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Recent technological innovations have enabled the high-throughput quantification of
gene expression and epigenetic regulation within individual cells, transforming our
understanding of how complex tissues are constructed'¢. However, missing from
these measurements is the ability to routinely and easily spatially localize these profiled
cells. We developed a strategy, Slide-tags, in which single nuclei within anintact tissue
section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded
beads with known positions. These tagged nuclei canthenbe used asaninputintoa
wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse

hippocampus positioned nuclei at less than 10 pm spatial resolution and delivered
whole-transcriptome data that are indistinguishable in quality from ordinary single-
nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied toawide
variety of human tissues, we performed the assay on brain, tonsil and melanoma. We
revealed cell-type-specific spatially varying gene expression across cortical layers and
spatially contextualized receptor-ligand interactions driving B cell maturationin
lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost
any single-cell measurement technology. As a proof of principle, we performed
multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences
inthe same cells from metastatic melanoma, identifying transcription factor motifs
driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags
offers a universal platform for importing the compendium of established single-cell
measurementsinto the spatial genomics repertoire.

Technology development efforts in genomics during the past decade
have produced an extensive toolkit of single-cell and single-nucleus
sequencing methods, enabling high-throughput molecular charac-
terization of many macromolecules'®. However, missing from these
measurements is the cytoarchitectural organization of the cells being
profiled. Spatially resolved sequencing technologies aim to address
this drawback by barcoding macromolecules with oligonucleotides
of which the spatial positions are known”'°. However, direct transfer
of design principles from single-cell sequencing methods to spatially
resolved profiling is oftenimpossible, necessitating the reinvention of
each molecular assay (such as transcriptomics®®, mutations’ or assay
for transposase-accessible chromatin with sequencing (ATAC-seq)" )
inaspatial context. Furthermore, while single-cell computational tools

are extremely mature™, additional sources of noise in spatial genomics
techniquesrequire their redesignas well, for example, to address prob-
lems with cellular mixing™ . An alternative to capture-based strategies
istoisolate single cells while retaining spatial barcoding information;
todate, thishasbeen demonstrated only atalimited spatial resolution
and with sparse sampling of tissues'®". An ideal spatial genomics tech-
nology would (1) efficiently capture cell profiles from tissue sections;
(2) resolve cellular positions at low-micrometre resolutions; and (3) be
generally applicable to any single-cell methodology.

Here weintroduce Slide-tags, amethod in which cellular nuclei from
anintact fresh frozen tissue section are ‘tagged’ with spatial barcode
oligonucleotides derived from DNA-barcoded beads with known
positions. Isolated nuclei are then profiled using existing single-cell

'Broad Institute of Harvard and MIT, Cambridge, MA, USA. 2Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA. *Biological and Biomedical Sciences
Program, Harvard University, Cambridge, MA, USA. “Department of Biomedical Informatics, Harvard University, Boston, MA, USA. *Biophysics Program, Harvard University, Boston, MA, USA.
®Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA. "Department of Pathology, Brigham and Women'’s Hospital, Harvard
Medical School, Boston, MA, USA. ®Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. °Department of Medicine, Brigham and Women'’s Hospital, Harvard
Medical School, Boston, MA, USA. "Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Boston, MA, USA. "Department of Surgical Oncology, Brigham
and Women's Hospital, Harvard Medical School, Boston, MA, USA. “Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. *Present address: Guangzhou Laboratory,
Guangdong, China. “Present address: Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson
Cancer Center, Houston, TX, USA. ®These authors contributed equally: Andrew J. C. Russell, Jackson A. Weir, Naeem M. Nadaf. *e-mail: emacosko@broadinstitute.org; chenf@broadinstitute.org

Nature | Vol 625 | 4 January 2024 | 101


https://doi.org/10.1038/s41586-023-06837-4
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06837-4&domain=pdf
mailto:emacosko@broadinstitute.org
mailto:chenf@broadinstitute.org

Article

methods with the addition of spatial positions. We demonstrate the
tissue versatility of Slide-tags by assaying adult and developing mouse
brain, human cerebral cortex, human tonsil and human melanoma.
Across tissues and species, we import spatially tagged nuclei into
standard workflows for single-nucleus RNA-sequencing (snRNA-seq),
single-nucleus ATAC-seq (snATAC-seq) and TCR sequencing. Slide-tags
is also readily integrated into established single-cell computational
workflows, such as copy-number variation (CNV) inference. In doing
so, we take advantage of the truly single-cell, spatially resolved, multi-
modal capacity of Slide-tags to reveal cell-type-specific spatially varying
gene expression, spatially contextualize receptor-ligand interactions
and examine genetic and epigenetic factors participating in tumour
microenvironments.

Labelling nuclei with spatial barcodes

We previously developed densely packed spatially indexed arrays of
DNA-barcoded 10 pmbeads, generated using split-pool phosphoramid-
ite synthesis and indexed by sequencing-by-ligation”?. In our original
Slide-seq methodology, DNA or RNA from tissues was captured and
spatially barcoded using these arrays. In our Slide-tags technology,
we photocleave and diffuse these bead-derived spatial barcodes into
20 pumfreshfrozentissue sectionsto associate them with nuclei (Fig. 1a).
We postulated that, once these barcodes are associated with nuclei,
they could be used asinput to established single-nucleus sequencing
approaches (Methods) with only minor protocol modifications.

Slide-tags snRNA-seq in the mouse brain

To benchmark our approach, we performed Slide-tags followed by
droplet-based snRNA-seqona20 pm coronal section of the adult mouse
hippocampus, which has a highly stereotyped architecture that is use-
ful for validating spatial techniques’®. We dissociated and sequenced
1,661 nuclei from a3 mm? area coronal tissue section, clustering the
data using a standard single-cell pipeline? (Fig. 1b) and annotating
clusters using well-established cell class markers (Extended DataFig.1).
Multiple spatial barcodes were detected per nucleus, enabling higher
assignment confidence than when using protocols in which only one
spatial barcode is associated with a cell (Fig. 1c). To spatially position
oursingle-nucleus transcriptomes, we used density-based spatial clus-
tering of applications with noise (DBSCAN)? to separate background
spatial barcodes from the true signal (Methods, Extended Data Fig. 2
and Supplementary Fig. 1). Nuclei are then assigned a spatial coordi-
nate using the unique molecular identifier (UMI)-weighted centroid
of the DBSCAN-clustered spatial barcodes denoted the true signal
(Methods). Using this procedure, we assigned spatial locations to 839
high-quality nucleus profiles (50.5% of profiled nuclei, 11,250 median
UMIs per nucleus). Examination of the spatial positions of individual
clustersrecapitulated the expected cytoarchitectural arrangement of
the hippocampus (Fig.1d). Furthermore, spatial expression profiles of
individual genes matched existing insitu hybridization data® (Fig. 1e).
To quantify spatial positioning accuracy, we first compared the width of
the hippocampal subfield cornuammonis areal(CAl) in Slide-tags with
aNissl-stained serial section and found that the width of the Slide-tags
feature was congruent with the Nissl image (Extended Data Fig. 3).
Moreover, we found that we could accurately localize sub-cell typesin
the deep and superficial layers of the CAl (Extended DataFig.3 and Sup-
plementary Table1).Second, we calculated the standard error for each
centroidinxandy,and estimated the accuracy tobe3.5+1.9 pminxand
3.6 £ 2 pminy(mean +s.d., n = 839 nuclei; Extended Data Fig. 2j). Third,
we quantified the nucleus misassignment rate by leveraging the stereo-
typed structure of the CAl and dentate gyrus. We found that 98.7% of
CA1 (155 out 0f157) and dentate granule (312 out of 316) neurons were
localized in the CAl pyramidallayer and the dentate gyrus, respectively
(Extended DataFig. 1b). We investigated whether the tagging procedure
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affected the resultant snRNA-seq data quality by comparing standard
snRNA-seq with Slide-tags followed by snRNA-seq on adjacent sections
ofthe mouse hippocampus. We found that recovered cell type propor-
tions (Pearson’sr=0.96,P<2.2 x107¢), UMIs recovered per cell (Pear-
son’sr=0.96, P<2.2 x107*®) and gene expression (Pearson’s r=0.99,
P <2.2x107*) were all unaffected by the tagging procedure (Fig. 1g-i).
Slide-tagsis alsowell correlated to bulk-RNA-seq from the same tissue
region (Extended DataFig. 4a; Pearson’sr=0.92). Thus, Slide-tags gen-
erated data that are almost indistinguishable from snRNA-seq with a
theoretical -3 pm spatial localization accuracy.

We next performed Slide-tags snRNA-seq ona7 mm?area sagittal sec-
tion of the embryonic mouse brainatembryonic day 14 (E14; Extended
Data Fig. 5a,b), which has been frequently used for benchmarking
new spatial transcriptomics technologies'®*°. We sequenced and spa-
tially positioned 4,584 nuclei (4,594 median UMIs per nucleus), which
we clustered and annotated by cell type (Extended Data Fig. 5c-e).
Compared with existing approaches, sci-Space and XYZ-seq, for
single-cell spatial placement, Slide-tags achieved 20-50-fold higher
spatial resolution and recovered 4.5-fold more nuclei per unit area.
We also recovered 1.8-fold more UMIs and 1.7-fold more genes per
nucleus thanadjacent technologies at asequencing saturation of 48%
(Extended Data Fig. 5f).

Finally, we also benchmarked Slide-seq performance in relation
to Slide-seq and DBIT-seq in the adult mouse brain. We found that
Slide-tags achieves asignificantly higher molecular sensitivity (13,142
transcripts per nucleus versus 1,702 and 2,538 transcripts per 20 um?
pixelforSlide-seq (binned) and DBIT-seq, respectively; Extended Data
Fig.4)).Note that, evenin high-resolution capture-based spatial tran-
scriptomics, pixels capture mixtures of transcriptomes from nearby
cells, hindering unsupervised clustering of cell type identity and marker
gene identification (Extended Data Fig. 4).

Slide-tags snRNA-seq in the human cortex

The human cerebral cortex has a well-characterized cytoarchitecture
in which specific subpopulations of neurons are arranged in discrete
layers. Existing spatial sequencing approaches can resolve broad
patterns of spatially varying gene expression in human cortex*, but
assignment of spatially variable genes to specific cell types is chal-
lenging using these methods. We reasoned that Slide-tags could be
used for facile profiling of human brain tissue, most especially to dis-
cover cell-type-specific spatial gene expression patterns. We profiled
a100 mm?region of the human prefrontal cortex from a neurotypical
donoraged 78 years (Methods), recovering 17,441 high-quality spatially
mapped nuclei with amedian of 3,196 UMIs per nucleus (Fig. 2a). Clus-
tering analysis revealed the expected neuronal and glial cell types, reca-
pitulating known layer distributions and spatial structures (Fig.2b-d
and Extended DataFig. 6a,b). We computationally integrated (Methods)
anexisting snRNA-seq dataset® thatincludes layer annotations for 91
neuronsubtypes, recovering the expected spatial distributions across
subtypes (Fig. 2e,fand Supplementary Figs. 2 and 3). Similarly, astro-
cytes could be clustered into two distinct populations that spatially
segregated between white and grey matter regions (Fig. 2g). Quanti-
fication of the laminar position of each of these excitatory, inhibitory
and astrocytic populations showed them to be accurately positioned
within the white matter and cortical layers (Fig. 2h).

We next used our whole-transcriptome, spatially resolved snRNA-seq
profiles to systematically identify spatially varying genes in each cell
type. We plotted the layer distributions of the highest spatially varying
genes (Methods and Supplementary Table 2) for excitatory neurons
(Fig. 2i and Supplementary Fig. 4), recovering many well-known lami-
nar markers such as CUX2, RORB and FOXP2 (Extended Data Fig. 6¢), as
well as for inhibitory neurons (Extended Data Fig. 6d and Supplemen-
tary Fig. 5a) and astrocytes (Extended Data Fig. 6e and Supplemen-
tary Fig. 6). Notably, we also identified spatially varying genes within
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Fig.1|Slide-tags enables single-nucleus spatial transcriptomicsin the
mouse hippocampus. a, Schematic of Slide-tags. A20-pm fresh-frozen tissue
sectionisapplied toamonolayer of randomly deposited, DNA-barcoded beads
that have beenspatiallyindexed. These DNA spatial barcodes are photocleaved
and associate with nuclei. Spatially barcoded nuclei are then profiled using
established droplet-based single-nucleus sequencing technologies. The diagram
was created using BioRender. b, Uniform manifold approximation and projection
(UMAP) embedding of snRNA-seq profiles coloured by cell type annotations.
DG, dentate gyrus; oligo, oligodendrocyte. ¢, The signal spatial barcode
clusters after noise filtering by DBSCAN for selected cells, coloured according
to celltype annotations (as in b) and the number of spatial barcode UMIs. Raw
plots for thesecells are plotted in Extended DataFig. 2k. d, Slide-tags enables
localization of nuclei to spatial coordinates in the mouse hippocampus; cells
arecoloured accordingto cell type annotation (asinb). e, Spatial expression of
known marker genes compared with insitu hybridization datafromthe Allen

oligodendrocyte precursor cells (OPCs), which had not previously been
known to have areal specializations (Fig. 2jand Supplementary Fig. 5b).
Gene Ontology analysis of these spatially varying genes revealed arela-
tionship with biological processes including cell-cell adhesion, cell
junction assembly and axon development (Fig. 2k and Supplementary
Table 3).

Slide-tags snRNA-seq Slide-tags snRNA-seq

Mouse Brain Atlas®. Colour scales, normalized average counts. f, The distance
fromthe centroid for each of the spatial barcodes across all signal spatial
barcode clusters; points are coloured by the two-dimensional kernel density
estimation with an axis-aligned bivariate normal kernel, evaluated on asquare
grid. Kernel density estimates are displayed for xand y. For the plotsonthe
outside, the centre lines show the median, and the adjacentlines show the
upper and lower quartiles. g-i, Comparison metrics plotted for snRNA-seq
compared with Slide-tags snRNA-seq, performed on consecutive sections.

g, Celltype proportions and mean UMIs per cell are plotted by cell type.

h, The normalized average UMI counts were determined per gene across all
cells. i, Normalized average counts. Expression counts for each cell were divided
by the total counts for that celland multiplied by 10,000, this value + 1was then
natural-log transformed. ris the Pearson correlation coefficient. The error bands
denote the 95% confidence intervals. For c-e, scale bars, 500 pm.

Genes can show spatially variable expression that may derive from
several celltypes, but assigning such expression variability to individual
cell types can be very challenging using traditional spatial transcrip-
tomics approaches owing to the mixing of individual pixels. Among
our spatially varying genes, we identified several that were variable
across multiple celltypes, such as SGCZ, of which the spatial expression
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Fig.2|Spatially resolved cell-type-specific expressionin the humanbrain
using Slide-tags snRNA-seq. a, Schematic of Slide-tags snRNA-seq analysis of
al0-mmsquareregion of the human prefrontal cortex. Scale bar,10 mm. The
diagram was created using BioRender. b, UMAP embedding of snRNA-seq
profiles, coloured according to cell type assignment. ¢, Spatial mapping of
snRNA-seq profiles, coloured by celltype asinb.d, A Nissl-stained tissue section
adjacenttothe profiled section. e, Spatial mapping of grouped excitatory neuron
subtypes.L1-6, cortical layers 1-6. f, Spatial mapping of grouped inhibitory

variationin excitatory and inhibitory neurons was anticorrelated, and
showed an orthogonal spatial distribution in OPCs (Fig. 2I). We per-
formed additional Slide-tags snRNA-seq analysis of the human cortex,
from this donor and another donor, and found that the nucleus map-
ping rate and subsequent density were congruent (Supplementary
Table 4). Together, these results demonstrate the ability of Slide-tags
to reproducibly and systematically uncover transcriptional variation
within the cytoarchitecturally complex tissues of the human brain.

Slide-tags snRNA-seq analysis of the human tonsil

A key challenge for spatial genomics technologies is the proper seg-
mentation of densely packed tissues, such as those of immune origin.
We reasoned that Slide-tags would be ideal in this setting, given that
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segmentationis accomplished automatically by dissociating the tissue
into individual nuclei. We therefore performed Slide-tags snRNA-seq
analysis of the human tonsil (Fig. 3a-d), recovering 81,000 nuclei after
dissociation from 7 mm?of tissue. We sequenced 8,747 of these nuclei,
spatially mapping 5,778 high-quality snRNA-seq profiles (2,377 median
UMIs per nucleus and 1,557 median genes per nucleus). Clustering of
the dataidentified subpopulations of Band T cells, some of which are
known to be spatially segregated (Extended Data Fig. 7a,b). Indeed,
examination of the spatial positions of these clusters revealed the
expected spatial architecture of the tissue, with Band T cell zones, as
well as germinal centres composed of germinal centre B (GCB) cells,
T follicular helper cells and follicular dendritic cells (Fig. 3c,d and
Extended Data Fig. 7b). Subclassification of GCB cells into light-zone
and dark-zone GCB cells is challenging using snRNA-seq data alone,
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Fig.3|Slide-tags enables cell-type-specific spatially varying gene
expression analysis and spatial receptor-ligand interaction prediction
within the human tonsil. a, Schematic of Slide-tags snRNA-seq analysis of a
3-mm-diameter region of human tonsil tissue. Scale bar,3 mm. The diagram
was created using BioRender. b, UMAP embedding of snRNA-seq profiles
coloured by cell type annotations. mDC, myeloid dendritic cells; pDC,
plasmacytoid dendritic cells; Ty, cells, T follicular helper cells. ¢, Spatial
mapping of snRNA-seq profiles, coloured by cell type asinb.d, Adjacent
haematoxylinand eosin (H&E)-stained section of the profiled region.

as variation in gene expression space is low, requiring many cells to
be sampled to uncover the distinction®. However, as reactive germi-
nal centres are spatially polarized into light zones and dark zones, we
reasoned that we could classify GCB cells by harnessing the combined
spatial and single-cell data. To do so, we computed spatially varying
genes within GCB cells through spatial permutation testing?, identi-
fying key markers of light-zone and dark-zone GCB cells (Fig. 3e,fand
Supplementary Table 5). Dark-zone marker genes included CXCR4
(double-sided permutation test, Zscore =7.6, P< 0.001) and AICDA
(Zscore=6.9,P<0.001)—genes associated with dark-zone organization
and somatic hypermutation, respectively”’ ?. Light-zone-enriched

e, Magnified view of two germinal centres coloured by cell type. f, Expression
of dark-zone and light-zone marker genesidentified as spatially varying within
germinal centres. g, GCB cell state classification and zone segmentationon the
basis of the cluster density of dark-zone GCB cells. h, Spatial mapping of T, cells
and follicular dendritic cells on zoned germinal centres. i, Selected spatially
co-occurring receptor-ligand interactions within certain sender-receiver cell
type pairs.j, Spatial mapping of interaction intensity scores for CD40 in GCB
cellsand CD40LGin Ty cells. For c-handj, scale bars, 500 pum.

genesincluded BCL2A1(Zscore =9.1,P< 0.001), an apoptosis regulator
gene®®, and LMO2 (Zscore =21.3, P < 0.001), atranscription factor®. A
subset of expected light-zone and dark-zone markers had relatively
low variance in gene expression, but high spatial permutation effect
sizes, demonstrating that spatial positions enhance interpretation of
transcriptomic profiles (Extended Data Fig. 7c and Supplementary
Table 6). Reclustering GCB cells on the basis of spatially varying genes
enabled classificationinto dark-zone, light-zone and transitional cell
states (Fig. 3g and Methods). We then segmented the two largest pro-
filed germinal centres into light zones and dark zones through spatial
clustering of dark-zone GCB cells, the most abundant GCB cell state
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(Extended Data Fig. 7d). In corroboration of our zone segmentation,
we foundthat T follicular helper cells were enriched inlight zones while
follicular dendritic cells were dispersed between the light zone and the
dark zone (Fig.3h; x*=43.7, P=3.7 x 10™(T follicular helper cells); and
x*=0.58, P=0.45 (follicular dendritic cells)).

Immune cells engage in extensive cross-talk within and around ger-
minal centres®. We wondered whether Slide-tags could reveal recep-
tor-ligand interactions that drive such intercellular communication.
We first nominated putative receptor-ligandinteractionsin aspatially
agnostic manner using LIANA®, We next incorporated spatial informa-
tion by performing a spatial permutation test to identify interactions
that significantly co-occur spatially (Methods). Using this approach,
we predicted 645 receptor-ligand interactions, many of which are
well-characterized axes of communication during B cell maturation
(Fig. 3i and Supplementary Table 7). For example, we predicted inter-
actions between CD40 and CD40LG within GCB cells and T follicular
helper cells, a fundamental driver of the germinal-centre reaction*.
We also identified downstream targets of canonical receptor-ligand
interactions, such as TRAF3, importantinregulating the intracellular
effects of CD40-CD40LG binding™.

Finally, wereasoned we could spatially contextualize receptor-ligand
interactions within native tissue niches. Our predicted interactions
can be decomposed into interaction intensity scores for individual
cells based on expression and spatial co-occurrence of the receptor
andligand. For the 99 nominated receptor-ligand pairs between GCB
cells, follicular dendritic cellsand T follicular helper cells, we used our
germinal-centre zone segmentations to assess light-zone and dark-zone
enrichmentinpredicted interactionintensity. We revealed light-zone
enrichment of1linteractions and dark-zone enrichment of 9 interac-
tions (Extended Data Fig. 7e and Supplementary Table 8). GCB CD40
receptorininteraction with T follicular helper cell CD40LG was highly
enrichedinlightzones (Fig. 3j; Wilcoxon rank-sumtest, log,[fold change
(FC)1=1.6,adjusted P(P,) =1.6 x 10~°), whereas CD40 receptor expres-
sion alone was modestly dark-zone biased (Wilcoxon rank-sum test,
log,[FC]=-0.04,P=0.047). We also revealed zone-biased interactions
with lesser-known importance in the germinal-centre reaction, such
asthelight-zone-enrichedinteraction between T follicular helper cell
CD40LG and GCB CD53 (Extended Data Fig. 7e; Wilcoxon rank-sum
test, log,[FC] =1.6, P=2.3 x107%). Together, Slide-tags enabled spatial
contextualization of cell-type-specific receptor-ligand interactions
that are not obvious by analysis of expression alone.

Slide-tags multiome of human melanoma

Epigenetic dysregulation in cancer facilitates drug resistance and
pro-metastatic cell state transitions®* %, Numerous studies of tumour
heterogeneity have revealed clone-specific niches and immune com-
partments™***°, but the role of epigenetic regulation in establish-
ing and maintaining these spatial niches remains difficult to study.
Concurrent spatial mapping of the genome, transcriptome and epi-
genomic landscape of the tumour microenvironment could offer
insights into the complex mechanisms of tumour evolution. We
therefore developed Slide-tags multiome, enabling simultaneous
single-cell spatial profiling of mRNA and chromatin accessibility,
along with CNV inference.

We first performed Slide-tags snRNA-seq analysis of a metastatic
melanoma sample (Extended Data Fig. 8a-f). We recovered 10,960
nuclei after dissociation from 7 mm? of tissue, sequencing 6,464 of
these nuclei and spatially mapping 4,804 high-quality snRNA-seq
profiles (2,110 median UMIs per nucleus and 1,317 median genes per
nucleus).Inanadjacent section, we applied Slide-tags multiome, profil-
ing the tagged nuclei using droplet-based combinatorial snATAC-seq
and snRNA-seq (Fig. 4a,b). We spatially mapped 2,529 nuclei from a
38.3 mm?section and both modalities displayed high-quality dataon
the basis of basic technical performance metrics (Fig. 4b,cand Extended
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Data Fig. 9a-e; median UMIs per nucleus = 5,228, median genes per
nucleus = 2,429, transcription start site enrichment score =11.5, median
fragments per nucleus =1,159, median fraction of unique fragments
in peaks =36.7%).

Unsupervised clustering of snRNA-seq and multiome dataidentified
immune, stromal and tumour cell types (Fig. 4b and Extended Data
Fig.8d,e). The tumour cells were split into two subpopulations, denoted
astumour cluster1and tumour cluster 2, that segregated into spatially
distinct compartments (Fig. 4b,c and Extended Data Fig. 8d). As CNV
has animportant role in melanoma tumour evolution*"*?, we sought
toidentify whether these transcriptional subpopulations represented
distinct genetic clones. We inferred copy-number alterations using
inferCNV*, a standard scRNA-seq CNV inference tool, from the tran-
scriptomes of each spatially mapped nucleus (Methods). Indeed, across
both the snRNA-seq and the multiome data, we uncovered genomic
differences consistent with the spatial and transcriptional separation
between tumour cluster 1and 2 (for example, CNV on chromosome 6;
Fig.4d and Extended Data Fig. 8f).

Our basic clustering analysis showed extensive T cell infiltration
into both tumour compartments (Extended Data Figs.8d and 9d). We
wondered whether there might exist heterogeneous T cell responses
tothese genetically distinct compartments. First, we enriched for TCR
sequencesinour1,020 spatially positioned CD8" T cell cDNA profiles,
recovering 419 cells with a-chains (279 unique), 761 cells with 3-chains
(410 unique) and 358 cells with paired a- and 3-chains (265 unique) (Sup-
plementary Table 9). We found a TCR clonotype that was significantly
expanded in tumour compartment 2 compared with in tumour com-
partment1(Fig. 4e; Fisher’s exact test,oddsratio=6.8,P=1.1x10™"),in
agreement with our previous report**. Given our high TCR pairing rate
(Extended Data Fig. 9f), we also noted tumour compartment 2 expan-
sionof CD8" T cells with this B-chainand a paired a-chain (Fisher’s exact
test, odds ratio =11.9, P= 9.6 x 10°°). We observed that CD8" T cells in
tumour compartment 2 were upregulated in cytotoxic GZMB expres-
sion (Extended Data Fig. 9g and Supplementary Table 10). In addition
to this T cell variation, we noted decreased expression of MHC class |
endogenous antigen presentation genesin tumour cluster 1relative to
tumour cluster 2 (Extended Data Fig. 10 and Supplementary Table 11;
gene set enrichment analysis, GO:0002484; overlap ratio = 0.71;
P,4= 6.6 x107°), potentially contributing to differential T cell clone
infiltration between the tumour compartments. Thus, we observed a
cytotoxic T cell clone specifically infiltrating into a spatially and geneti-
cally distinct tumour compartment. Although TCR expression has
previously been spatially mapped***, Slide-tags enables unambiguous
assignment of receptor pairs to single cells.

Tofurtherinvestigate how chromatin accessibility and transcription
informs tumour cell state and how this relates to the tumour micro-
environment, we identified spatially segregated differential gene
expression and differential chromatin gene scores between tumour
subpopulations (Fig. 4f and Supplementary Table 12). TNC and other
mesenchymal-like cell state markers were found to be differentially
expressed (Methods and Supplementary Figs. 7 and 8; log,[FC] =2.1,
P,q;=2.4 x10™) and differentially accessible by chromatin gene score
(Wilcoxon rank-sum test, log,[FC] = 0.8L, P,4;=1.0 x10™) in tumour
cluster 1 compared with in tumour cluster 2 (Fig. 4g,h). We observed
heterogeneity in TNC chromatin accessibility and gene expression
within tumour cluster 1, which has previously been associated with
a mesenchymal-like cell state*®*’. We therefore hypothesized that
tumour cluster 1 may comprise two cell states: melanocytic like and
mesenchymal like. We scored tumour cells for melanocytic-like
and mesenchymal-like cell states using genes that were previously
implicated in this transition*. While tumour cluster 2 was largely a
melanocytic-like population, we observed melanocytic-like and
mesenchymal-like scores were negatively correlated and heterogene-
ousintumour cluster 1(Fig.4i,j and Extended Data Fig. 9h,i; Pearson’s
r=-0.60, P<2.2x107%). To uncover trans-acting factors associated
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and snRNA-seqanalysis ofa5.5-mmsquare region of ahuman melanomalymph
node metastasis. Scale bar, 5.5 mm. The diagram was created using BioRender.
b,UMAPembeddings of snRNA-seq and snATAC-seq profiles coloured by cell
type.Mono-mac, monocyte-derived macrophages, T, cells, regulatory T cells.
¢, Spatial mapping of tumour cluster 1and tumour cluster 2. d, Inferred copy-
number alterations fromtranscriptomic data. NT, arepresentative subset of
non-tumour cells. e, Spatial mapping of a TCR -chain clonotype expanded in
the tumour cluster 2compartment, with the matched a-chainindicated above.
Grey cells show the positions of all CD8" T cells. f, Differential gene expression
and differential chromatin gene scores between tumour cluster 1and tumour
cluster2. Thered points have P,4; < 0.05 for both tests. g, Genome coverage track
and gene expression violin plot of TNCbetween tumour clusters. The range of

Correlation with mesenchymal score

the normalized chromatin accessibility signal is 0-50. Chr., chromosome.

h, The spatial distribution of TNC chromatin accessibility gene scores. Gene
scores are log,-transformed. i, Weighted nearest-neighbour (WNN) UMAP
embedding of tumour cells, with cells coloured according to mesenchymal-like
and melanocytic-like cell state scores. j, Spatial mapping of mesenchymal-like
cellstate scoresintumour cells. k, Spatial autocorrelation of accessibility in
chromVAR transcription factor motifs correlated with mesenchymal-like cell
state scores. Thered pointsindicate spatial autocorrelation Moran’s /raw
P<0.05and significant correlation with mesenchymal-like score (P,q; < 0.05).
Thegreen pointsindicate only spatial autocorrelation raw P< 0.05. The blue
pointsindicate only significant correlation with mesenchymal-like score
(P,4j< 0.05).Only chromVAR transcription factor motifs witha positive Moran’s
lareshown.Forc, e, handj, scalebars,500 pm.
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with this transition, we first identified accessible transcription factor
motifs that were correlated with mesenchymal-like score within tumour
cluster 1using chromVAR*® (Fig. 4k (xaxis) and Supplementary Table 13;
P,4;<0.05); positively correlated transcription factor motifsincluded
FOS/JUN-family members, which have previously been implicated
in mesenchymal-like melanoma states, and IRF-family transcription
factors. Negatively correlated transcription factor motifs included
MITF, a factor involved in maintaining the melanocytic lineage*>*°.
Although such epigenomicsignatures driving mesenchymal-like state
have previously beenidentified in single cells, their localization within
tissues is lacking. To answer whether such epigenetic signatures were
spatially non-random, we performed spatial autocorrelation analysis of
transcription factor motifscoresinthe tumour cluster 1compartment
(Fig. 4k (y axis) and Extended Data Fig. 9j). The top spatially autocor-
related transcription factor motifs associated with amesenchymal-like
state were JUN-, FOS and IRF family members with positive autocorre-
lation scores, suggesting that these epigenomic signatures are locally
clustered. Local clustering of epigenetic statesis suggestive of inherit-
ance of epigenetically reprogrammed states in cell division, or local
signalling environmental drivers®>",

Discussion

Here we developed Slide-tags, a spatial single-nucleus genomics tech-
nology that is widely applicable to tissues spanning different scales,
species and disease states. We profiled Slide-tags nucleiisolated from
the mouse and human adult brain using snRNA-seq, showing indistin-
guishable RNA data quality and high spatial positioning accuracy, and
identifying cell-type-specific spatially varying genes across cortical
layers. Applying Slide-tags snRNA-seq to densely packed human tonsil
enabled spatial contextualization of predicted receptor-ligand interac-
tions. Finally, to demonstrate the multimodal capacity of Slide-tags,
we simultaneously profiled the transcriptome, epigenome and TCR
repertoire of metastatic melanoma tissue, and inferred CNV from
transcriptome data. We inferred copy-number alterations from tran-
scriptome data and revealed spatialimmune cell differences between
genomically distinct clones. In a cytogenetically homogenous sub-
clone, we identified two transitional tumour cell states and leveraged
our single-nucleus spatial chromatin accessibility data to identify spa-
tially autocorrelated transcription factor motifs likely to be participat-
ing in this mesenchymal-like transition.

Slide-tags offers several unique advantages as a spatial genomics
technology. First, it is easily imported into frozen-tissue snRNA-seq
experiments and enables the addition of spatially resolved datawithout
requiring specialized equipment or sacrificing data quality. Second,
thetechnique generates dataintrinsically at the single-cell resolution,
without the need for deconvolution and segmentation, and has a high
sensitivity (2,000-10,000 UMIs per cell across our datasets). This
substantially improves the ability to unbiasedly discover cell types
and cell-type-specific gene expression in spatial data compared with
pixel-based spatial transcriptomic technologies. Third, the technol-
ogy is high-throughput, enabling many tissue sections to be profiled
atonce, and coverage of larger tissue sections through the construc-
tion of bigger bead arrays. Fourth, Slide-tags s easily adapted to many
different single-cell and single-nucleus methodologies. Beyond our
demonstration of spatial snRNA-seq + snATAC-seq, we envision that
future adaptations of Slide-tags will enable the profiling of DNA>*?,
additional epigenetic modifications®*>** and proteins®. Computational
analyses of such data are uniquely enabled by the ability of Slide-tags to
seamlessly leverage many existing single-cell computational workflows
(for example, Seurat?, InferCNV*, ArchR*).

Althoughimmediately usefulin many applications, Slide-tags could
be improved in two key ways. First, our method assays only a subset
of nucleiin a tissue section. We estimate that the combination of dis-
sociationand microfluidic losses during nuclei barcoding collectively
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account for around 75% of the nucleilost. This loss reduces power in the
discovery of pairwise interactions between cells, as well as molecular
interactions between cells, which may be overcome through the scal-
ability of Slide-tags profiling. This represents a path for substantial
improvement through tissue-specific optimizations to the dissociation,
andimproved droplet microfluidics or, potentially, microfluidics-free
single-nucleus methods that may barcode nuclei more efficiently®’.
Second, Slide-tags is currently limited to single-nucleus sequencing
methods, primarily due to the ease of recovering nuclei from frozen
tissues. Some methodologies strongly benefit from single-cell data,
such as lineage tracing using mitochondrial genomic variants*® and
quantification of transcriptional kinetics*. Future iterations of our
technology may be compatible with tagging whole single cells. None-
theless, for routine tissue profiling, our current default approach is
snRNA-seq (versus scRNA-seq), owing to advantages in protocol flex-
ibility, increased nucleus yields, reduced tissue dissociation artefacts
and improvements to cell sampling bias®°.

In recent years, a common experimental paradigm has evolved
that pairs the collection of single-cell (or single-nucleus) data with
spatial data to discover cell types, compare across conditions and
discover spatial patterns within and across these types. Slide-tags
represents a method to merge these experimental modalities into a
unified approach, integrating the ascertainment of cytoarchitectural
features with the standard collection of single-cell sequencing data. By
importing the single-cell sequencing toolkitinto the spatial repertoire,
Slide-tags will serve asaninvaluable tool to study tissue biology across
organisms, ages and diseases.
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Methods

Sample information and processing

Mouse brain. Mouse housing. Mice were group-housed under a
12 h-12 h light-dark schedule and allowed to acclimatize to their
housing environment for 2 weeks after arrival. All of the procedures
involving animals at the Broad Institute were conducted inaccordance
with the US National Institutes of Health Guide for the Care and Use of
Laboratory Animals under protocol number 0120-09-16 and approved
by the Broad Institutional Animal Care and Use Committee.

Brain preparation. At 56 days of age, male C57BL/6) mice were anaes-
thetized by administration of isoflurane in a gas chamber flowing 3%
isoflurane for 1 min. Anaesthesiawas confirmed by checking for anega-
tive tail-pinch response. Animals were moved to a dissection tray and
anaesthesiawas prolonged through anose cone flowing 3% isoflurane
for the duration of the procedure. Transcardial perfusions were per-
formed with ice-cold pH 7.4 HEPES buffer containing 110 mM NacCl,
10 mMHEPES, 25 mMglucose, 75 mMsucrose, 7.5 mMMgCl,and 2.5 mM
KCltoremove blood from the brain and other organs sampled. For use
inregional tissue dissections, the brain was removed immediately and
frozen for 3 minin liquid nitrogen vapour and then moved to -80 °C
for long term storage.

Whole C57BL/6) mouse embryos at E14 (MF-104-14-Ser) were pur-
chased from Zyagen and stored at —-80 °C until use. A pregnant mouse
was perfused with PBS before collection and snap-freezing of the whole
embryo.

Human brain. Post-mortem autopsy tissue (Brodmannarea 9 cortex)
from a healthy, older, female, control individual was obtained from
the University of Miami Brain Endowment Bank at the Miller School of
Medicine. Tissue was collected in accordance with the standard patient
informed consent procedures of the Brain Endowment Bank in effect
atthetime of collection and subject to approval or an exemption deter-
mination by their Institutional Review Board. Use of the tissue at the
Broad Institute was approved by the Office of Research Subject Protec-
tion project NHSR-4235. This cortical sample was stored at —80 °C until
use after equilibration at —20 °C in the cryostat. As a quality-control
step, the tissue architecture was assessed by Nissl staining after frozen
sectioningat 20 pm, and the RNA integrity was determined using TRIzol
extraction followed by an RNA-integrity number (RIN) assay using the
Agilent RNA nano 6000 Bioanalyzer method (RIN=7.2).

Human tonsil. Anonymized excess tissue specimens were obtained
from a patient who underwent a palatine tonsillectomy procedure
for tonsillar enlargement. The specimens were embedded in OCT,
snap-frozen and stored at —80 °C. As a quality-control step, the tissue
architecture was assessed using H&E staining, and the RNA integrity was
determined using the Tapestation RNA ScreenTape system (RIN® > 7.5).
The use of the tissue at the Broad Institute was approved by the Office
of Research Subject Protection project IRB-6429.

Human metastatic melanoma. Samples were acquired from a patient
who underwentaxillary lymphadenectomy for metastatic BRAF-mutant
melanoma before starting PD-1inhibitor. The sample was embedded
in OCT, snap-frozen after surgery and stored at —80 °C. The use of the
tissue at the Broad Institute was approved by the Office of Research
Subject Protection project NHSR-4182.

Histological processing

For sections that were stained using Nissl, glass-mounted frozen tissue
sections (10 or 20 pm) were equilibrated to room temperature and
excess condensate was wiped off. Sections were fixed in 70% ethanol for
2 min, followed by rehydration in ultrapure water for 30 s. Excess water
was wiped off and slides were stained with Arcturus Histogene Solution
(Thermo Fisher Scientific,12241-05) for 4 min. Excess dye was tapped

offand the slides were rehydrated in water for 10 s for destaining. Slides
were sequentially fixed in 70, 90 and 100% ethanol for 30 s,10 s and
1min, respectively, post-fixed in xylene solution for1 minthen mounted
with Fisher Chemical Permount (SP15-100) and cover-slipped. Images
were acquired using the Keyence BZ-800XE microscope under aNikon
Apo x10 objective or the Leica Aperio VERSA Brightfield, Fluorescence
& FISH Digital Pathology Scanner under a x10 objective.

For sections that were stained using H&E, glass-mounted frozentissue
sections (10 or 20 pm) were equilibrated toroom temperature and the
excess condensate was wiped off. Sections were dipped in xylene, pro-
cessed throughagraded ethanol series and stained with haematoxylin.
The nuclei were ‘blued’ by treatment with a weakly alkaline solution,
and washed with water. Sections were stained with eosin, processed
through agraded ethanolseries, xylene, dehydrated and cover-slipped.
Bright-fieldimages were taken using the Leica Aperio VERSA Brightfield,
Fluorescence & FISH Digital Pathology Scanner under a x10 objective.

Barcoded bead synthesis, array fabrication and sequencing
PLRP-S resin (1,000 A, 10 pm; Agilent Technologies, PL1412-4102)
was used for the barcoded oligonucleotide synthesis. The loading
of the non-cleavable linker on resin was adjusted to approximately
30 pmol g™. The Akta OligoPilot 10 oligonucleotide synthesizer was
used for synthesis (850 mg scale). The PC linker (10-4920-90) and
reverse phosphoramidites (10-0001, 10-9201, 10-0301 and 10-5101-
10) were purchased from Glen Research. A 0.1 M solution of phospho-
ramidites was prepared in anhydrous acetonitrile, and 0.3 M BMT
(BI0166-1005, Sigma-Aldrich) was used as an activator for coupling
(single coupling, 6 min). Two capping steps (before and after oxidation)
were performed with the cap A (BI0224-0505, Sigma-Aldrich) and cap B
(B1:B21:1; BI0347-0505, BI0349-0505 Sigma-Aldrich) reagents. For the
6.3 mlcolumn, capping was performed by 1 CVor1.5 CVfor1min;and,
forthel.2 mlcolumn, 2 CVfor 0.5 min. The oxidation (5 equiv) was per-
formed with 0.05 Miodine in pyridine (BI0424-1005, Sigma-Aldrich).
The detritylation step was performed using 3% dichloroacetic acid in
toluene (BI0832-2505, Sigma-Aldrich).

After the oligonucleotide synthesis, the protecting groups were
removed by incubating the resinin 40% aqueous methylamine for 24 h
at room temperature (20 mg resin per 2 ml). The beads were washed
twice with water (1 ml), three times with methanol (1 ml), three times
with 1:1 acetonitrile:water and three times with acetonitrile (1 ml).
Finally, the beads were washed three times with 10 mM Tris buffer pH 7.5
containing 0.01% Tween-20 and stored in the same buffer at 4 °C. It was
observedthat oligos werereleased in the buffer if the beads were stored
for long periods of time. To remove the released oligos, beads were
washed with 70% acetonitrile/water and resuspended in storage buffer.

Synthesized sequences for the Slide-tags experiments (PC in the
sequences denote photocleavable linker) were as follows: (1) incorpora-
tion of capture sequence by ligation: the bold bases denote the region
thatiscomplementarytothesequenceofthe10xgelbeads (SLACbeads):
5-TTT_PC_zCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCC
GATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJJJ)JJJNNNNNNNVVGCTCGGAC
ACATGGGCG-3’, 10x FB1 extension: 5-GAGCTTTGCTAACGGTCGA
GGCTTTAAGGCCGGTCCTAGCAA-3, splint: 3-CTGTGTACCCGCC
TCGAAACGATTGC-5’; (2) Direct synthesis of capture sequence
on beads (TAGS beads): 5-TTT-PC-GTGACTGGAGTTCAGACGTGT
GCTCTTCCGATCTJJ)JJ)JJTCTTCAGCGTTCCCGAGAJ)J)JJJNNNNNNNVV
GCTTTAAGGCCGGTCCTAGCAA-3’; (3) poly(A) beads: 5’-TTT-PC-GT
GACTGGAGTTCAGACGTGTGCTCTTCCGATCT]J)J)))JJ)JTCTTCAGCGTT
CCCGAGAJJJJJJJNNNNNNNVVA30.

Array preparation and sequencing were performed as described
previously®.

Slide-tags procedure
Fresh frozen tissues were cryo-sectioned to 20 pm on a Cryostat
(CM1950, Leica) at-16 °C. Precooled 2 mm circular (3331P/25, Integra),



3 mm circular (3332P/25, Integra) or 5.5 mm square custom-made
biopsy punches were used to isolate regions of interest from tissue
sections. The punched tissue regions were then placed onto the puck,
ensuring that there were no folds. A finger was placed onto the bottom
of the puck to melt the tissue while trying to prevent rolling. Immedi-
ately, this puck was placed onto the glass slide and placed oniice, and
6-10 pl of dissociation buffer (82 mM Na,SO,, 30 mM K,SO,, 10 mM
glucose, 10 mM HEPES, 5 mM MgCl,) was placed on top of the puck
so that the buffer covered the whole puck. The puck was then placed
under an ultraviolet (365 nm) light source (0.42 mW mm™2, Thorlabs,
M365LP1-C5, Thorlabs, LEDD1B) for 30 s (TAGS beads) or 3 min (SLAC
beads), to cleave the same amount of spatial barcode oligonucleotides
between bead designs (Extended Data Fig. 2). After photo-cleavage,
the puck wasincubated for 7.5 min (TAGS beads) or 5 min (SLAC beads)
and then placed into a 12-well plate (Corning, 3512). Using a 200 pl
pipette, ten 200 pl aliquots of extraction buffer (dissociation buffer, 1%
Kollidon VA64,1% Triton X-100, 0.01% BSA, 666 U mI™ RNase-inhibitor
(Biosearch technologies, 30281-1)) were dispensed onto the puck for
atotal volume of 2 ml. Dispensed extraction buffer was triturated up
and down on the puck 10-15 times to release the tissue. This step was
repeated until the tissue was completely removed from the puck. The
puckwasremoved, and mechanical dissociation of the supernatant was
performed using1 ml pipette 20-25 times trituration to fully dissociate
the tissue. Dissociated nucleiwere removed from the well and the well
was rinsed twice with1 ml of wash buffer (82 mMNa,SO,, 30 mMK,SO,,
10 mM glucose, 10 mM HEPES, 5 mM MgCl,, 50 pl of RNase-inhibitor
(Biosearch technologies, 30281-1)), which was added to the nucleus
suspension. Wash buffer was added to the tube to a final volume of
20 ml. This 20 ml was mixed and divided equally into another 50 ml
falcon tube. Nuclei were centrifuged in a precooled swinging bucket
centrifuge at 600g for 10 min at 4 °C. After centrifugation, 19.5 ml of
the supernatant was removed, leaving 500 pl in each tube. The pellet
was resuspended and pooled. This pooled suspension was then filtered
using aprecooled 40 pm cell strainer (Corning, 431750). DAPI (Thermo
Fisher Scientific, 62248) was added to the filtered solutionata1:1,000
dilutionandincubated for 5-7 min at 4 °C. This was then centrifuged at
200gfor10 minat4 °C.The supernatant was removed, leaving 50 pl of
pellet. The pellet was resuspended and nuclei were counted manually
using a C-Chip Fuchs-Rosenthal disposable haemocytometer (INCYTO,
DHC-FO01-5).

Sequencing library preparation

snRNA-seq library preparation. For Slide-tags snRNA-seq experi-
ments, 43.3 pl of counted nuclei was loaded into the 10x Genomics
Chromium controller using the Chromium Next GEM Single Cell 3’ Kit
v3.1(10x Genomics, PN-1000268). The Chromium Next GEM Single Cell
3’ReagentKits v3.1 (Dual Index) with Feature Barcode Technology for
Cell Surface Protein CGO00317 was used according to the manufac-
turer’s recommendations with slight modifications. Spatial barcode
libraries were prepared as cell-surface protein library preparations. The
number of PCR cycles used for the index PCR step in the cell-surface
proteinlibrary preparation (step 4.1f) for 5.5 x 5.5 mm TAGS arrays was
7; for 3 mm diameter TAGS arrays the number of cycles was 9.

For the mouse brainsample, ligated pucks (see sequencein the ‘Bar-
coded bead synthesis, array fabrication and sequencing’ section) were
used for spatial barcoding. For this sample, acustom PCR protocol was
used instead of step 4.1: 10 pl of cleaned supernatant from step 2.3,
50 pl NEBNext High-Fidelity 2x PCR Master Mix (NEB, M0541S), 2.5 pl
STAG_P701_NEX (10 uM), 2.5 pl 10 uM P5-Truseq Hybrid oligo and 35 pl
ultrapure DNase/RNase-free distilled water (Invitrogen,10977015). In
this sample, ten PCR cycles were performed according to the manu-
facturer’srecommendations.

snATAC-seq and snRNA-seq library preparation. For Slide-tags mul-
tiomic snATAC-seq and snRNA-seq experiments, 43.3 pl of counted

nuclei was loaded into the 10x Genomics Chromium controller using
the Chromium Next GEM Single Cell Multiome ATAC + Gene Expres-
sion Reagent Bundle (10x Genomics, PN-1000283). The Chromium
Next GEM Single Cell Multiome ATAC + Gene Expression CGO00338
Rev F user guide was used according to the manufacturer’s rec-
ommendations with slight modifications. During step 4.1, 1 pl of
0.329 pM spike-in primer (5-GTGACTGGAGTTCAGACGT-3’) was
added. For spatial barcode libraries, a custom PCR protocol was
used: 5 pl of cleaned supernatant from step 4.3, 50 pl NEBNext
High-Fidelity 2x PCR Master Mix (NEB, M0541S), 2.5 pul 10 pM
STAG_iP7_al oligo (5-CAAGCAGAAGACGGCATACGAGATATTTACC
GCAGTGACTGGAGTTCAGACGT*G*T-3’),2.5 ul 10 uM P5-STAG _ip5_al
oligo (5’-AATGATACGGCGACCACCGAGATCTACACGACAATAAA
GACACTCTTTCCCTACACGACGC*T*C-3’), 40 ul ultrapure DNase/
RNase-free distilled water (Invitrogen, 10977015). In this sample, 15
PCR cycles were performed according to the protocol used in the
Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (Dual Index) with
Feature Barcode technology for Cell Surface Protein CGO00317 Rev C
user guide step 4.1.

TCR enrichment and library preparation. We enriched TCRs
from Slide-tags multiome cDNA as previously described** with
the following modifications (https://www.protocols.io/view/
slide-tcr-seq-v3-ivt-n92ldp6w8I5b/v2).

Sequencing

We sequenced scRNA-seq and spatial barcode libraries on the lllumina
NextSeq1000 instrument usingap2100 cyclekit (Illumina, 20046811).
For some libraries, resequencing was performed to improve the
sequencing depth, on an lllumina NovaSeq instrument using the S
Prime platform.

Slide-tags data preprocessing

snRNA-seq data. We used Cell Ranger (v.6.1.2)' mkfastq (10x Genom-
ics) to generate demultiplexed FASTQ files from the raw sequencing
reads. We aligned these reads to either the human GRCh38 or mouse
mm10 genome while including intronic reads with --include-introns,
and quantified gene counts as UMIs using Cell Ranger count (10x
Genomics). For mouse embryo, human brain, tonsil and melanoma,
we used CellBender v.0.2.0 for background noise correction and cell
calling®, setting --expected-cells to the number of Cell Ranger cell calls,
--total-droplets-included to 40,000 and --learning-rate to 0.00005
(only when the default parameters were insufficient to produce cell
probability calls of majority zero and one).

Multiomic snATAC-seq and snRNA-seq data. We used Cell Ranger-arc
(v.2.0.2) mkfastq (10x Genomics) to generate demultiplexed FASTQ
files from the raw sequencing reads. We aligned these reads to the
human GRCh38 genome, and quantified gene counts as UMIs using
Cell Ranger-arc count (10x Genomics). For the gene expression data,
we then used CellBender for background noise correction and cell
calling as described above.

Spatial barcode data. After creating demultiplexed FASTQ files, we
searched using grep for reads containing the spatial barcode uni-
versal primer constant sequence. We then downsampled the spatial
barcode-containing FASTQfile to 25 million reads using seqtk v.1.3-r106
for computational efficiency and consistency across runs. We then
matched candidate cell barcodes in the spatial barcode FASTQ file
with true cell barcodes outputted from either Cell Ranger v.6.1.2 or
CellBender® (Supplementary Table 14), generating a data frame of
candidate spatial barcode sequences per true cell barcode. From this
data frame, we matched candidate spatial barcode sequences with a
whitelist of in situ sequenced spatial barcodes, assigning each true
spatial barcode a spatial coordinate.
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Assignment of spatial locations to nuclei. Slide-tags nuclei are
assigned x,y coordinates corresponding to the distribution of spa-
tial barcodes per nucleus (Supplementary Fig. 1). First, snRNA-seq
or multiome data are preprocessed as described above to gener-
ate a gene-by-cell-barcode count matrix. The whitelist of cell bar-
codes from Cell Ranger and spatial barcodes from in situ bead array
sequencing are matched in the spatial barcode FASTQ to generate a
spatial-barcode-by-cell-barcode matrix. Spatial barcodes with outlier
UMI counts (that is, UMI > 256) are removed as these probably repre-
sentbeads dislodged from the glass slide during nucleusisolation and
encapsulated in droplets with nuclei (data not shown). Then, taking
the set of spatial barcodes and their x,y coordinates for each cell bar-
code, DBSCAN®*%3(v.1.1-11) is used to filter out noise spatial barcodes
before spatial positioning of nuclei (Supplementary Fig. 1c). DBSCAN
outputs a cluster assignment for each spatial barcode. Cluster = 0
corresponds to noise spatial barcodes without a clear spatial distribu-
tion, and cluster of numbers greater than zero correspond to signal
spatial barcodes with discrete spatial clustering. We did not assign
spatial positions to nuclei with all spatial barcodes denoted noise, or
to nucleiwith multiple signal clusters. From the remaining nuclei with
onedistinct spatial barcode signal cluster, we filtered out noise spatial
barcodes and computed a UMI-weighted centroid of spatial barcode
coordinatesinthe signal cluster. DBSCAN required two parameters as
input: minPts and eps. To determine the optimal parameter set for each
Slide-tags run, we iterated through minPts parameters from minPts =3
to minPts =15 under a constant eps = 50 and chose the parameter set
withthe highest proportion of nucleithat are assigned aspatial position
(asingle DBSCAN signal cluster). Sankey plots were generated using
Sankeymatic (https://sankeymatic.com/).

TCRsequences. TCRsequences wereidentified using MiXCR (v.4.1.0)%*¢
and assigned to cell barcodes using ahamming distance 1 collapse.

Mouse brain analysis

Quality control and cell type assignment. The output generated
by Cell Ranger was read into R (v.4.1.1) using Seurat (v.4.3.0)?. Filter-
ing steps are quantified in Supplementary Fig. 1b. We normalized the
total UMIs per nucleus to 10,000 (CP10K) and log-transformed these
values to report gene expression as £ =1og[CP10K +1]. We identified
the top 2,000 highly variable genes after using variance-stabilizing
transformation correction®. All gene expression values were scaled
and centred. For visualization in two dimensions, we embedded nuclei
ina UMAP? using the top 30 principal components, with number of
neighbours =40, min_dist = 0.3, spread = 15, local connectivity =12 and
the cosine distance metric. We identified shared nearest neighbours
using the top 30 principal components. Clusters of similar cells were
detected using the Louvain method for community detection, imple-
mented using FindClusters, with resolution = 0.8. Each cell was then
assigned a predicted identity based on mapping toamouse adultbrain
reference dataset', using FindTransferAnchors and then TransferData,
withthefirst 25 principal componentsinbothcases. For each computed
cell cluster, an identity was assigned using the highest proportion of
transferred labels, and confirmed using known markers genes.
Assessment of spatial positioning accuracy. Spatial barcode metrics
calculations. We measured the accuracy of spatial positioning for
the 839 cell barcodes corresponding to high-quality mapped cells in
our mouse hippocampus dataset (Fig. 1). For each of these cells, we
used the spatial barcodes belonging to the DBSCAN singlet cluster
and calculated the standard error for both x and y coordinates using;:

s.e.=——,
JN

where Nisthe number of spatial barcode UMIsinthe cluster,and gis the
s.d.of each of the spatial barcode UMIs from the centroid of the cluster.

Inadditiontothes.e., other metrics were calculated for each DBSCAN
singlet cluster. Namely, the geometric mean distance of spatial bar-
codes from the centroid:

1
]n

where nisthe number of spatial barcode UMIs in the cluster,and x;— C
is the absolute distance between each spatial barcode UMI and the
cluster centroid.

Foreach cellthat had only asingle DBSCAN cluster, additional metrics
were calculated (Extended DataFig.2d-g). The total number of unique
spatial barcode sequences, and spatial barcode UMIs associated with
each cell was calculated, regardless of whether it was in the singlet
DBSCAN cluster or not. The ratio of spatial barcode UMIs within and
outside the DBSCAN singlet cluster was then calculated as the propor-
tion of signal spatial barcodes per cell.

CAlwidth analysis. A serial section of the profiled region was stained
using Nissl and imaged. Cells were segmented from this image using
watershed segmentationin MATLAB (release 2021b) and the centroid
of eachsegment was calculated. Next, these coordinates were read into
R and DBSCAN was used to isolate cells belonging to the CAlregion,
with the following parameters: eps = 35, minPts = 20. Theimage region
was cropped to match that of the profiled Slide-tags region. For both
datasets, atenth-order (Nissl) or nineth-order (Slide-tags) linear model
was fitted through these points, generating a central curve. For each
spatial barcode UMI, the nearest neighbour on this curve in Euclidean
space was determined and the distance from these two points was
recorded as the distance from the fitted line.

CAlsublayer analysis. Nuclei that belonged to the CAl cluster were
subsetted, and the top 1,000 highly variable genes in this subset of
nuclei was identified after using variance-stabilizing transformation
correction®, Principal component analysis (PCA) was performed using
these variable genes. We identified shared nearest neighbours using
the top 25 principal components. Clusters of similar cells were detected
using the Louvain method for community detection, implemented
using FindClusters, with resolution = 0.5. Differentially expressed
genes between the two clusters were identified using FindMarkers
with the default parameters. Sublayer labels were assigned to each
cluster using previously identified gene expression markers®®®. In situ
hybridization datafor comparative plots were obtained fromthe Allen
Mouse Brain Atlas®.
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Comparison of Slide-tags snRNA-seq versus snRNA-seq data. For
eachsample, CellRanger was run as described above, and the outputs
were run through Cell Ranger aggr (v6.1.2) to account for differences
in the sequencing depth per cell. The result was a combined matrix
of 25,158 nuclei, with 25,107 mean reads per cell, 2,309 median UMIs
per celland 1,438 median genes per cell. Thefiltered feature-barcode
matrix generated by Cell Ranger was then read into R (v.4.1.1) using
Seurat (v.4.3.0)%. We normalized the total UMIs per nucleus to 10,000
(CP10K) and log-transformed these values to report gene expression
as F =log[CP10K +1]. Weidentified the top 2,000 highly variable genes
after using variance-stabilizing transformation correction®. All gene
expression values were scaled and centred. For visualization in two
dimensions, we embedded nucleiin a UMAP® using the top 40 prin-
cipal components, with number of neighbours =40, min_dist = 0.3,
spread =15, local connectivity =12 and the cosine distance metric.
We identified shared nearest neighbours using the top 40 principal
components. Clusters of similar cells were detected using the Louvain
method for community detection, implemented using FindClusters,
with resolution = 1. Each cell was then assigned a predicted identity
based on mapping to a mouse adult brain reference dataset' using
FindTransferAnchors and then TransferData, with the first 25 principal
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components in both cases. These cell type designations were then
used for comparative analysis going forward. Cells designated Unk_1
or Unk_2 were removed from the analysis as these cells showed low
quality metrics and were not interpretable labels.

Comparison of Slide-tags snRNA-seq versus bulk RNA-seq. To
compare the capture of both Slide-tags snRNA-seq and Slide-seq to bulk
RNA-seq data, we used a bulk RNA-seq dataset from the mouse brain
that we published previously®. To generate this dataset, the stranded
mRNA Truseq kit (Illumina, 20020594) was used to prepare stranded
poly(A) selectionlibraries froma dissected sagittal mouse hippocam-
pus. Thelibraries were sequenced and transcripts per million (TPM) for
eachgenewere generated using RSEM” post-alignment with STAR”. For
Slide-seq data, we used two previously published datasets: Slide-seqV1
(ref. 9) Puck_180819_6 and Slide-seqV2 (ref. 20) Puck_200115_08. The
average TPM (APTM) was computed by summing counts for each
gene across allbeads on a puck and dividing by the sum of all UMIs on
the puck, and dividing by 1 million (total UMI counts/1 million). For
Slide-tags snRNA-seq data, to make an appropriate comparison, data
were quantified to exclude intronic reads. The APTM was then com-
puted by summing counts for each gene across all nuclei on the puck
used in Fig. 1g-i, and dividing by the sum of all UMIs across all nuclei,
and dividing by 1 million (total UMI counts/1 million). The per-gene
distribution for each of these values (bulk TPM and Slide-seq ATPM) was
plotted and linear regression was performed to calculate the Pearson’s
correlation coefficient.

Comparison of Slide-tags snRNA-seq with Slide-seqV2 and
DBiT-seq. Slide-tags snRNA-seq mouse hippocampus datawere com-
pared with Slide-seqV2 (ref. 20) mouse brain dataand DBiT-seq mouse
brain data (Spatial-ATAC-RNA-seq"). For gene and UMI count compari-
sons, Slide-seq datawere spatially binned to 20 um spatial square pixels.
Slide-tags snRNA-seq data were processed and nuclei were embedded
in UMAP space as described above. Slide-seqV2 and DBiT-seq total
UMIs per spatial spot (10 pm beads in Slide-seqV2) were normalized
t0 10,000 (CP10K) and log-transformed to report gene expression as
E=10g[CP10K +1]. The top 2,000 highly variable genes were identified
after using variance-stabilizing transformation correction®. Gene
expression values were scaled and centred. For visualization in two
dimensions, we embedded spatial spotsin UMAP space using the top 30
principal components, with number of neighbours =30, min_dist = 0.3,
spread =1, local connectivity =1and the cosine distance metric. We
identified shared nearest neighbours using the top 30 principal com-
ponents. For Slide-seqV2, clusters of similar cells were detected using
the Louvain method for community detection, implemented using
FindClusters, with resolution = 1. RNA clusters from the Spatial-ATAC-
RNA-seq publication”were used for DBiT-seq data. Standard deviations
for the top 30 principal components were plotted using EIbowPlot in
Seurat. Dot plots display the SCTransformed expression values for
DBiT-seq from the Spatial-ATAC-RNA-seq publication.

Mouse embryonic brain at E14 analysis

The output generated by Cell Ranger was read into R (v.4.1.1) using
Seurat (v.4.3.0)*. We normalized the total UMIs per nucleus to 10,000
(CP10K) and log-transformed these values to report gene expression
as F=1og[CP10K +1]. Weidentified the top 2,000 highly variable genes
after using variance-stabilizing transformation correction®. All gene
expression values were scaled and centred. For visualization in two
dimensions, we embedded nucleiin a UMAP® using the top 30 prin-
cipal components, with number of neighbours =40, min_dist = 0.3,
spread =15, local connectivity =12 and the cosine distance metric.
We identified shared nearest neighbours using the top 30 principal
components. Clusters of similar cells were detected using the Louvain
method for community detection, implemented using FindClusters,
withresolution = 0.8. Each cell was then assigned a predicted identity

based on mapping toamouse embryo at E14 reference dataset'®, using
FindTransferAnchors and then TransferData, with the first 25 principal
componentsinboth cases. For each computed cell cluster, anidentity
was assigned using the highest proportion of transferred labels, and
confirmed using known marker genes.

Human brain analysis

Quality control and cell type assignment. The output generated by
CellRanger wasfiltered by CellBender and readintoR (v.4.2.2). The ma-
trix was subsetted down to cells that had exactly one DBSCAN location
and fewer than 5% mitochondrial UMIs, which were then loaded into
Seurat (v.4.3.0)* to perform normalization, finding variable features,
scaling, PCA, finding neighbours (dims=30) and finding clusters, and
to create a UMAP, all with the default parameters (unless otherwise
specified). Each cluster was assigned a cell class (excitatory neuron,
inhibitory neuron, oligodendrocyte, OPC, Astroce, endothelial cell,
microglia) by plotting canonical cell type marker genes on the UMAP
and manually assigning each cluster a cell type. Subsequently, excita-
tory and inhibitory neuron subtypes were mapped from a published
human cortex dataset® by label transfer using Harmony v.0.1.1 and
spatially plotted in Supplementary Figs. 2b and 3b.

Identification of layers and layer-dependent gene expression.
The layer assignment of each cell (L1-2, L3-5,L6, WM) was calculated
by manually drawing boundaries between the layer-specific mapped
neuron subtypes and assigning each cell a label depending on which
two boundaries it was between. The numerical laminar coordinate
was then calculated by taking the Euclidean distance of each cell to
the nearestboundary and dividing it by the sum of the distances to the
two neighbouring boundaries, adding a constant factor depending on
the layer assignment.

Before computing the spatial variation score for each gene, nuclei
were removed if they contained expression above a Z-score of 2 for
amarker gene of a different cell type. Subsequently, each gene was
assigned aspatial variation score by computing the kernelized density
of the gene expression along the laminar coordinate of filtered cells
using a uniform kernel and taking the difference between the high-
est and lowest expression density values (Supplementary Table 2).
Complex gradients were found by taking the intersection of each cell
type’s spatially variable gene list, and a visually selected interesting
subset is shown in Fig. 2I.

Gene Ontology analysis was performed on all genes with a spatial
variation Zscore above 7.0 using EnrichGO from clusterProfiler v.4.6.0
(using the default parameters) and using annotations from org.Hs.eg.
dbv.3.16.0 (Supplementary Table 3) under the biological process ontol-
ogy. For display in Fig. 2k, the terms were further subsetted toinclude
only terms with P,4;<1x 10" in at least one cell type.

Genes with a spatial variation Zscore above 10 in excitatory/inhibi-
tory neurons and above 8 in astrocytes/OPCs are shown in the heat
maps in Fig. 2i,j and Extended Data Fig. 6d,e. Genes that additionally
had a minimum expression below 0.8 were spatially plotted in Sup-
plementary Fig.4-6.

Reproducibility analysis. The percentage of high-quality nuclei
that were spatially positioned and the density of mapped nuclei were
compared across four human cortex Slide-tags runs (Supplementary
Table4).Foreachrun,thecell calls generated as output by Cell Ranger
were used and low-quality cells were removed if they belonged to a
cluster with an average mitochondrial nUMIs percentage of greater
than 5%. Then, the percentage of mapped nuclei was computed by
dividing the number of nuclei with exactly one DBSCAN location
by the total number of nuclei. The nucleus density was calculated by
selecting a window of tissue with equal white and grey matter area
and dividing the number of spatially positioned nuclei in the window
by the window area.



Article

Tonsil analysis

Quality control and cell type assignment. The output generated by
Cell Ranger and filtered by CellBender was read into R (v.4.1.1) using
Seurat (v.4.3.0)*. We normalized the total UMIs per nucleus to 10,000
(CP10K) and log-transformed these values to report gene expression
as E=1log[CP10K +1]. Weidentified the top 2,000 highly variable genes
after using variance-stabilizing transformation correction®. All gene
expression values were scaled and centred. For visualization in two
dimensions, we embedded nucleiina UMAP® using the top 30 principal
components, withnumber of neighbours =30, min_dist = 0.3, spread =1,
local connectivity =1and the cosine distance metric. We identified
shared nearest neighbours using the top 30 principal components.
Clusters of similar cells were detected using the Louvain method for
community detection, implemented using FindClusters, with resolu-
tion = 1. Annotation of de novo clusters was aided by marker genes and
Azumith® reference-based mapping from the human tonsil atlas”.

Spatially varying gene expression. Significantly non-random genes
were discovered in GCB cells as described previously®. In brief, for each
single-nucleus assigned as a germinal centre B cell that was positioned
in one of the four largest germinal centres that we profiled, we first
calculated the matrix of pairwise Euclidean distances between cells for
each germinal centre individually. We then compared the distribution
of pairwise distances between the cells expressing at least one count
ofthat transcript to the distribution of pairwise distances between an
identical number of cells, sampled randomly from all mapped beads
within the set with probability proportional to the total number of UMIs
per cell. Specifically, we generated 1,000 such random samples, and
for each sample calculated the distribution of pairwise distances. We
then calculated the average distribution of pairwise distances, averaged
across all 1,000 samples. Finally, we calculated the L1 norm between
the distribution of pairwise distances for the true sample of cells and
the average distribution. We defined p to be the fraction of random
samples with distributions closer to the average distribution (under
the L1norm) thanthe true sample. We calculated an Zscore for the true
sample giventhe distribution distances from the average distribution
ofrandomsamples. Finally, we aggregated p values for spatial variation
from each of the four tested germinal centres using Fisher’s method.

We intersected our computed spatially varying genes with genes
thatwere previously implicated in germinal centre zone distinction”.
We calculated the percentage variance in gene expression space and
plotted it against the spatial effect size from our spatial permutation
test toidentify genes with relatively low gene expression variance but
high spatial variance.

Germinal-centre zonation. We used spatially varying genes (P < 0.05)
identified as described above to classify GCB cells into light-zone,
dark-zone and transitional states. Specifically, we subsetted our data
to GCB cells, rescaled and recentred values, and ran PCA on the 1,068
significant spatially varying genes. We then identified shared near-
est neighbours using the top 15 principal components. Clusters of
similar cells were detected using the Louvain method for community
detection, implemented using FindClusters, with resolution = 0.4.
We annotated clusters as light-zone, dark-zone and transitional states
using marker genes and Azumith? reference-based mapping fromthe
human tonsil atlas™.

After classifying GCB cells into states, we spatially segmented ger-
minal centres into light zones and dark zones using dark-zone B cell
spatial density. We ran DBSCAN®? on dark-zone B cells of the two largest
germinal centres, using eps = 60 and minPts = 6 for the largest germinal
centre, and eps = 60 and minPts = 10 for the second-largest germinal
centre. We considered cells within the top DBSCAN cluster to constitute
the dark zone and segmented around the outer cells. The remaining
cellsin both germinal centres were considered to be in the light zone

andsegmentationborders were drawn accordingly. We tested for zone
bias of T follicular helper cells and follicular dendritic cells using chisq.
test from the stats package inR (v.4.2.2).

Spatial receptor-ligand prediction. To detect receptor-ligand in-
teractions between cell type pairs, we computed a receptor-ligand
score based on a spatial correlation index™, SCI, which we defined as:

gy
N M
2 Xj Wy

between N cells of ‘sender cell type’ expressing receptor rand M cells
of ‘receiver cell type’ expressing ligand [, where expression is sctrans-
form counts”. We defined the spatial weights matrix of dimensionality
N x Masanadjacency matrix, denoting1for when sender cell iis within
100 pmofreceiver celljand O otherwise. We first ran LIANA® (v.0.1.12)
to generate a putative list of receptor-ligand interactions between cell
type pairs in a spatial agnostic manner, filtering to receptor-ligand
interactions that are expressed inatleast 50 cells of sender and receiver
cell types (log[CPM] > 0), or in 30% of sender and receiver cells. We
then computed a spatial correlation index for each receptor-ligand
interactionto determine whether thereceptor and ligand are spatially
co-expressed in a given cell type pair.

To determine the spatial significance of a receptor-ligand score,
we used an adaptive spatial permutation test, running 1,000 permu-
tations for each receptor-ligand interaction. In each permutation,
we randomly permuted the spatial locations of cells within a given
cell-type. For interactions with a nominal P value less than or equal
to 0.005, we ran an additional 9,000 permutations. We corrected for
multiple-hypothesis testing using the Benjamini-Hochberg procedure.
We also computed the log-transformed FC between the observed SCI
statistic and the median SCl statistic of the empirical null distribution.
This enabled us to compare SCI log-transformed FC values between
receptor-ligand interactions for different cell types without explicitly
correcting for the number of cells of each cell type.

sCi= 3735 wyily

Spatial contextualization of receptor-ligand interactions. To spa-
tially contextualize receptor-ligand interactions, we decomposed
spatial correlationindices for each significantinteraction between GCB
cells, T follicular helper cells and follicular dendritic cells (P,4; < 0.05)
into interaction intensity scores for individual cells’. These decom-
posed scores reflect each individual cell’s contribution to the total
spatial correlation index, defined as follows for receiving cell i and
vice versa for sender cell;:

M
LisA= 12 Ui ZL il
2j Wy

comparing interaction intensity scores of the receptor of each cell
between dark zones and light zones. We corrected P values using the
Benjamini-Hochberg method. Zone-specific receptor expression was
tested using SCTransformed expression values compared between
dark zones and light zones also using wilcox.test in R.

Melanoma analysis

Quality control and cell type assignment. snRNA-seq data. The Cell
Ranger outputwas filtered by CellBender and read into R (v.4.1.1) using
Seurat (v.4.3.0)2. We normalized the total UMIs per nucleus to 10,000
(CP10K) and log-transformed these values to report gene expression
as F=1og[CP10K +1]. We identified the top 2,000 highly variable genes
after using variance-stabilizing transformation correction®. All gene
expression values were scaled and centred. For visualization in two
dimensions, we embedded nucleiina UMAP® using the top 30 principal
components, with number of neighbours =30, min_dist = 0.3, spread =1,



local connectivity =1and the cosine distance metric. We identified
shared nearest neighbours using the top 30 principal components.
Clusters of similar cells were detected using the Louvain method for
community detection, implemented using FindClusters, with resolu-
tion =1. Annotation of de novo clusters was aided by marker genes.
Multiome ATAC and snRNA-seq data. The RNA expression matrix
generated by Cell Ranger was read into R (v.4.1.1) using Seurat®. The
ATAC-filtered feature-barcode matrix generated by Cell Ranger was
read intoR (v.4.1.1) using Signac (v.1.9.0)”, and added as its own assay
slotinthe Seurat object containing RNA expression counts. Peaks were
recalled using the CallPeaks function, which uses MACS2 (v.2.2.7.1)8,
acrossall cells. Fragments were mapped to the MACS2-called peaks and
assigned to nucleiusing the FeatureMatrix functionin Signac. Peaksin
non-standard chromosomes were removed using keepStandardChro-
mosomes from GenomelnfoDb (v.1.35.15)° and problematic regions
ofthe hg38 genome were removed using subsetByOverlaps according
to the blacklist available at GitHub (https://github.com/Boyle-Lab/
Blacklist)®°. This final peaks—barcode matrix was then added to the
‘peaks’ assay within the Seurat object.

For cell type annotation, the snRNA-seq data from the multi-
ome experiment were normalized for the total UMIs per nucleus to
10,000 (CP10K) and log-transformed to report gene expression as
E=10g[CP10K +1]. The top 2,000 highly variable genes were identi-
fied after using variance-stabilizing transformation correction®. We
thenintegrated the gene expression data from Slide-tags multiome
with gene expression data from Slide-tags snRNA-seq using SelectIn-
tegrationFeatures, FindIntegrationAnchors and IntegrateData across
allfeatures with the default parameters of Seurat (v.4.3.0). Integrated
gene expression values were scaled and centred. For visualization in
two dimensions, we embedded nuclei in a UMAP® using the top 30
principal components, with number of neighbours =30, min_dist = 0.3,
spread =1, local connectivity =1and the cosine distance metric. We
identified shared nearest neighbours using the top 30 principal com-
ponents. Clusters of similar cells were detected using the Louvain
method for community detection, implemented using FindClusters,
with resolution =1. Cells from Slide-tags multiome were annotated
based on marker genes and co-clustering with Slide-tags snRNA-seq
cells. Gene expression counts from Slide-tags multiome were rescaled
and reclustered as described above using the non-integrated object
for subsequent analyses.

Inferring CNV. InferCNV (v.1.3.3) was used to infer large-scale CNVs
from standard snRNA-seq data and from snRNA-seq data from a 10x
multiome experiment as previously recommended (inferCNV of the
Trinity CTAT Project; https://github.com/broadinstitute/inferCNV).
CellBender-corrected counts were extracted from annotated Seurat
objects, where normal reference cells were specified as all cells that
were not labelled as tumour. InferCNV was run under the following
parameters: cutoff = 0.1, cluster_by_groups =T, denoise = T, HMM =T,
num_threads = 60.

TCR analysis. TCR analyses focused on CD8" T cells; we used Fisher’s
exacttesttotest whether (1) the B-chain sequence CASRASNEQFF was
tumour-compartment biased compared against all CD8" T cells with
profiled B-chains, where tumour compartment segmentation was per-
formed manually based on tumour subpopulation density; and (2)
paired CD8" T cells with TCR a-chain CAEWYNQGGKLIF and B-chain
CASRASNEQFF were tumour-compartment biased.

ATAC analysis. Latent semantic indexing (LSI) was performed on
the peaks assay using Signac, with the RunTFIDF and RunSVD func-
tions. For visualization in two dimensions, we embedded nuclei in
a UMAP? using LSI dimensions 2-30. Nuclei were visualized using
the combination of modalities profiled, with weighted-nearest neigh-
bour analysis. Multimodal neighbours were identified using Seurat’s

FindMultiModalNeighbors function, with the RNA PCA dimensions
1:50, and the ATAC LSI dimensions 2:50. These neighbours were then
used asaninputinto RunUMAP for visualization.

To annotate the motifs presentin peaks, the Signac function Create-
MotifObject was used to create a motif object, with all human motifs
from the Jaspar 2020 database. Motif accessibility Z scores were
then calculated using Signac’s RunChromVAR function (chromVAR
v.1.16.0). Gene activity scores were calculated using the Signac func-
tion GeneActivity. We normalized these gene scores by normalizing
the total gene score per nucleus to the median nUMI for the RNA assay
(NGS) and log-transformed these values to report gene expression as
E=1og[NGS +1].

Differential gene expression, differential chromatin gene scores
and gene set enrichment analysis. Differential gene expression analy-
seswere performed using the MAST implemented in FindMarkers from
Seurat®. Analysis comparing tumour cluster 1and tumour cluster 2
from Slide-tags snRNA-seq and comparing compartment-specific CD8"
T cells from Slide-tags multiome data used min.pct = 0.25 and log2fc.
threshold = 0.25. Analysis comparing tumour cluster 1and tumour
cluster 2 from Slide-tags multiome dataused min.pct =0.1and log2fc.
threshold =0.25. Gene Ontology biological process (GO_Biological_Pro-
cess_2021) gene set enrichment analysis was performed using the Enri-
chr package (v.3.1) in R¥% on tumour cluster 2 enriched differentially
expressed genes withlog,[FC] <-0.5and P,; < 0.05. Differential chro-
matingene score analysis was conducted using the Wilcoxon rank-sum
testimplemented in FindMarkers from Seurat with min.pct = 0.1and
log2fc.threshold = 0.

Melanocytic-like and mesenchymal-like signatures. We scored tu-
mour cells on melanocytic-like and mesenchymal-like signatures using
AddModuleScoreinSeurat with alist of genes adapted from previous
work*®% (Supplementary Table 15). Correlations of chromVAR motif
scores with mesenchymal scores were tested using Pearson’s correla-
tion coefficientand Pvalues were corrected using the Benjamini-Hoch-
berg procedure. Spatial autocorrelations of chromVAR motifs were
tested using Moran.l from the ape package (v.5.6-2) in R%, where the
weights matrix was specified as 1/distance’.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Slide-tags datasets have been deposited at the Broad Institute Single
Cell Portal under the following accession numbers: SCP2162 (mouse
brain), SCP2170 (mouse embryonic brain), SCP2167 (human brain),
SCP2169 (human tonsil), SCP2171 (human melanoma) and SCP2176
(human melanoma multiome). Raw and processed mouse data have
been deposited at the Gene Expression Omnibus under accession
number GSE244355.

Code availability

Code for processing spatial sequencing libraries is available at GitHub
(https://github.com/broadchenf/Slide-tags (https://doi.org/10.5281/
zenodo.2571615).
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Extended DataFig.1|Cell type assignment and spatial mappingin the mouse hippocampus. a, Expression of marker genes by cell type cluster. b, Spatial
positions of each cell by cell type cluster. All scale bars denote 500 pum. CA1=Cornu Ammonis areal, CA3=Cornu Ammonis area3.n =839 nuclei.
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Extended DataFig. 2| Assessing the mapping of single nuclei using spatial
barcodesinthe mouse hippocampus. a, Eachrecovered signal and noise
spatial barcodeis shown coloured by the number of detected UMIs. b, The
proportion of nuclei mapped for each minPts parameter tested in DBSCAN.

¢, The proportion of nuclei mapped at different median spatial barcode nUMIs
percell.d-e, Violin plots showing different spatial barcode metrics for every
cellthatis aspatial singlet. f, Violin plot showing the proportion of spatial
barcode UMIs that are assigned to the DBSCAN singlet cluster (signal) vs. all
other spatial barcode UMIs recovered for that cell. g, Violin plot showing the
meanradial distance for spatial barcodes for each spatial singlet cluster. h, The
proportion of cells that are assigned to each number of DBSCAN clusters. i, plot
showing the concentration of oligos released by time under illuminationat the
samelight source power, for each bead type used in Slide-tags experiments.

Thetimeused for cleavage for eachbead typeis shown with the dotted lines.
j, Plotshowing the standard error (SE) for each singlet true spatial barcode
clusterinxandy. Density shows: centre line, median; adjacentlines, upperand
lower quartiles. k, The full set of spatial barcodes recovered for each of the
nucleiplottedinFig.1c, with their xy positions, kernel density estimates, and
coloured by nUMI associated witheach cell are plotted (top). Points centred
around the signal cluster are shown at higher magnification with final cell
positionshown as across (bottom). Scale bars denotes 500 pm, except for
magnified plots, where scale bars denote 200 um. Boxplots show: centreline,
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile
range; points, outliers. CA1=CornuAmmonis areal, DG =dentate gyrus.
a,j,n=839nuclei.d-g,n=1042 nuclei. b,c,h,n=1889 nuclei.
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Extended DataFig. 3 |See next page for caption.




Extended DataFig. 3| Spatial resolution measurements in the mouse
hippocampus and Slide-tags snRNA-seq enables characterization of the
deep and superficial sublayersin the mouse hippocampal CAlfield.

a,A10 umnissl-stained section (left) was taken adjacently to the Slide-tags
profiled section (right). b, The CAlnuclei were subsettedineach caseandaline
was fitted to measure the midpoint of this structure. For Slide-tags, nuclei were
selected based ontheir cell type assignmentin Figure S1, with 2 spatial outliers
removed. For Nissl, nuclei were computationally segmented. Orthogonal
distances from this midpoint were then calculated and points are coloured by
this distance. ¢, Violin plots showing the distribution of distances from the
fittedlineinb.d, PCA plot showing cells from the CAlcluster after subsetting,
reprojection, andreclustering. Cells are coloured according to their new

sub-cluster assignment.e, Cells fromaare plotted according to their spatial
location (top). The spatial density of nuclei fromeach populationis plotted
(bottom).f, Volcano plot showing differentially expressed genes between sps
andspd.g, Violin plots showing gene expression differences between each
subcluster (top) and the expression of these genes spatially (middle), as well
asinsitu hybridization data (bottom) from Allen Mouse Brain Atlas®. Genes
were selected based on being discovered as differentially expressed between
these twosub-clustersin our dataset and alsoidentified in previous studies
asdefining these two sub-layers®®*°. Boxplots show: centre line, median; box
limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,
outliers. All scale bars denote 500 pm. For Slide-tags CA1, n =155 nuclei. For
imaging data, n = 898 segmented nuclei.
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Extended DataFig.4|Comparison of Slide-tags to Bulk RNA-seq, Slide-seqV2
and DBiT-seq. a, Slide-tags snRNA-seq vs. bulk RNA-seq. b, Slide-seqV2 vs.
bulkRNA-seq. ¢, Slide-seqV1vs. bulkRNA-seq. Log;, transformations are shown
ineachbulk comparison case.d, Violin plots of log,,-transformed genes and
UMIs per nucleus (Slide-tags) or 20 pm spatial spot (Slide-seqV2 and DBiT-seq /
spatial-ATAC-RNA-seq) in the mouse brain. n = 839 nuclei for Slide-tags,
n=18,95020 pm pixels for Slide-seq, and n = 9,215 pixels for DBiT-seq. e, Elbow
plot of standard deviations of principal components from Slide-tags snRNA-seq,

Slide-seqV2,and DBiT-seqin the mouse brain. f, UMAP embeddings of snRNA-seq
profiles from Slide-tags snRNA-seq (cell type labels), Slide-seqV2 (de novo
clusters), and DBiT-seq (RNA clusters from Zhang et al.’®) in the mouse brain.

g, Dotplot expression of select markers across transcriptome clusters from
Slide-tags snRNA-seq, Slide-seqV2, and DBiT-seq in the mouse brain. Boxplots
show: centreline, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers.
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Extended DataFig.5|Slide-tags snRNA-seq applied to the embryonic mouse
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Slide-tags snRNA-seqon the mouse E14 embryonic brain.*=XYZeqwas not
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directly comparable due to tissue-specific effects. Allscale bars denote 500 pm.
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Extended DataFig. 9 |Slide-tags multiome on human melanoma. a, Mean
TSSenrichmentscore.b, Violin plots of log,,-transformed unique fragments
and fraction of readsin peaks (FRiP) percentage. n =2,529 nuclei. Boxplots
show: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, outliers. c, Weighted nearest neighbour UMAP
embeddings of snRNA-seqand snATAC-seq profiles coloured by cell type.

d, Spatial mapping of cell types. e, ATAC sequence track and gene expression
violin plot of MLANA and CCLS across cell types. f, TCR pairing chord plot of
alphaandbetachain pairing frequenciesin CD8 T cells. g, Differential gene

expression volcano plot between CD8 T cellsin tumour compartment1vs
tumour compartment 2. h, Scatter plot of melanocytic-like scores and
mesenchymal-like scores of tumour cluster 1cells in tumour compartment 1.
Pearson’srvalueisreported. Error band represents the 95% confidence
interval. i, Mesenchymal-like cell state score spatial distribution.j, Spatial
distribution of JUNB and MITF chromVAR motifscores. All scale bars denote
500 um.Treg=Tregulatory cells, mDC=myeloid dendritic cells, Mono-mac=
monocyte-derived macrophages.
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Data collection For alignment of sequencing reads, we used: Cell Ranger v6.1.2, CellBender v0.2.0, Cell Ranger-arc v2.0.2, seqtk v1.3-r106.

Data analysis For processing of aligned data, MiXCR v4.1.0, MACS2 v2.2. 7.1, inferCNV vl.3.3.
The following R packages were used within R 4.1.1: DBSCAN vl.1-11, Seurat v4.3.0, Harmony v0.1.1, stats v4.2.2, Signac v|.9.0, GenomelnfoDb
vI.35.15, LIANA v0.1.12, Enrichr v3.], ape v5.6-2. The following R packages have been used in R 4.2.2: Seurat v4.3.0. Dependencies have not
been listed for brevity.

Code for processing spatial sequencing libraries is available on Github: https://github.com/broadchenf/Slide-tags.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Slide-tags datasets have been deposited on the Broad Institute Single Cell Portal, under the following accession numbers: mouse brain (SCP2162), mouse embryonic
brain (SCP2170), human brain (SCP2167), human tonsil (SCP2169), human melanoma (SCP2171), human melanoma multiome (SCP2176). Raw and processed mouse
data has been deposited in GEO under the accession number: GSE244355.
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Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Human brain data was from female. No gender available for human tonsil and melanoma specimens due to excess surgical
collection from deidentified subjects.

Population characteristics Human brain data was from 78 year old female. No age infomration available for human tonsil and melanoma specimens due
to excess surgical collection from deidentified subjects. Melanoma specimens were acquired from a patient who underwent

axillary lymphadenectomy for metastatic BRAF-mutant melanoma prior to starting PD-1 inhibitor.

Recruitment No recruitment was done. Human tonsil and melanoma specimens collected from excess surgical material from deidentified
subjects. Human brain sample was from post-mortem deidentified specimen.

Ethics oversight This was determined to be non-human subject research by Broad IBC.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No sample size calculation was performed. Samples sizes were chosen primarily based on experiment length, sample availablity, and
sequencing costs. These sample sizes are sufficient because each sample serves as a proof-of-concept for the new technology.

Data exclusions  No data was excluded.
Replication All attempts at replication were successful. We performed replication on human brain Slide-tags datasets (2 technical datasets).

Randomization  Randomization was not applicable because the focus of this paper is the development of a new genomic technology and did not involve
allocating samples/organisms/participants into experimental groups.

Blinding Blinding was not applicable because because the focus of this paper is the development of a new genomic technology and did not involve
group allocation.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

>
Q
S
(e
=
)
o
o)
=
o
=
—
@
§o)
o)
=
>
Q@
wv
c
S
3
Q
<L




Materials & experimental systems

Methods

Involved in the study

Antibodies
Eukaryotic cell lines

Palaeontology and archaeology

n/a | Involved in the study

X[ ] chip-seq
X[ ] Flow cytometry

X|[ ] MRI-based neuroimaging

Animals and other organisms

Clinical data

XXOX XX &
OOXOOO

Dual use research of concern

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

>
Q
S
(e
=
)
o
o)
=
o
=
—
@
§o)
o)
=
>
Q@
wv
(e
S
3
Q
<L

Laboratory animals Mus musculus strain C57BL/6J 56 days old, Mus musculus strain C57 E14
Wild animals This study did not involve wild animals.
Reporting on sex Sex was not important for this study since the tissues are used to benchmark a new genomics protocol, which we anticipate would

provide identical results regardless of sex.
Field-collected samples  No field-collected samples were used.

Ethics oversight All procedures involving animals at the Broad Institute were conducted in accordance with the US National Institutes of Health Guide
for the Care and Use of Laboratory Animals under protocol number 0120-09-16

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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