outperformed alterna-
tive methods on spatial imputation (Extended Data Fig. 8e). We further 
imputed the expression of three unimaged genes onto the osmFISH 
dataset using the full ENVI model (Extended Data Fig. 8f) and validated 
by comparing them to Allen Brain Atlas ISH images of the somatosen-
sory cortex. ENVI imputation and ISH images both specify Dti4l, Rprm 
and Ndst expression in the L2/3, L5–L6 and CA1 regions, respectively. 
The Allen Brain Atlas provides both raw ISH images and processed, 
cell-segmented expression profiles. Because each view is difficult to 
interpret on its own, we overlaid the processed profiles on top of the 
raw ISH images for clarity.

Xenium data analysis of LM
We assayed a slice of mouse brain bearing a LM of melanoma using 
snRNA-seq and Xenium (see the ‘Generation of mouse melanoma LM 
FFPE-snRNA-seq and Xenium datasets’ subsection). Raw Xenium imag-
ing data were processed using the default pipeline provided by 10x 
Genomics16 to produce a segmented cell-by-gene count matrix. In 
brief, nuclear segmentation was applied on DAPI stains, and all RNA 
molecules in each segmented mask and within a 15-μm dilation were 
assigned to cells to compose a count matrix.

We further filtered the Xenium data by removing cells with library 
size less than 10 and more than 300 and kept only genes that were in the 
snRNA-seq data. For the snRNA-seq data, we only kept cells with library 
size less than 10,000 and removed mitochondrial genes and any gene 
expressed in less than 5% of cells, unless it was in the Xenium panel. 
Finally, we removed any doublets predicted by DoubletDetection103 
from either dataset, followed by median library size normalization 
on the snRNA-seq data. This process resulted in 243 genes captured in 
74,132 cells in the Xenium dataset and 9,230 genes sequenced in 9,870 
cells by snRNA-seq.

To assign cells to cell types, we independently clustered each 
dataset with PhenoGraph and searched for per-cluster marker genes 
using the scanpy ‘rank_genes_groups’ function. We first labeled Xenium 
data by neuron, endothelium, oligodendrocyte, tumor, astrocyte 
and immune/fibroblast groups. We then reclustered neurons and 
annotated into excitatory and inhibitory compartments according 
to expression of Slc17a7 and Gad1 and separated immune/fibroblast 
into immune cells and fibroblasts. The snRNA-seq data followed a 
similar hierarchical process, except that fibroblasts and immune cells 
were distinguished in the first round of clustering. According to an 
independently curated set of genes for each group75, our cell typing 
matched known transcriptional markers (Extended Data Fig. 9a). We 
benchmarked ENVI imputation against competing methods as for other 
methods (see the ‘Benchmarking imputation’ subsection), finding 
that ENVI outperforms all methods except for Harmony according to 
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Pearson correlation but does equally well according to MSSI (Extended 
Data Fig. 9b).

To evaluate cell type label transfer from snRNA-seq to Xenium 
data for ENVI, gimVI, Harmony, deepCOLOR and uniPort, we fitted a 
kNN (k = 5) classifier on the snRNA-seq latent to predict cell type labels 
and used it to assign labels to the Xenium data. Tangram does not use 
a latent, so we used its ‘project_cell_annotations’ function and labeled 
each Xenium cell according to the most probable snRNA-seq cell type 
mapped to it. NovoSpaRc does not assign cell type labels and was not 
compared. We measured transfer accuracy with balanced accuracy, 
the per-cell-type arithmetic mean of precision and recall, averaged 
across cell types (Extended Data Fig. 9c). ENVI transferred information 
as accurately as Tangram, uniPort and Harmony and was only slightly 
superseded by gimVI, validating our cell type annotation label transfer.

To uncover the relationship between phenotype and environment 
for each cell type in the Xenium dataset, we measured the agreement 
between clusters derived from expression (phenotype) and COVET 
representations (environment). Because non-parametric methods are 
biased by sample size, for each cell type we performed k-means (k = 5) 
clustering on the logged expression of its cells and separately on its 
COVET representations. Each clustering was performed 10 times with 
random starting points. For each cell type, pairwise adjusted Rand 
index (ARI) was computed between each expression and COVET clus-
tering, for a total of 100 values, and we reported their mean (Fig. 6c).

Unlike excitatory neurons, whose localization pattern is mir-
rored in their transcriptional profiles, the niche of immune cells in 
the Xenium dataset (canonically either brain-resident microglia or 
tumor-colonizing macrophages75) was not reflected in their gene 
expression. We attempted to divide the immune cells into macrophages 
or microglia (Supplementary Table 4) by computing the average logged 
expression of each cell type marker gene set in PanglaoDB75 for every 
immune cell in the snRNA-seq and Xenium datasets, using only the 
subset of genes present in the Xenium assay (Fig. 6d). The high degree 
of overlap between macrophage and microglia genes in the spatial data 
may explain why, unlike the snRNA-seq data, expression and microen-
vironment corresponded poorly for immune cells.

We mapped annotated snRNA-seq immune cells to spatial context 
using the COVET predictions from ENVI. PhenoGraph clustering of 
snRNA-seq and Xenium immune COVET representations revealed 
major microenvironment clusters C0, representing immune cells in 
the cortex surrounded by excitatory neurons, with 80% of snRNA-seq 
cells annotated as microglia; C1, representing immune cells in the basal 
ganglia, dominated by inhibitory neuron environments, with 80% of 
snRNA-seq cells annotated as microglia; and C2, representing cells 
in and around the tumor, with 90% of snRNA-seq cells annotated as 
macrophages. These strong associations predict that macrophages 
are localized to the tumor and its boundary, whereas microglia localize 
mainly to basal ganglia and cortex, recapitulating the known tendency 
for brain tumors to recruit bone-marrow-derived macrophages76,77.

For further interpretability, ENVI can also invoke the inferred 
COVET representations and explicitly predict the microenvironment 
composition of each snRNA-seq cell. For each cell in the Xenium data-
set, we counted the instance of each cell type within its k = 8 nearest 
neighbor microenvironment, resulting in a nXenium by |C| matrix titled 
M, where |C| = 8 is the number of distinct cell types. We then fit a kNN 
(k = 5) regression model to predict M from COVET representations of 
the Xenium data. The trained model was applied to the COVET matrices 
that ENVI predicted for the snRNA-seq data to infer the distribution of 
cell types in each cell’s niche. As for COVET-based clusters, macrophage 
niches predicted from the snRNA-seq data were highly enriched for 
tumor cells, whereas microglia niches contained more inhibitory neu-
rons and oligodendrocytes (Fig. 6g).

ENVI can also be extended to identify markers of different mac-
rophage types. Remsik et al.75 identified Ccr2, Ms4a4c and Lst1 as infil-
trating monocyte markers based on cellular indexing of transcriptomes 

and epitopes by sequencing (CITE-seq) analysis. ENVI imputation of 
these genes on Xenium immune cells is indeed specific to cells within 
the tumor (Fig. 6h).

Despite accurately transferring cell type information and imput-
ing missing genes (Extended Data Fig. 9b,c), the absence of direct 
spatial modeling prevents gimVI and Harmony from reliably inferring 
subtype-specific microenvironments. We clustered gimVI embed-
dings of snRNA-seq and Xenium immune cells and found no obvious 
tumor-related cluster; 90% of snRNA-seq macrophages and 68% of 
microglia were assigned to gimVI cluster C1, prohibiting clear assign-
ment of subtype to microenvironment (Extended Data Fig. 9d,e). Simi-
larly, gimVI imputation of tumor infiltration genes did not distinctly 
enrich for immune cells within the tumor, and, despite outperforming 
ENVI according to Pearson correlation on imaged genes, Harmony 
also failed to accurately impute the expression of tumor-infiltrating 
markers (Extended Data Fig. 10).

Experimental methods
Whole-mount HCR. Whole-mount HCR mRNA in situ was performed 
as described previously54, with minor modifications104. Mid-gestation 
embryos at E8.75 were treated with 10 μg ml−1 proteinase K for 5 min at 
room temperature, followed by washing and post-fixation in 4% para-
formaldehyde (PFA) for 20 min. Embryos were incubated in hybridiza-
tion buffer supplemented with 2 pmol of each probe (Ripply3, Nkx2-5 
or Tlx2) overnight at 37 °C, followed by an amplification step with 
60 pmol of each fluorophore-conjugated hairpin for 12–16 h at room 
temperature. Embryos were then stained with 0.5 μg ml−1 DAPI (Thermo 
Fisher Scientific) and cleared using a modified Ce3D+ clearing proto-
col105 for 24–48 h. Images were acquired on a Nikon A1R laser scanning 
confocal microscope with a ×10 objective and 3.0-μm z-step size. Image 
rendering and optical sections were generated using IMARIS (version 
9.9.0, BitPlane). All probes, hairpins and buffers were designed by and 
purchased from Molecular Instruments.

Generation of mouse melanoma LM FFPE-snRNA-seq and Xenium 
datasets. Animal studies were approved by the Memorial Sloan Ketter-
ing Cancer Center Institutional Animal Care and Use Committee under 
protocol 18-01-002. Mice were housed in specific pathogen-free condi-
tions, in an environment with controlled temperature and humidity, 
on a 12-h light/dark cycle (lights on/off at 6:00/18:00), and with access 
to regular chow and sterilized tap water ad libitum. For this study, an 
8-week-old female C57Bl/6-Tyrc-2 mouse (The Jackson Laboratory, 
000058, albino C57Bl/6) was injected with 500 B16 LeptoM cells intra-
cisternally, as described in Remsik et al.74. Two weeks after the injection, 
the mouse was deeply anaesthetized and transcardially perfused with 
PBS (MSK Media Core). Tissues, including the brain, were dissected 
and immediately placed into a tube containing histology-grade PFA 
(4%; Sigma-Aldrich, HT501128). After overnight incubation, tissue was 
rinsed with water and submerged in 70% ethanol. The brain was cut 
coronally into four 2–3-mm-thick sections, placed into a tissue car-
tridge and embedded in formalin using routine, automated procedure. 
The embedded tissue was stored at room temperature.

For snRNA-seq-FFPE, a 100-μm-thick section of tissue was 
pre-processed on a prototype Singulator system. The sample was 
automatically processed in a NIC+ cartridge (S2 Genomics, 100-215-
389) by three 10-min deparaffinization steps (CitriSolv, VWR), rehy-
drated by successive 1-ml washes of 100%, 100%, 70%, 50% and 30% 
ethanol and followed by two washes of PBS. The sample was then spun 
at 1,000g for 3 min and resuspended in 0.5 ml of Nuclei Isolation Rea-
gent (NIR, S2 Genomics, 100-063-396) with 0.1 U ml−1 RNase inhibitor 
(Protector, MilliporeSigma, 3335399001); all subsequent solutions 
had RNase inhibitor. The sample was dissociated to single nuclei in a 
second NIC+ cartridge with 2 ml of NIR for 10 min, followed by a 2-ml 
wash with Nuclei Storage Reagent (NSR, S2 Genomics, 100-063-405). 
The single-nucleus suspension was spun at 500g for 5 min, resuspended 
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in NSR and counted, and then snRNA-seq was performed on the Chro-
mium instrument (10x Genomics) following the user guide manual for 
Chromium Fixed RNA Kit, Mouse Transcriptome (SinglePlex). Final 
libraries were sequenced on an Illumina NovaSeq S4 (R1: 28 cycles; i7: 
eight cycles; R2: 90 cycles).

To perform Xenium spatial profiling, FFPE mouse brain tissue adja-
cent to that used for snRNA-seq was sectioned into 5-μm-thick slices 
with a microtome and placed onto the sample area of a Xenium slide 
(10x Genomics). Profiling was conducted following the 10x Genomics 
User Guide (CG000578, CG000580 and CG000582). In brief, tissue 
slices were baked at 42 °C for 3 h and stored overnight in a desiccating 
chamber. The tissue was then deparaffinized, serially rehydrated and 
de-crosslinked, before overnight hybridization with gene-specific pad-
lock probes (Mouse Brain Panel, 10x Genomics). After this, the probes 
were ligated and amplified to generate the rolling circle amplification 
(RCA) product, which was then prepared for imaging with the Xenium. 
Before imaging, tissue autofluorescence was suppressed, and DAPI 
was applied as counterstain. The Xenium was loaded with the neces-
sary reagents for decoding the RCA products, in conjunction with the 
selection of regions of interest for imaging based on the DAPI images 
captured by the Xenium.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data and processed count matrices for snRNA-seq 
from brain tissue bearing a leptomeningeal metastasis are publicly 
available in the Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE246395. Segmented and 
processed Xenium data are publicly available through Zenodo (https://
zenodo.org/) under accession number 10712720.

Code availability
ENVI and COVET are available as Python packages at https://github.
com/dpeerlab/ENVI and can be directly installed via ‘pip’ with the com-
mand ‘pip install scENVI’. A Jupyter notebook with an ENVI tutorial that 
reproduces motor cortex MERFISH results is available at github.com/
dpeerlab/ENVI/blob/main/MOp_MERFISH_tutorial.ipynb.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Approximate optimal transport (AOT) yields similar 
results to optimal transport and Bhattacharyya distance, but more 
efficiently. a, Run times for computing the kNN graph between sets of randomly 
generated covariance matrices at various sample sizes. Both axes are in log scale. 
Fréchet and Bhattacharyya run times are not shown for samples larger than 
4,000 cells due to out-of-memory error on a 768-GB, 64-core computing cluster. 
b, Agreement between the true Fréchet and AOT, Bhattacharyya and standard 

L2 kNN graphs, expressed as Jaccard Index values and computed on COVET 
matrices of pharyngeal mesoderm cells in the seqFISH embryogenesis dataset. 
c, COVET UMAP embeddings and PhenoGraph clustering of seqFISH pharyngeal 
mesoderm by different metrics, colored by PhenoGraph clusters of each. d, 
seqFISH data from pharyngeal mesoderm, colored by PhenoGraph clustering of 
COVET matrices according to each distance metric. Bhat, Bhattacharyya.
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Extended Data Fig. 2 | Modality-specific data features, run times and impact 
of sparsity on data integration. a, Examples of three genes that exhibit very 
different expression distributions between four spatial datasets and their 
matching scRNA-seq data. b, Run time of spatial and single-cell integration 
methods on real datasets of different sizes. Programs were manually terminated 
at 5 h (18,000 s). c, Benchmarking ENVI imputation of the full embryogenesis 

seqFISH and scRNA-seq dataset against 80% and 90% subsampled versions, as 
well as Tangram (Tg) on the full dataset as reference. Boxes and lines represent 
interquartile range (IQR) and median, respectively; whiskers represent ±1.5 x IQR. 
d, Ability of ENVI to transfer cell-type label information from scRNA-seq to spatial 
data (datasets as in c). ENVI retains cell-type information in the integrated latent 
even starting from sparser data.
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Extended Data Fig. 3 | ENVI accurately infers embryogenesis genes missing 
from seqFISH data. a, Imputed expression of withheld genes from the seqFISH 
embryogenesis dataset37 (bottom) compared to true (measured) expression 
(top), with corresponding MSSI and Pearson correlation reconstruction (Corr) 

scores. b, HCR images of Ripply3, Nkx2-5 and Tlx2 and their imputation values 
according to ENVI, Tangram and gimVI. Organs marked by each gene are noted on 
the HCR and seqFISH images.
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Extended Data Fig. 4 | The use of COVET spatial covariance improves cell-type 
assignment. a, Proportion of scRNA-seq gut tube cells in each organ (row) that 
fall into each COVET cluster (column), arranged from anterior to posterior. b, 

Assignment of developing organs to seqFISH gut tube cells via ENVI COVET 
space, latent space of ENVI when trained without COVET, gimVI latent space and 
Tangram cell-type mapping.
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Extended Data Fig. 5 | ENVI is robust to variation in COVET neighborhood size. Transfer of organ labels onto seqFISH gut tube cells according to independent 
instances of ENVI, each trained according to COVET representations based on a different number of nearest spatial neighbors (k). Spatial context predictions remain 
robust across k values.
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Extended Data Fig. 6 | ENVI reliably recovers the AP axis during spine 
development. a, Spine and NMP cells from seqFISH data, colored by AP polarity 
calculated from the first DC of their spatial coordinates. b, Pseudo-AP of seqFISH 
spine and NMP cells from DC analysis of gimVI and Scanorama. Values denote 
Pearson correlation with the true AP axis. c, Pearson correlation of ENVI COVET, 

gimVI and Scanorama pseudo-AP of spine and NMP scRNA-seq cells, for five 
canonical posterior markers (higher is better) and anterior markers (lower is 
better). Pseudo-AP axis is based on the DC best aligned with true depth (DC 1, 2 
and 3 for ENVI, gimVI and Scanorama, respectively).
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Extended Data Fig. 7 | See next page for caption.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-024-02193-4

Extended Data Fig. 7 | ENVI extends cortical tissue gene expression to the 
entire genome. a, Five-fold cross-validation of imputation based on a 252-gene 
MERFISH dataset from the primary motor cortex40. Boxes and lines represent  
IQR and median, respectively; whiskers represent ±1.5 x IQR. Comparison of 
MSSI\Pearson correlations between ENVI and other methods (one-sided  
t-test, n = 252) generates p-values, from left (Tangram) to right (deepC), of 

4.67 ⋅ 10−29\1.80 ⋅ 10−19, 1.62 ⋅ 10−72\7.29 ⋅ 10−66, 4.70 ⋅ 10−36\1.72 ⋅ 10−50, 
5.25 ⋅ 10−28\4.10 ⋅ 10−41, 5.23 ⋅ 10−72\1.35 ⋅ 10−86, 1.87 ⋅ 10−64\2.38 ⋅ 10−66.  
b, ENVI imputation of genes selected due to their clear in situ hybridization 
profiles in the Allen Brain Atlas (mouse.brain-map.org), projected onto the 
MERFISH data, with corresponding ISH expression in the motor cortex. Novo, 
NovoSpaRc; deepC, deepCOLOR.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | ENVI integrates osmFISH and scRNA-seq data from the 
somatosensory cortex. a, osmFISH with segmented cells and UMAP 
visualization of scRNA-seq datasets of the mouse somatosensory cortex, colored 
by cell types as annotated in Codeluppi et al.3. b, UMAP visualizations of the ENVI 
integrated latent embedding of the osmFISH and scRNA-seq modalities, colored 
by cell types as in a. Latent integration score; bASW = 0.62. c, Same as b, but with 
latent embeddings from gimVI. d, Normalized distance between the center-of-
mass of each cell type according to the ENVI and gimVI latent embeddings. e, 
Benchmarking of imputation based on leave-one-out training, evaluated by 

Pearson correlation and MSSI on a 33-gene osmFISH dataset of the 
somatosensory cortex3. Boxes and lines represent IQR and median, respectively; 
whiskers represent ±1.5 x IQR. In order, MSSI\Pearson correlation p-values 
(one-sided t-test, n = 33) are: 1.41 ⋅ 10−4\6.69 ⋅ 10−10, 9.03 ⋅ 10−4\2.64 ⋅ 10−6, 
5.25 ⋅ 10−9\2.03 ⋅ 10−10, 1.21 ⋅ 10−3\1.62 ⋅ 10−5, 4.34 ⋅ 10−10\1.43 ⋅ 10−9, 
7.11 ⋅ 10−4\9.08 ⋅ 10−6. f, ENVI-imputed expression of unimaged cortical markers 
Ddit4l (L2/3), Rprm (L5/6) and Ndst (Hippocampus, CA1) (top) and corresponding 
expression in the Allen Brain Atlas (mouse.brain-map.org) (bottom). Tg, 
Tangram; Hy, Harmony; Novo, NovoSpaRc; DC, deepCOLOR.
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Extended Data Fig. 9 | Cell type validation and extended benchmarking of 
ENVI on Xenium data. a, Expression of marker genes for each annotated cell type 
in the snRNA-seq and Xenium data. b, Extended imputation benchmarking of 
ENVI against uniPort (Unip), Harmony and deepCOLOR. Boxes and lines represent 
IQR and median, respectively; whiskers represent ±1.5 x IQR. In order, MSSI\
Pearson correlation p-values (one-sided t-test, n = 243) are: 1.21 ⋅ 10−11\1.88 ⋅ 10−3

, 6.62 ⋅ 10−16\3.43 ⋅ 10−13, 1.20 ⋅ 10−33\5.82 ⋅ 10−7, 3.93 ⋅ 10−1\9.99 ⋅ 10−1, 
2.66 ⋅ 10−45\4.89 ⋅ 10−19, 6.92 ⋅ 10−12\1.13 ⋅ 10−4. c, Balanced accuracy for 

annotating Xenium cell types from snRNA-seq labels. ENVI, Tangram (Tg), gimVI, 
uniPort (Unip) and Harmony all perform similarly. d, UMAP of gimVI latent space 
of snRNA-seq immune cells, colored by subtype. e, gimVI latent UMAP and 
PhenoGraph clusters of Xenium immune cells. UMAP and clusters are calculated 
using both Xenium and snRNA-seq immune cells. Most microglia (68%) and 
macrophages (90%) are assigned to cluster C1, preventing clear association 
between subtype and microenvironment.
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Extended Data Fig. 10 | Imputation of tumor-infiltrating macrophage markers at the tumor-immune boundary. ENVI, gimVI and Harmony-based imputation of 
three tumor-infiltrating macrophage markers onto Xenium immune cells. Only ENVI correctly predicts the expected pattern of expression, showing enrichment in 
immune cells inside the tumor region.
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