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To generate the deepest human 
phosphoproteome to date, Ochoa et al.3  
reanalyzed 112 large-scale phosphopro
teomics datasets from the PRIDE database9, 
the largest data repository of MS-based 
proteomics data. They used machine 
learning to rank the biological relevance of 
more than 100,000 human phosphosites by 
assigning each of them a ‘functional score’, 
which integrates prior knowledge from 
experimental data, prediction tools and 
MS signal properties for prioritizing their 
biological importance (Fig. 1).

Bulk analysis of phosphoproteomics 
datasets can lead to high rates of false 
positives owing to their random origin. The 
systematic reanalysis performed by Ochoa 
et al.3 controlled the rate of false positives 
and therefore serves as the largest high-
quality and unified dataset, comprising 
119,809 human phosphosites derived from 
104 different cell types or tissues (Fig. 1). 
To learn which features are important for 
phosphosite function, they trained the 
machine-learning algorithm using a subset 
of phosphosites with annotated biological 
function. The resulting functional score for 
ranking phosphosites integrated information 
on 59 features in 4 main categories: MS 
evidence, evolutionary conservation, kinase 
regulation and protein structure (Fig. 1).

Interestingly, the relative importance 
of the selected features for phosphosite 
scoring differed between serine/threonine 
and tyrosine phosphorylations. Localization 
of phosphosites in the cytosolic portion 
of transmembrane proteins offered a 

high discriminative power in the model 
for tyrosine sites, whereas phosphosite 
evolutionary age, adjacent post-translational 
modifications and protein length were 
the most informative features for serine/
threonine sites.

A major strength of the study by Ochoa 
et al.3 is that the authors went to great 
lengths to validate their functional score in 
follow-up experiments. They convincingly 
demonstrated that the functional score 
of a phosphosite on a transcription factor 
strongly correlates with its activity and that 
high-scoring phosphosites on enzymes have 
functional consequences for cell fitness 
when mutated. They further developed these 
observations by highlighting the biological 
importance of several phosphosites in 
the transcription factor STAT1 and in 
glyceraldehyde 3-phosphate dehydrogenase.

Ochoa et al.3 also showed that the 
functional score for known pathogenic 
mutations is generally high, especially for 
tyrosine sites. In line with this finding, 
we recently demonstrated that mutations 
near phosphorylated tyrosine residues can 
have oncogenic properties10. Integration of 
information about amino acid substitutions 
near phosphosites with the phosphosites’ 
functional scores may help researchers 
prioritize and pinpoint disease-inducing 
mutations in phosphoproteins and may help 
predict the function of such sites.

The functional scores provided by 
Ochoa et al.3 will be useful to systematically 
prioritize phosphosites for biological 
validation (Fig. 1). We hope that a user-

friendly tool or web-based interface 
implementing the machine-learning 
algorithm to functionally score and rank 
phosphosites will be made available. 
With continuous improvements in 
phosphoproteomics technologies and their 
applications, many more phosphosites will 
be discovered in the future that should be 
incorporated into the model. We also expect 
that the approach of Ochoa et al.3 will be 
extended to popular model organisms, such 
as mouse, zebrafish, roundworm, fruit fly 
and yeast. ❐
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PODCAST

Forum: Molecular mapping of tumor 
heterogeneity
Brady Huggett talks with Zemin Zhang about a recent Nature Biotechnology paper detailing the use of spatial 
transcriptomics to provide insights into tumor architecture. The work was done by Itai Yanai and coauthors, 
and the paper can be read at https://doi.org/10.1038/s41587-019-0392-8.  
https://play.acast.com/s/forum
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