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Slide-tags enables single-nucleus barcoding 
for multimodal spatial genomics

Andrew J. C. Russell1,2,15, Jackson A. Weir1,3,15, Naeem M. Nadaf1,15, Matthew Shabet1, 
Vipin Kumar1, Sandeep Kambhampati1,4, Ruth Raichur1, Giovanni J. Marrero1, Sophia Liu1,5,6, 
Karol S. Balderrama1, Charles R. Vanderburg1, Vignesh Shanmugam1,7, Luyi Tian1,13, 
J. Bryan Iorgulescu1,8,9,10,14, Charles H. Yoon11, Catherine J. Wu1,8,9,10, Evan Z. Macosko1,12 ✉ & 
Fei Chen1,2 ✉

Recent technological innovations have enabled the high-throughput quantification of 
gene expression and epigenetic regulation within individual cells, transforming our 
understanding of how complex tissues are constructed1–6. However, missing from 
these measurements is the ability to routinely and easily spatially localize these profiled 
cells. We developed a strategy, Slide-tags, in which single nuclei within an intact tissue 
section are tagged with spatial barcode oligonucleotides derived from DNA-barcoded 
beads with known positions. These tagged nuclei can then be used as an input into a 
wide variety of single-nucleus profiling assays. Application of Slide-tags to the mouse 
hippocampus positioned nuclei at less than 10 μm spatial resolution and delivered 
whole-transcriptome data that are indistinguishable in quality from ordinary single- 
nucleus RNA-sequencing data. To demonstrate that Slide-tags can be applied to a wide 
variety of human tissues, we performed the assay on brain, tonsil and melanoma. We 
revealed cell-type-specific spatially varying gene expression across cortical layers and 
spatially contextualized receptor–ligand interactions driving B cell maturation in 
lymphoid tissue. A major benefit of Slide-tags is that it is easily adaptable to almost 
any single-cell measurement technology. As a proof of principle, we performed 
multiomic measurements of open chromatin, RNA and T cell receptor (TCR) sequences 
in the same cells from metastatic melanoma, identifying transcription factor motifs 
driving cancer cell state transitions in spatially distinct microenvironments. Slide-tags 
offers a universal platform for importing the compendium of established single-cell 
measurements into the spatial genomics repertoire.

Technology development efforts in genomics during the past decade 
have produced an extensive toolkit of single-cell and single-nucleus 
sequencing methods, enabling high-throughput molecular charac-
terization of many macromolecules1–6. However, missing from these 
measurements is the cytoarchitectural organization of the cells being 
profiled. Spatially resolved sequencing technologies aim to address 
this drawback by barcoding macromolecules with oligonucleotides 
of which the spatial positions are known7–10. However, direct transfer 
of design principles from single-cell sequencing methods to spatially 
resolved profiling is often impossible, necessitating the reinvention of 
each molecular assay (such as transcriptomics8,9, mutations7 or assay 
for transposase-accessible chromatin with sequencing (ATAC–seq)11–13) 
in a spatial context. Furthermore, while single-cell computational tools 

are extremely mature14, additional sources of noise in spatial genomics 
techniques require their redesign as well, for example, to address prob-
lems with cellular mixing15–17. An alternative to capture-based strategies 
is to isolate single cells while retaining spatial barcoding information; 
to date, this has been demonstrated only at a limited spatial resolution 
and with sparse sampling of tissues18,19. An ideal spatial genomics tech-
nology would (1) efficiently capture cell profiles from tissue sections; 
(2) resolve cellular positions at low-micrometre resolutions; and (3) be 
generally applicable to any single-cell methodology.

Here we introduce Slide-tags, a method in which cellular nuclei from 
an intact fresh frozen tissue section are ‘tagged’ with spatial barcode 
oligonucleotides derived from DNA-barcoded beads with known 
positions. Isolated nuclei are then profiled using existing single-cell 
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methods with the addition of spatial positions. We demonstrate the 
tissue versatility of Slide-tags by assaying adult and developing mouse 
brain, human cerebral cortex, human tonsil and human melanoma. 
Across tissues and species, we import spatially tagged nuclei into 
standard workflows for single-nucleus RNA-sequencing (snRNA-seq), 
single-nucleus ATAC–seq (snATAC–seq) and TCR sequencing. Slide-tags 
is also readily integrated into established single-cell computational 
workflows, such as copy-number variation (CNV) inference. In doing 
so, we take advantage of the truly single-cell, spatially resolved, multi-
modal capacity of Slide-tags to reveal cell-type-specific spatially varying 
gene expression, spatially contextualize receptor–ligand interactions 
and examine genetic and epigenetic factors participating in tumour 
microenvironments.

Labelling nuclei with spatial barcodes
We previously developed densely packed spatially indexed arrays of 
DNA-barcoded 10 μm beads, generated using split-pool phosphoramid-
ite synthesis and indexed by sequencing-by-ligation7,9,20. In our original 
Slide-seq methodology, DNA or RNA from tissues was captured and 
spatially barcoded using these arrays. In our Slide-tags technology, 
we photocleave and diffuse these bead-derived spatial barcodes into 
20 μm fresh frozen tissue sections to associate them with nuclei (Fig. 1a). 
We postulated that, once these barcodes are associated with nuclei, 
they could be used as input to established single-nucleus sequencing 
approaches (Methods) with only minor protocol modifications.

Slide-tags snRNA-seq in the mouse brain
To benchmark our approach, we performed Slide-tags followed by 
droplet-based snRNA-seq on a 20 μm coronal section of the adult mouse 
hippocampus, which has a highly stereotyped architecture that is use-
ful for validating spatial techniques9. We dissociated and sequenced 
1,661 nuclei from a 3 mm2 area coronal tissue section, clustering the 
data using a standard single-cell pipeline21 (Fig. 1b) and annotating 
clusters using well-established cell class markers (Extended Data Fig. 1). 
Multiple spatial barcodes were detected per nucleus, enabling higher 
assignment confidence than when using protocols in which only one 
spatial barcode is associated with a cell (Fig. 1c). To spatially position 
our single-nucleus transcriptomes, we used density-based spatial clus-
tering of applications with noise (DBSCAN)22 to separate background 
spatial barcodes from the true signal (Methods, Extended Data Fig. 2 
and Supplementary Fig. 1). Nuclei are then assigned a spatial coordi-
nate using the unique molecular identifier (UMI)-weighted centroid 
of the DBSCAN-clustered spatial barcodes denoted the true signal 
(Methods). Using this procedure, we assigned spatial locations to 839 
high-quality nucleus profiles (50.5% of profiled nuclei, 11,250 median 
UMIs per nucleus). Examination of the spatial positions of individual 
clusters recapitulated the expected cytoarchitectural arrangement of 
the hippocampus (Fig. 1d). Furthermore, spatial expression profiles of 
individual genes matched existing in situ hybridization data23 (Fig. 1e). 
To quantify spatial positioning accuracy, we first compared the width of 
the hippocampal subfield cornu ammonis area 1 (CA1) in Slide-tags with 
a Nissl-stained serial section and found that the width of the Slide-tags 
feature was congruent with the Nissl image (Extended Data Fig. 3). 
Moreover, we found that we could accurately localize sub-cell types in 
the deep and superficial layers of the CA1 (Extended Data Fig. 3 and Sup-
plementary Table 1). Second, we calculated the standard error for each 
centroid in x and y, and estimated the accuracy to be 3.5 ± 1.9 μm in x and 
3.6 ± 2 μm in y (mean ± s.d., n = 839 nuclei; Extended Data Fig. 2j). Third, 
we quantified the nucleus misassignment rate by leveraging the stereo-
typed structure of the CA1 and dentate gyrus. We found that 98.7% of 
CA1 (155 out of 157) and dentate granule (312 out of 316) neurons were 
localized in the CA1 pyramidal layer and the dentate gyrus, respectively 
(Extended Data Fig. 1b). We investigated whether the tagging procedure 

affected the resultant snRNA-seq data quality by comparing standard 
snRNA-seq with Slide-tags followed by snRNA-seq on adjacent sections 
of the mouse hippocampus. We found that recovered cell type propor-
tions (Pearson’s r = 0.96, P < 2.2 × 10−16), UMIs recovered per cell (Pear-
son’s r = 0.96, P < 2.2 × 10−16) and gene expression (Pearson’s r = 0.99, 
P < 2.2 × 10−16) were all unaffected by the tagging procedure (Fig. 1g–i). 
Slide-tags is also well correlated to bulk-RNA-seq from the same tissue 
region (Extended Data Fig. 4a; Pearson’s r = 0.92). Thus, Slide-tags gen-
erated data that are almost indistinguishable from snRNA-seq with a 
theoretical ~3 μm spatial localization accuracy.

We next performed Slide-tags snRNA-seq on a 7 mm2 area sagittal sec-
tion of the embryonic mouse brain at embryonic day 14 (E14; Extended 
Data Fig. 5a,b), which has been frequently used for benchmarking 
new spatial transcriptomics technologies10,20. We sequenced and spa-
tially positioned 4,584 nuclei (4,594 median UMIs per nucleus), which 
we clustered and annotated by cell type (Extended Data Fig. 5c–e).  
Compared with existing approaches, sci-Space and XYZ-seq, for 
single-cell spatial placement, Slide-tags achieved 20–50-fold higher 
spatial resolution and recovered 4.5-fold more nuclei per unit area. 
We also recovered 1.8-fold more UMIs and 1.7-fold more genes per 
nucleus than adjacent technologies at a sequencing saturation of 48% 
(Extended Data Fig. 5f).

Finally, we also benchmarked Slide-seq performance in relation 
to Slide-seq and DBIT-seq in the adult mouse brain. We found that 
Slide-tags achieves a significantly higher molecular sensitivity (13,142 
transcripts per nucleus versus 1,702 and 2,538 transcripts per 20 μm2 
pixel for Slide-seq (binned) and DBIT-seq, respectively; Extended Data 
Fig. 4)). Note that, even in high-resolution capture-based spatial tran-
scriptomics, pixels capture mixtures of transcriptomes from nearby 
cells, hindering unsupervised clustering of cell type identity and marker 
gene identification (Extended Data Fig. 4).

Slide-tags snRNA-seq in the human cortex
The human cerebral cortex has a well-characterized cytoarchitecture 
in which specific subpopulations of neurons are arranged in discrete 
layers. Existing spatial sequencing approaches can resolve broad 
patterns of spatially varying gene expression in human cortex24, but 
assignment of spatially variable genes to specific cell types is chal-
lenging using these methods. We reasoned that Slide-tags could be 
used for facile profiling of human brain tissue, most especially to dis-
cover cell-type-specific spatial gene expression patterns. We profiled 
a 100 mm2 region of the human prefrontal cortex from a neurotypical 
donor aged 78 years (Methods), recovering 17,441 high-quality spatially 
mapped nuclei with a median of 3,196 UMIs per nucleus (Fig. 2a). Clus-
tering analysis revealed the expected neuronal and glial cell types, reca-
pitulating known layer distributions and spatial structures (Fig. 2b–d 
and Extended Data Fig. 6a,b). We computationally integrated (Methods) 
an existing snRNA-seq dataset25 that includes layer annotations for 91 
neuron subtypes, recovering the expected spatial distributions across 
subtypes (Fig. 2e,f and Supplementary Figs. 2 and 3). Similarly, astro-
cytes could be clustered into two distinct populations that spatially 
segregated between white and grey matter regions (Fig. 2g). Quanti-
fication of the laminar position of each of these excitatory, inhibitory 
and astrocytic populations showed them to be accurately positioned 
within the white matter and cortical layers (Fig. 2h).

We next used our whole-transcriptome, spatially resolved snRNA-seq 
profiles to systematically identify spatially varying genes in each cell 
type. We plotted the layer distributions of the highest spatially varying 
genes (Methods and Supplementary Table 2) for excitatory neurons 
(Fig. 2i and Supplementary Fig. 4), recovering many well-known lami-
nar markers such as CUX2, RORB and FOXP2 (Extended Data Fig. 6c), as 
well as for inhibitory neurons (Extended Data Fig. 6d and Supplemen-
tary Fig. 5a) and astrocytes (Extended Data Fig. 6e and Supplemen-
tary Fig. 6). Notably, we also identified spatially varying genes within 
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oligodendrocyte precursor cells (OPCs), which had not previously been 
known to have areal specializations (Fig. 2j and Supplementary Fig. 5b). 
Gene Ontology analysis of these spatially varying genes revealed a rela-
tionship with biological processes including cell–cell adhesion, cell 
junction assembly and axon development (Fig. 2k and Supplementary 
Table 3).

Genes can show spatially variable expression that may derive from 
several cell types, but assigning such expression variability to individual 
cell types can be very challenging using traditional spatial transcrip-
tomics approaches owing to the mixing of individual pixels. Among 
our spatially varying genes, we identified several that were variable 
across multiple cell types, such as SGCZ, of which the spatial expression 
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104 | Nature | Vol 625 | 4 January 2024

Article

variation in excitatory and inhibitory neurons was anticorrelated, and 
showed an orthogonal spatial distribution in OPCs (Fig. 2l). We per-
formed additional Slide-tags snRNA-seq analysis of the human cortex, 
from this donor and another donor, and found that the nucleus map-
ping rate and subsequent density were congruent (Supplementary 
Table 4). Together, these results demonstrate the ability of Slide-tags 
to reproducibly and systematically uncover transcriptional variation 
within the cytoarchitecturally complex tissues of the human brain.

Slide-tags snRNA-seq analysis of the human tonsil
A key challenge for spatial genomics technologies is the proper seg-
mentation of densely packed tissues, such as those of immune origin. 
We reasoned that Slide-tags would be ideal in this setting, given that 

segmentation is accomplished automatically by dissociating the tissue 
into individual nuclei. We therefore performed Slide-tags snRNA-seq 
analysis of the human tonsil (Fig. 3a–d), recovering 81,000 nuclei after 
dissociation from 7 mm2 of tissue. We sequenced 8,747 of these nuclei, 
spatially mapping 5,778 high-quality snRNA-seq profiles (2,377 median 
UMIs per nucleus and 1,557 median genes per nucleus). Clustering of 
the data identified subpopulations of B and T cells, some of which are 
known to be spatially segregated (Extended Data Fig. 7a,b). Indeed, 
examination of the spatial positions of these clusters revealed the 
expected spatial architecture of the tissue, with B and T cell zones, as 
well as germinal centres composed of germinal centre B (GCB) cells, 
T follicular helper cells and follicular dendritic cells (Fig. 3c,d and 
Extended Data Fig. 7b). Subclassification of GCB cells into light-zone 
and dark-zone GCB cells is challenging using snRNA-seq data alone, 
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as variation in gene expression space is low, requiring many cells to 
be sampled to uncover the distinction26. However, as reactive germi-
nal centres are spatially polarized into light zones and dark zones, we 
reasoned that we could classify GCB cells by harnessing the combined 
spatial and single-cell data. To do so, we computed spatially varying 
genes within GCB cells through spatial permutation testing20, identi-
fying key markers of light-zone and dark-zone GCB cells (Fig. 3e,f and 
Supplementary Table 5). Dark-zone marker genes included CXCR4 
(double-sided permutation test, Z score = 7.6, P < 0.001) and AICDA  
(Z score = 6.9, P < 0.001)—genes associated with dark-zone organization 
and somatic hypermutation, respectively27–29. Light-zone-enriched 

genes included BCL2A1 (Z score = 9.1, P < 0.001), an apoptosis regulator 
gene30, and LMO2 (Z score = 21.3, P < 0.001), a transcription factor31. A 
subset of expected light-zone and dark-zone markers had relatively 
low variance in gene expression, but high spatial permutation effect 
sizes, demonstrating that spatial positions enhance interpretation of 
transcriptomic profiles (Extended Data Fig. 7c and Supplementary 
Table 6). Reclustering GCB cells on the basis of spatially varying genes 
enabled classification into dark-zone, light-zone and transitional cell 
states (Fig. 3g and Methods). We then segmented the two largest pro-
filed germinal centres into light zones and dark zones through spatial 
clustering of dark-zone GCB cells, the most abundant GCB cell state 
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(Extended Data Fig. 7d). In corroboration of our zone segmentation, 
we found that T follicular helper cells were enriched in light zones while 
follicular dendritic cells were dispersed between the light zone and the 
dark zone (Fig. 3h; χ2 = 43.7, P = 3.7 × 10−11 (T follicular helper cells); and 
χ2 = 0.58, P = 0.45 (follicular dendritic cells)).

Immune cells engage in extensive cross-talk within and around ger-
minal centres32. We wondered whether Slide-tags could reveal recep-
tor–ligand interactions that drive such intercellular communication. 
We first nominated putative receptor–ligand interactions in a spatially 
agnostic manner using LIANA33. We next incorporated spatial informa-
tion by performing a spatial permutation test to identify interactions 
that significantly co-occur spatially (Methods). Using this approach, 
we predicted 645 receptor–ligand interactions, many of which are 
well-characterized axes of communication during B cell maturation 
(Fig. 3i and Supplementary Table 7). For example, we predicted inter-
actions between CD40 and CD40LG within GCB cells and T follicular 
helper cells, a fundamental driver of the germinal-centre reaction34. 
We also identified downstream targets of canonical receptor–ligand 
interactions, such as TRAF3, important in regulating the intracellular 
effects of CD40–CD40LG binding35.

Finally, we reasoned we could spatially contextualize receptor–ligand 
interactions within native tissue niches. Our predicted interactions 
can be decomposed into interaction intensity scores for individual 
cells based on expression and spatial co-occurrence of the receptor 
and ligand. For the 99 nominated receptor–ligand pairs between GCB 
cells, follicular dendritic cells and T follicular helper cells, we used our 
germinal-centre zone segmentations to assess light-zone and dark-zone 
enrichment in predicted interaction intensity. We revealed light-zone 
enrichment of 11 interactions and dark-zone enrichment of 9 interac-
tions (Extended Data Fig. 7e and Supplementary Table 8). GCB CD40 
receptor in interaction with T follicular helper cell CD40LG was highly 
enriched in light zones (Fig. 3j; Wilcoxon rank-sum test, log2[fold change 
(FC)] = 1.6, adjusted P (Padj) = 1.6 × 10−9), whereas CD40 receptor expres-
sion alone was modestly dark-zone biased (Wilcoxon rank-sum test, 
log2[FC] = −0.04, P = 0.047). We also revealed zone-biased interactions 
with lesser-known importance in the germinal-centre reaction, such 
as the light-zone-enriched interaction between T follicular helper cell 
CD40LG and GCB CD53 (Extended Data Fig. 7e; Wilcoxon rank-sum 
test, log2[FC] = 1.6, P = 2.3 × 10−23). Together, Slide-tags enabled spatial 
contextualization of cell-type-specific receptor–ligand interactions 
that are not obvious by analysis of expression alone.

Slide-tags multiome of human melanoma
Epigenetic dysregulation in cancer facilitates drug resistance and 
pro-metastatic cell state transitions36–38. Numerous studies of tumour 
heterogeneity have revealed clone-specific niches and immune com-
partments7,39,40, but the role of epigenetic regulation in establish-
ing and maintaining these spatial niches remains difficult to study. 
Concurrent spatial mapping of the genome, transcriptome and epi-
genomic landscape of the tumour microenvironment could offer 
insights into the complex mechanisms of tumour evolution. We 
therefore developed Slide-tags multiome, enabling simultaneous 
single-cell spatial profiling of mRNA and chromatin accessibility, 
along with CNV inference.

We first performed Slide-tags snRNA-seq analysis of a metastatic 
melanoma sample (Extended Data Fig. 8a–f). We recovered 10,960 
nuclei after dissociation from 7 mm2 of tissue, sequencing 6,464 of 
these nuclei and spatially mapping 4,804 high-quality snRNA-seq 
profiles (2,110 median UMIs per nucleus and 1,317 median genes per 
nucleus). In an adjacent section, we applied Slide-tags multiome, profil-
ing the tagged nuclei using droplet-based combinatorial snATAC–seq 
and snRNA-seq (Fig. 4a,b). We spatially mapped 2,529 nuclei from a 
38.3 mm2 section and both modalities displayed high-quality data on 
the basis of basic technical performance metrics (Fig. 4b,c and Extended 

Data Fig. 9a–e; median UMIs per nucleus = 5,228, median genes per 
nucleus = 2,429, transcription start site enrichment score = 11.5, median 
fragments per nucleus = 1,159, median fraction of unique fragments 
in peaks = 36.7%).

Unsupervised clustering of snRNA-seq and multiome data identified 
immune, stromal and tumour cell types (Fig. 4b and Extended Data 
Fig. 8d,e). The tumour cells were split into two subpopulations, denoted 
as tumour cluster 1 and tumour cluster 2, that segregated into spatially 
distinct compartments (Fig. 4b,c and Extended Data Fig. 8d). As CNV 
has an important role in melanoma tumour evolution41,42, we sought 
to identify whether these transcriptional subpopulations represented 
distinct genetic clones. We inferred copy-number alterations using 
inferCNV43, a standard scRNA-seq CNV inference tool, from the tran-
scriptomes of each spatially mapped nucleus (Methods). Indeed, across 
both the snRNA-seq and the multiome data, we uncovered genomic 
differences consistent with the spatial and transcriptional separation 
between tumour cluster 1 and 2 (for example, CNV on chromosome 6; 
Fig. 4d and Extended Data Fig. 8f).

Our basic clustering analysis showed extensive T cell infiltration 
into both tumour compartments (Extended Data Figs. 8d and 9d). We 
wondered whether there might exist heterogeneous T cell responses 
to these genetically distinct compartments. First, we enriched for TCR 
sequences in our 1,020 spatially positioned CD8+ T cell cDNA profiles, 
recovering 419 cells with α-chains (279 unique), 761 cells with β-chains 
(410 unique) and 358 cells with paired α- and β-chains (265 unique) (Sup-
plementary Table 9). We found a TCRβ clonotype that was significantly 
expanded in tumour compartment 2 compared with in tumour com-
partment 1 (Fig. 4e; Fisher’s exact test, odds ratio = 6.8, P = 1.1 × 10−11), in 
agreement with our previous report44. Given our high TCR pairing rate 
(Extended Data Fig. 9f), we also noted tumour compartment 2 expan-
sion of CD8+ T cells with this β-chain and a paired α-chain (Fisher’s exact 
test, odds ratio = 11.9, P = 9.6 × 10−6). We observed that CD8+ T cells in 
tumour compartment 2 were upregulated in cytotoxic GZMB expres-
sion (Extended Data Fig. 9g and Supplementary Table 10). In addition 
to this T cell variation, we noted decreased expression of MHC class I 
endogenous antigen presentation genes in tumour cluster 1 relative to 
tumour cluster 2 (Extended Data Fig. 10 and Supplementary Table 11; 
gene set enrichment analysis, GO:0002484; overlap ratio = 0.71; 
Padj = 6.6 × 10−6), potentially contributing to differential T cell clone 
infiltration between the tumour compartments. Thus, we observed a 
cytotoxic T cell clone specifically infiltrating into a spatially and geneti-
cally distinct tumour compartment. Although TCR expression has 
previously been spatially mapped44,45, Slide-tags enables unambiguous 
assignment of receptor pairs to single cells.

To further investigate how chromatin accessibility and transcription 
informs tumour cell state and how this relates to the tumour micro-
environment, we identified spatially segregated differential gene 
expression and differential chromatin gene scores between tumour 
subpopulations (Fig. 4f and Supplementary Table 12). TNC and other 
mesenchymal-like cell state markers were found to be differentially 
expressed (Methods and Supplementary Figs. 7 and 8; log2[FC] = 2.1, 
Padj = 2.4 × 10−61) and differentially accessible by chromatin gene score 
(Wilcoxon rank-sum test, log2[FC] = 0.81, Padj = 1.0 × 10−12) in tumour 
cluster 1 compared with in tumour cluster 2 (Fig. 4g,h). We observed 
heterogeneity in TNC chromatin accessibility and gene expression 
within tumour cluster 1, which has previously been associated with 
a mesenchymal-like cell state46,47. We therefore hypothesized that 
tumour cluster 1 may comprise two cell states: melanocytic like and 
mesenchymal like. We scored tumour cells for melanocytic-like 
and mesenchymal-like cell states using genes that were previously 
implicated in this transition46. While tumour cluster 2 was largely a 
melanocytic-like population, we observed melanocytic-like and 
mesenchymal-like scores were negatively correlated and heterogene-
ous in tumour cluster 1 (Fig. 4i,j and Extended Data Fig. 9h,i; Pearson’s 
r = −0.60, P < 2.2 × 10−16). To uncover trans-acting factors associated 

http://amigo.geneontology.org/amigo/term/GO:0002484
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Fig. 4 | Multiomic Slide-tags captures spatially resolved clonal relationships 
between single nuclei in human melanoma. a, Schematic of joint snATAC–seq 
and snRNA-seq analysis of a 5.5-mm square region of a human melanoma lymph 
node metastasis. Scale bar, 5.5 mm. The diagram was created using BioRender. 
b, UMAP embeddings of snRNA-seq and snATAC–seq profiles coloured by cell 
type. Mono-mac, monocyte-derived macrophages, Treg cells, regulatory T cells. 
c, Spatial mapping of tumour cluster 1 and tumour cluster 2. d, Inferred copy- 
number alterations from transcriptomic data. NT, a representative subset of 
non-tumour cells. e, Spatial mapping of a TCR β-chain clonotype expanded in 
the tumour cluster 2 compartment, with the matched α-chain indicated above. 
Grey cells show the positions of all CD8+ T cells. f, Differential gene expression 
and differential chromatin gene scores between tumour cluster 1 and tumour 
cluster 2. The red points have Padj < 0.05 for both tests. g, Genome coverage track 
and gene expression violin plot of TNC between tumour clusters. The range of 

the normalized chromatin accessibility signal is 0–50. Chr., chromosome.  
h, The spatial distribution of TNC chromatin accessibility gene scores. Gene 
scores are log2-transformed. i, Weighted nearest-neighbour (WNN) UMAP 
embedding of tumour cells, with cells coloured according to mesenchymal-like 
and melanocytic-like cell state scores. j, Spatial mapping of mesenchymal-like 
cell state scores in tumour cells. k, Spatial autocorrelation of accessibility in 
chromVAR transcription factor motifs correlated with mesenchymal-like cell 
state scores. The red points indicate spatial autocorrelation Moran’s I raw 
P < 0.05 and significant correlation with mesenchymal-like score (Padj < 0.05). 
The green points indicate only spatial autocorrelation raw P < 0.05. The blue 
points indicate only significant correlation with mesenchymal-like score 
(Padj < 0.05). Only chromVAR transcription factor motifs with a positive Moran’s 
I are shown. For c, e, h and j, scale bars, 500 μm.
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with this transition, we first identified accessible transcription factor 
motifs that were correlated with mesenchymal-like score within tumour 
cluster 1 using chromVAR48 (Fig. 4k (x axis) and Supplementary Table 13; 
Padj < 0.05); positively correlated transcription factor motifs included 
FOS/JUN-family members, which have previously been implicated 
in mesenchymal-like melanoma states, and IRF-family transcription 
factors. Negatively correlated transcription factor motifs included 
MITF, a factor involved in maintaining the melanocytic lineage49,50. 
Although such epigenomic signatures driving mesenchymal-like state 
have previously been identified in single cells, their localization within 
tissues is lacking. To answer whether such epigenetic signatures were 
spatially non-random, we performed spatial autocorrelation analysis of 
transcription factor motif scores in the tumour cluster 1 compartment 
(Fig. 4k (y axis) and Extended Data Fig. 9j). The top spatially autocor-
related transcription factor motifs associated with a mesenchymal-like 
state were JUN-, FOS and IRF family members with positive autocorre-
lation scores, suggesting that these epigenomic signatures are locally 
clustered. Local clustering of epigenetic states is suggestive of inherit-
ance of epigenetically reprogrammed states in cell division, or local 
signalling environmental drivers37,51.

Discussion
Here we developed Slide-tags, a spatial single-nucleus genomics tech-
nology that is widely applicable to tissues spanning different scales, 
species and disease states. We profiled Slide-tags nuclei isolated from 
the mouse and human adult brain using snRNA-seq, showing indistin-
guishable RNA data quality and high spatial positioning accuracy, and 
identifying cell-type-specific spatially varying genes across cortical 
layers. Applying Slide-tags snRNA-seq to densely packed human tonsil 
enabled spatial contextualization of predicted receptor–ligand interac-
tions. Finally, to demonstrate the multimodal capacity of Slide-tags, 
we simultaneously profiled the transcriptome, epigenome and TCR 
repertoire of metastatic melanoma tissue, and inferred CNV from 
transcriptome data. We inferred copy-number alterations from tran-
scriptome data and revealed spatial immune cell differences between 
genomically distinct clones. In a cytogenetically homogenous sub-
clone, we identified two transitional tumour cell states and leveraged 
our single-nucleus spatial chromatin accessibility data to identify spa-
tially autocorrelated transcription factor motifs likely to be participat-
ing in this mesenchymal-like transition.

Slide-tags offers several unique advantages as a spatial genomics 
technology. First, it is easily imported into frozen-tissue snRNA-seq 
experiments and enables the addition of spatially resolved data without 
requiring specialized equipment or sacrificing data quality. Second, 
the technique generates data intrinsically at the single-cell reso lution, 
without the need for deconvolution and segmentation, and has a high 
sensitivity (2,000–10,000 UMIs per cell across our datasets). This 
substantially improves the ability to unbiasedly discover cell types 
and cell-type-specific gene expression in spatial data compared with 
pixel-based spatial transcriptomic technologies. Third, the technol-
ogy is high-throughput, enabling many tissue sections to be profiled 
at once, and coverage of larger tissue sections through the construc-
tion of bigger bead arrays. Fourth, Slide-tags is easily adapted to many 
different single-cell and single-nucleus methodologies. Beyond our 
demonstration of spatial snRNA-seq + snATAC–seq, we envision that 
future adaptations of Slide-tags will enable the profiling of DNA5,52, 
additional epigenetic modifications6,53,54 and proteins55. Computational 
analyses of such data are uniquely enabled by the ability of Slide-tags to 
seamlessly leverage many existing single-cell computational workflows 
(for example, Seurat21, InferCNV43, ArchR56).

Although immediately useful in many applications, Slide-tags could 
be improved in two key ways. First, our method assays only a subset 
of nuclei in a tissue section. We estimate that the combination of dis-
sociation and microfluidic losses during nuclei barcoding collectively 

account for around 75% of the nuclei lost. This loss reduces power in the 
discovery of pairwise interactions between cells, as well as molecular 
interactions between cells, which may be overcome through the scal-
ability of Slide-tags profiling. This represents a path for substantial 
improvement through tissue-specific optimizations to the dissociation, 
and improved droplet microfluidics or, potentially, microfluidics-free 
single-nucleus methods that may barcode nuclei more efficiently57. 
Second, Slide-tags is currently limited to single-nucleus sequencing 
methods, primarily due to the ease of recovering nuclei from frozen 
tissues. Some methodologies strongly benefit from single-cell data, 
such as lineage tracing using mitochondrial genomic variants58 and 
quantification of transcriptional kinetics59. Future iterations of our 
technology may be compatible with tagging whole single cells. None-
theless, for routine tissue profiling, our current default approach is 
snRNA-seq (versus scRNA-seq), owing to advantages in protocol flex-
ibility, increased nucleus yields, reduced tissue dissociation artefacts 
and improvements to cell sampling bias60.

In recent years, a common experimental paradigm has evolved 
that pairs the collection of single-cell (or single-nucleus) data with 
spatial data to discover cell types, compare across conditions and 
discover spatial patterns within and across these types. Slide-tags 
represents a method to merge these experimental modalities into a 
unified approach, integrating the ascertainment of cytoarchitectural 
features with the standard collection of single-cell sequencing data. By 
importing the single-cell sequencing toolkit into the spatial repertoire, 
Slide-tags will serve as an invaluable tool to study tissue biology across 
organisms, ages and diseases.
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Methods

Sample information and processing
Mouse brain. Mouse housing. Mice were group-housed under a 
12 h–12 h light–dark schedule and allowed to acclimatize to their 
housing environment for 2 weeks after arrival. All of the procedures 
involving animals at the Broad Institute were conducted in accordance 
with the US National Institutes of Health Guide for the Care and Use of 
Laboratory Animals under protocol number 0120-09-16 and approved 
by the Broad Institutional Animal Care and Use Committee.
Brain preparation. At 56 days of age, male C57BL/6J mice were anaes-
thetized by administration of isoflurane in a gas chamber flowing 3% 
isoflurane for 1 min. Anaesthesia was confirmed by checking for a nega-
tive tail-pinch response. Animals were moved to a dissection tray and 
anaesthesia was prolonged through a nose cone flowing 3% isoflurane 
for the duration of the procedure. Transcardial perfusions were per-
formed with ice-cold pH 7.4 HEPES buffer containing 110 mM NaCl, 
10 mM HEPES, 25 mM glucose, 75 mM sucrose, 7.5 mM MgCl2 and 2.5 mM 
KCl to remove blood from the brain and other organs sampled. For use 
in regional tissue dissections, the brain was removed immediately and 
frozen for 3 min in liquid nitrogen vapour and then moved to −80 °C 
for long term storage.

Whole C57BL/6J mouse embryos at E14 (MF-104-14-Ser) were pur-
chased from Zyagen and stored at −80 °C until use. A pregnant mouse 
was perfused with PBS before collection and snap-freezing of the whole 
embryo.

Human brain. Post-mortem autopsy tissue (Brodmann area 9 cortex) 
from a healthy, older, female, control individual was obtained from 
the University of Miami Brain Endowment Bank at the Miller School of 
Medicine. Tissue was collected in accordance with the standard patient 
informed consent procedures of the Brain Endowment Bank in effect  
at the time of collection and subject to approval or an exemption deter-
mination by their Institutional Review Board. Use of the tissue at the 
Broad Institute was approved by the Office of Research Subject Protec-
tion project NHSR-4235. This cortical sample was stored at −80 °C until 
use after equilibration at −20 °C in the cryostat. As a quality-control 
step, the tissue architecture was assessed by Nissl staining after frozen 
sectioning at 20 μm, and the RNA integrity was determined using TRIzol 
extraction followed by an RNA-integrity number (RIN) assay using the 
Agilent RNA nano 6000 Bioanalyzer method (RIN = 7.2).

Human tonsil. Anonymized excess tissue specimens were obtained 
from a patient who underwent a palatine tonsillectomy procedure 
for tonsillar enlargement. The specimens were embedded in OCT, 
snap-frozen and stored at −80 °C. As a quality-control step, the tissue 
architecture was assessed using H&E staining, and the RNA integrity was 
determined using the Tapestation RNA ScreenTape system (RINe > 7.5). 
The use of the tissue at the Broad Institute was approved by the Office 
of Research Subject Protection project IRB-6429.

Human metastatic melanoma. Samples were acquired from a patient 
who underwent axillary lymphadenectomy for metastatic BRAF-mutant 
melanoma before starting PD-1 inhibitor. The sample was embedded 
in OCT, snap-frozen after surgery and stored at −80 °C. The use of the 
tissue at the Broad Institute was approved by the Office of Research 
Subject Protection project NHSR-4182.

Histological processing
For sections that were stained using Nissl, glass-mounted frozen tissue 
sections (10 or 20 μm) were equilibrated to room temperature and 
excess condensate was wiped off. Sections were fixed in 70% ethanol for 
2 min, followed by rehydration in ultrapure water for 30 s. Excess water 
was wiped off and slides were stained with Arcturus Histogene Solution 
(Thermo Fisher Scientific, 12241-05) for 4 min. Excess dye was tapped 

off and the slides were rehydrated in water for 10 s for destaining. Slides 
were sequentially fixed in 70, 90 and 100% ethanol for 30 s, 10 s and 
1 min, respectively, post-fixed in xylene solution for 1 min then mounted 
with Fisher Chemical Permount (SP15-100) and cover-slipped. Images 
were acquired using the Keyence BZ-800XE microscope under a Nikon 
Apo ×10 objective or the Leica Aperio VERSA Brightfield, Fluorescence 
& FISH Digital Pathology Scanner under a ×10 objective.

For sections that were stained using H&E, glass-mounted frozen tissue 
sections (10 or 20 μm) were equilibrated to room temperature and the 
excess condensate was wiped off. Sections were dipped in xylene, pro-
cessed through a graded ethanol series and stained with haematoxylin. 
The nuclei were ‘blued’ by treatment with a weakly alkaline solution, 
and washed with water. Sections were stained with eosin, processed 
through a graded ethanol series, xylene, dehydrated and cover-slipped. 
Bright-field images were taken using the Leica Aperio VERSA Brightfield, 
Fluorescence & FISH Digital Pathology Scanner under a ×10 objective.

Barcoded bead synthesis, array fabrication and sequencing
PLRP-S resin (1,000 Å, 10 μm; Agilent Technologies, PL1412-4102) 
was used for the barcoded oligonucleotide synthesis. The loading 
of the non-cleavable linker on resin was adjusted to approximately 
30 μmol g−1. The Akta OligoPilot 10 oligonucleotide synthesizer was 
used for synthesis (850 mg scale). The PC linker (10-4920-90) and 
reverse phosphoramidites (10-0001, 10-9201, 10-0301 and 10-5101-
10) were purchased from Glen Research. A 0.1 M solution of phospho-
ramidites was prepared in anhydrous acetonitrile, and 0.3 M BMT 
(BI0166-1005, Sigma-Aldrich) was used as an activator for coupling 
(single coupling, 6 min). Two capping steps (before and after oxidation) 
were performed with the cap A (BI0224-0505, Sigma-Aldrich) and cap B 
(B1:B2 1:1; BI0347-0505, BI0349-0505 Sigma-Aldrich) reagents. For the 
6.3 ml column, capping was performed by 1 CV or 1.5 CV for 1 min; and, 
for the 1.2 ml column, 2 CV for 0.5 min. The oxidation (5 equiv) was per-
formed with 0.05 M iodine in pyridine (BI0424-1005, Sigma-Aldrich). 
The detritylation step was performed using 3% dichloroacetic acid in 
toluene (BI0832-2505, Sigma-Aldrich).

After the oligonucleotide synthesis, the protecting groups were 
removed by incubating the resin in 40% aqueous methylamine for 24 h 
at room temperature (20 mg resin per 2 ml). The beads were washed 
twice with water (1 ml), three times with methanol (1 ml), three times 
with 1:1 acetonitrile:water and three times with acetonitrile (1 ml). 
Finally, the beads were washed three times with 10 mM Tris buffer pH 7.5 
containing 0.01% Tween-20 and stored in the same buffer at 4 °C. It was 
observed that oligos were released in the buffer if the beads were stored 
for long periods of time. To remove the released oligos, beads were 
washed with 70% acetonitrile/water and resuspended in storage buffer.

Synthesized sequences for the Slide-tags experiments (PC in the 
sequences denote photocleavable linker) were as follows: (1) incorpora-
tion of capture sequence by ligation: the bold bases denote the region 
that is complementary to the sequence of the 10x gel beads (SLAC beads): 
5′-TTT_PC_zCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCC 
GATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJJJJJJJNNNNNNNVVGCTCGGAC 
ACATGGGCG-3’, 10x FB1 extension: 5′-GAGCTTTGCTAACGGTCGA 
GGCTTTAAGGCCGGTCCTAGCAA-3′, splint: 3′-CTGTGTACCCGCC 
TCGAAACGATTGC-5′; (2) Direct synthesis of capture sequence 
on beads (TAGS beads): 5′-TTT-PC-GTGACTGGAGTTCAGACGTGT 
GCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJJJJJJJNNNNNNNVV 
GCTTTAAGGCCGGTCCTAGCAA-3’; (3) poly(A) beads: 5′-TTT-PC-GT 
GACTGGAGTTCAGACGTGTGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTT 
CCCGAGAJJJJJJJNNNNNNNVVA30.

Array preparation and sequencing were performed as described 
previously20.

Slide-tags procedure
Fresh frozen tissues were cryo-sectioned to 20 μm on a Cryostat 
(CM1950, Leica) at −16 °C. Precooled 2 mm circular (3331P/25, Integra), 



3 mm circular (3332P/25, Integra) or 5.5 mm square custom-made 
biopsy punches were used to isolate regions of interest from tissue 
sections. The punched tissue regions were then placed onto the puck, 
ensuring that there were no folds. A finger was placed onto the bottom 
of the puck to melt the tissue while trying to prevent rolling. Immedi-
ately, this puck was placed onto the glass slide and placed on ice, and 
6–10 μl of dissociation buffer (82 mM Na2SO4, 30 mM K2SO4, 10 mM 
glucose, 10 mM HEPES, 5 mM MgCl2) was placed on top of the puck 
so that the buffer covered the whole puck. The puck was then placed 
under an ultraviolet (365 nm) light source (0.42 mW mm−2, Thorlabs, 
M365LP1-C5, Thorlabs, LEDD1B) for 30 s (TAGS beads) or 3 min (SLAC 
beads), to cleave the same amount of spatial barcode oligonucleotides 
between bead designs (Extended Data Fig. 2). After photo-cleavage, 
the puck was incubated for 7.5 min (TAGS beads) or 5 min (SLAC beads) 
and then placed into a 12-well plate (Corning, 3512). Using a 200 μl 
pipette, ten 200 μl aliquots of extraction buffer (dissociation buffer, 1% 
Kollidon VA64, 1% Triton X-100, 0.01% BSA, 666 U ml−1 RNase-inhibitor 
(Biosearch technologies, 30281-1)) were dispensed onto the puck for 
a total volume of 2 ml. Dispensed extraction buffer was triturated up 
and down on the puck 10–15 times to release the tissue. This step was 
repeated until the tissue was completely removed from the puck. The 
puck was removed, and mechanical dissociation of the supernatant was 
performed using 1 ml pipette 20–25 times trituration to fully dissociate 
the tissue. Dissociated nuclei were removed from the well and the well 
was rinsed twice with 1 ml of wash buffer (82 mM Na2SO4, 30 mM K2SO4, 
10 mM glucose, 10 mM HEPES, 5 mM MgCl2, 50 μl of RNase-inhibitor 
(Biosearch technologies, 30281-1)), which was added to the nucleus 
suspension. Wash buffer was added to the tube to a final volume of 
20 ml. This 20 ml was mixed and divided equally into another 50 ml 
falcon tube. Nuclei were centrifuged in a precooled swinging bucket 
centrifuge at 600g for 10 min at 4 °C. After centrifugation, 19.5 ml of 
the supernatant was removed, leaving 500 μl in each tube. The pellet 
was resuspended and pooled. This pooled suspension was then filtered 
using a precooled 40 μm cell strainer (Corning, 431750). DAPI (Thermo 
Fisher Scientific, 62248) was added to the filtered solution at a 1:1,000 
dilution and incubated for 5–7 min at 4 °C. This was then centrifuged at 
200g for 10 min at 4 °C. The supernatant was removed, leaving 50 μl of 
pellet. The pellet was resuspended and nuclei were counted manually 
using a C-Chip Fuchs-Rosenthal disposable haemocytometer (INCYTO, 
DHC-F01-5).

Sequencing library preparation
snRNA-seq library preparation. For Slide-tags snRNA-seq experi-
ments, 43.3 μl of counted nuclei was loaded into the 10x Genomics 
Chromium controller using the Chromium Next GEM Single Cell 3′ Kit 
v3.1 (10x Genomics, PN-1000268). The Chromium Next GEM Single Cell 
3′ Reagent Kits v3.1 (Dual Index) with Feature Barcode Technology for 
Cell Surface Protein CG000317 was used according to the manufac-
turer’s recommendations with slight modifications. Spatial barcode 
libraries were prepared as cell-surface protein library preparations. The 
number of PCR cycles used for the index PCR step in the cell-surface 
protein library preparation (step 4.1f) for 5.5 × 5.5 mm TAGS arrays was 
7; for 3 mm diameter TAGS arrays the number of cycles was 9.

For the mouse brain sample, ligated pucks (see sequence in the ‘Bar-
coded bead synthesis, array fabrication and sequencing’ section) were 
used for spatial barcoding. For this sample, a custom PCR protocol was 
used instead of step 4.1: 10 μl of cleaned supernatant from step 2.3, 
50 μl NEBNext High-Fidelity 2× PCR Master Mix (NEB, M0541S), 2.5 μl 
STAG_P701_NEX (10 μM), 2.5 μl 10 μM P5-Truseq Hybrid oligo and 35 μl 
ultrapure DNase/RNase-free distilled water (Invitrogen, 10977015). In 
this sample, ten PCR cycles were performed according to the manu-
facturer’s recommendations.

snATAC-seq and snRNA-seq library preparation. For Slide-tags mul-
tiomic snATAC-seq and snRNA-seq experiments, 43.3 μl of counted  

nuclei was loaded into the 10x Genomics Chromium controller using 
the Chromium Next GEM Single Cell Multiome ATAC + Gene Expres-
sion Reagent Bundle (10x Genomics, PN-1000283). The Chromium  
Next GEM Single Cell Multiome ATAC + Gene Expression CG000338  
Rev F user guide was used according to the manufacturer’s rec-
ommendations with slight modifications. During step 4.1, 1 μl of  
0.329 μM spike-in primer (5′-GTGACTGGAGTTCAGACGT-3′) was  
added. For spatial barcode libraries, a custom PCR protocol was  
used: 5 μl of cleaned supernatant from step 4.3, 50 μl NEBNext  
High-Fidelity 2× PCR Master Mix (NEB, M0541S), 2.5 μl 10 μM  
STAG_iP7_a1 oligo (5′-CAAGCAGAAGACGGCATACGAGATATTTACC 
GCAGTGACTGGAGTTCAGACGT*G*T-3′), 2.5 μl 10 μM P5-STAG_ip5_a1  
oligo (5′-AATGATACGGCGACCACCGAGATCTACACGACAATAAA 
GACACTCTTTCCCTACACGACGC*T*C-3′), 40 μl ultrapure DNase/
RNase-free distilled water (Invitrogen, 10977015). In this sample, 15 
PCR cycles were performed according to the protocol used in the 
Chromium Next GEM Single Cell 3′ Reagent Kits v3.1 (Dual Index) with 
Feature Barcode technology for Cell Surface Protein CG000317 Rev C 
user guide step 4.1.

TCR enrichment and library preparation. We enriched TCRs 
from Slide-tags multiome cDNA as previously described44 with 
the following modifications (https://www.protocols.io/view/
slide-tcr-seq-v3-ivt-n92ldp6w8l5b/v2).

Sequencing
We sequenced scRNA-seq and spatial barcode libraries on the Illumina 
NextSeq 1000 instrument using a p2 100 cycle kit (Illumina, 20046811). 
For some libraries, resequencing was performed to improve the 
sequencing depth, on an Illumina NovaSeq instrument using the S 
Prime platform.

Slide-tags data preprocessing
snRNA-seq data. We used Cell Ranger (v.6.1.2)1 mkfastq (10x Genom-
ics) to generate demultiplexed FASTQ files from the raw sequencing 
reads. We aligned these reads to either the human GRCh38 or mouse 
mm10 genome while including intronic reads with --include-introns, 
and quantified gene counts as UMIs using Cell Ranger count (10x 
Genomics). For mouse embryo, human brain, tonsil and melanoma, 
we used CellBender v.0.2.0 for background noise correction and cell 
calling61, setting --expected-cells to the number of Cell Ranger cell calls, 
--total-droplets-included to 40,000 and --learning-rate to 0.00005 
(only when the default parameters were insufficient to produce cell 
probability calls of majority zero and one).

Multiomic snATAC-seq and snRNA-seq data. We used Cell Ranger-arc 
(v.2.0.2) mkfastq (10x Genomics) to generate demultiplexed FASTQ 
files from the raw sequencing reads. We aligned these reads to the  
human GRCh38 genome, and quantified gene counts as UMIs using 
Cell Ranger-arc count (10x Genomics). For the gene expression data, 
we then used CellBender for background noise correction and cell 
calling as described above.

Spatial barcode data. After creating demultiplexed FASTQ files, we 
searched using grep for reads containing the spatial barcode uni-
versal primer constant sequence. We then downsampled the spatial 
barcode-containing FASTQ file to 25 million reads using seqtk v.1.3-r106 
for computational efficiency and consistency across runs. We then 
matched candidate cell barcodes in the spatial barcode FASTQ file 
with true cell barcodes outputted from either Cell Ranger v.6.1.2 or 
CellBender61 (Supplementary Table 14), generating a data frame of 
candidate spatial barcode sequences per true cell barcode. From this 
data frame, we matched candidate spatial barcode sequences with a 
whitelist of in situ sequenced spatial barcodes, assigning each true 
spatial barcode a spatial coordinate.

https://www.protocols.io/view/slide-tcr-seq-v3-ivt-n92ldp6w8l5b/v2
https://www.protocols.io/view/slide-tcr-seq-v3-ivt-n92ldp6w8l5b/v2


Article
Assignment of spatial locations to nuclei. Slide-tags nuclei are 
assigned x,y coordinates corresponding to the distribution of spa-
tial barcodes per nucleus (Supplementary Fig. 1). First, snRNA-seq 
or multiome data are preprocessed as described above to gener-
ate a gene-by-cell-barcode count matrix. The whitelist of cell bar-
codes from Cell Ranger and spatial barcodes from in situ bead array  
sequencing are matched in the spatial barcode FASTQ to generate a 
spatial-barcode-by-cell-barcode matrix. Spatial barcodes with outlier 
UMI counts (that is, UMI > 256) are removed as these probably repre-
sent beads dislodged from the glass slide during nucleus isolation and 
encapsulated in droplets with nuclei (data not shown). Then, taking 
the set of spatial barcodes and their x,y coordinates for each cell bar-
code, DBSCAN62,63 (v.1.1−11) is used to filter out noise spatial barcodes 
before spatial positioning of nuclei (Supplementary Fig. 1c). DBSCAN 
outputs a cluster assignment for each spatial barcode. Cluster = 0 
corresponds to noise spatial barcodes without a clear spatial distribu-
tion, and cluster of numbers greater than zero correspond to signal 
spatial barcodes with discrete spatial clustering. We did not assign 
spatial positions to nuclei with all spatial barcodes denoted noise, or 
to nuclei with multiple signal clusters. From the remaining nuclei with 
one distinct spatial barcode signal cluster, we filtered out noise spatial 
barcodes and computed a UMI-weighted centroid of spatial barcode 
coordinates in the signal cluster. DBSCAN required two parameters as 
input: minPts and eps. To determine the optimal parameter set for each 
Slide-tags run, we iterated through minPts parameters from minPts = 3 
to minPts = 15 under a constant eps = 50 and chose the parameter set 
with the highest proportion of nuclei that are assigned a spatial position 
(a single DBSCAN signal cluster). Sankey plots were generated using 
Sankeymatic (https://sankeymatic.com/).

TCR sequences. TCR sequences were identified using MiXCR (v.4.1.0)64,65 
and assigned to cell barcodes using a hamming distance 1 collapse.

Mouse brain analysis
Quality control and cell type assignment. The output generated 
by Cell Ranger was read into R (v.4.1.1) using Seurat (v.4.3.0)21. Filter-
ing steps are quantified in Supplementary Fig. 1b. We normalized the 
total UMIs per nucleus to 10,000 (CP10K) and log-transformed these 
values to report gene expression as E = log[CP10K + 1]. We identified 
the top 2,000 highly variable genes after using variance-stabilizing 
transformation correction66. All gene expression values were scaled 
and centred. For visualization in two dimensions, we embedded nuclei 
in a UMAP67 using the top 30 principal components, with number of 
neighbours = 40, min_dist = 0.3, spread = 15, local connectivity = 12 and 
the cosine distance metric. We identified shared nearest neighbours 
using the top 30 principal components. Clusters of similar cells were 
detected using the Louvain method for community detection, imple-
mented using FindClusters, with resolution = 0.8. Each cell was then 
assigned a predicted identity based on mapping to a mouse adult brain 
reference dataset16, using FindTransferAnchors and then TransferData, 
with the first 25 principal components in both cases. For each computed 
cell cluster, an identity was assigned using the highest proportion of 
transferred labels, and confirmed using known markers genes.
Assessment of spatial positioning accuracy. Spatial barcode metrics  
calculations. We measured the accuracy of spatial positioning for 
the 839 cell barcodes corresponding to high-quality mapped cells in 
our mouse hippocampus dataset (Fig. 1). For each of these cells, we 
used the spatial barcodes belonging to the DBSCAN singlet cluster 
and calculated the standard error for both x and y coordinates using:

σ
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s.e. = ,

where N is the number of spatial barcode UMIs in the cluster, and σ is the 
s.d. of each of the spatial barcode UMIs from the centroid of the cluster.

In addition to the s.e., other metrics were calculated for each DBSCAN 
singlet cluster. Namely, the geometric mean distance of spatial bar-
codes from the centroid:
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where n is the number of spatial barcode UMIs in the cluster, and xi − C 
is the absolute distance between each spatial barcode UMI and the 
cluster centroid.

For each cell that had only a single DBSCAN cluster, additional metrics 
were calculated (Extended Data Fig. 2d–g). The total number of unique 
spatial barcode sequences, and spatial barcode UMIs associated with 
each cell was calculated, regardless of whether it was in the singlet 
DBSCAN cluster or not. The ratio of spatial barcode UMIs within and 
outside the DBSCAN singlet cluster was then calculated as the propor-
tion of signal spatial barcodes per cell.
CA1 width analysis. A serial section of the profiled region was stained 
using Nissl and imaged. Cells were segmented from this image using 
watershed segmentation in MATLAB (release 2021b) and the centroid 
of each segment was calculated. Next, these coordinates were read into 
R and DBSCAN was used to isolate cells belonging to the CA1 region, 
with the following parameters: eps = 35, minPts = 20. The image region 
was cropped to match that of the profiled Slide-tags region. For both 
datasets, a tenth-order (Nissl) or nineth-order (Slide-tags) linear model 
was fitted through these points, generating a central curve. For each 
spatial barcode UMI, the nearest neighbour on this curve in Euclidean 
space was determined and the distance from these two points was 
recorded as the distance from the fitted line.
CA1 sublayer analysis. Nuclei that belonged to the CA1 cluster were 
subsetted, and the top 1,000 highly variable genes in this subset of 
nuclei was identified after using variance-stabilizing transformation 
correction66. Principal component analysis (PCA) was performed using 
these variable genes. We identified shared nearest neighbours using 
the top 25 principal components. Clusters of similar cells were detected 
using the Louvain method for community detection, implemented 
using FindClusters, with resolution = 0.5. Differentially expressed 
genes between the two clusters were identified using FindMarkers 
with the default parameters. Sublayer labels were assigned to each 
cluster using previously identified gene expression markers68,69. In situ 
hybridization data for comparative plots were obtained from the Allen 
Mouse Brain Atlas23.

Comparison of Slide-tags snRNA-seq versus snRNA-seq data. For 
each sample, Cell Ranger was run as described above, and the outputs 
were run through Cell Ranger aggr (v6.1.2) to account for differences 
in the sequencing depth per cell. The result was a combined matrix 
of 25,158 nuclei, with 25,107 mean reads per cell, 2,309 median UMIs 
per cell and 1,438 median genes per cell. The filtered feature–barcode 
matrix generated by Cell Ranger was then read into R (v.4.1.1) using 
Seurat (v.4.3.0)21. We normalized the total UMIs per nucleus to 10,000 
(CP10K) and log-transformed these values to report gene expression 
as E = log[CP10K + 1]. We identified the top 2,000 highly variable genes 
after using variance-stabilizing transformation correction66. All gene 
expression values were scaled and centred. For visualization in two 
dimensions, we embedded nuclei in a UMAP67 using the top 40 prin-
cipal components, with number of neighbours = 40, min_dist = 0.3, 
spread = 15, local connectivity = 12 and the cosine distance metric. 
We identified shared nearest neighbours using the top 40 principal 
components. Clusters of similar cells were detected using the Louvain 
method for community detection, implemented using FindClusters, 
with resolution = 1. Each cell was then assigned a predicted identity 
based on mapping to a mouse adult brain reference dataset16 using 
FindTransferAnchors and then TransferData, with the first 25 principal 

https://sankeymatic.com/


components in both cases. These cell type designations were then 
used for comparative analysis going forward. Cells designated Unk_1 
or Unk_2 were removed from the analysis as these cells showed low 
quality metrics and were not interpretable labels.

Comparison of Slide-tags snRNA-seq versus bulk RNA-seq. To  
compare the capture of both Slide-tags snRNA-seq and Slide-seq to bulk 
RNA-seq data, we used a bulk RNA-seq dataset from the mouse brain 
that we published previously9. To generate this dataset, the stranded 
mRNA Truseq kit (Illumina, 20020594) was used to prepare stranded 
poly(A) selection libraries from a dissected sagittal mouse hippocam-
pus. The libraries were sequenced and transcripts per million (TPM) for 
each gene were generated using RSEM70 post-alignment with STAR71. For 
Slide-seq data, we used two previously published datasets: Slide-seqV1 
(ref. 9) Puck_180819_6 and Slide-seqV2 (ref. 20) Puck_200115_08. The 
average TPM (APTM) was computed by summing counts for each 
gene across all beads on a puck and dividing by the sum of all UMIs on 
the puck, and dividing by 1 million (total UMI counts/1 million). For 
Slide-tags snRNA-seq data, to make an appropriate comparison, data 
were quantified to exclude intronic reads. The APTM was then com-
puted by summing counts for each gene across all nuclei on the puck 
used in Fig. 1g–i, and dividing by the sum of all UMIs across all nuclei, 
and dividing by 1 million (total UMI counts/1 million). The per-gene 
distribution for each of these values (bulk TPM and Slide-seq ATPM) was 
plotted and linear regression was performed to calculate the Pearson’s 
correlation coefficient.

Comparison of Slide-tags snRNA-seq with Slide-seqV2 and 
DBiT-seq. Slide-tags snRNA-seq mouse hippocampus data were com-
pared with Slide-seqV2 (ref. 20) mouse brain data and DBiT-seq mouse 
brain data (Spatial-ATAC-RNA-seq13). For gene and UMI count compari-
sons, Slide-seq data were spatially binned to 20 μm spatial square pixels. 
Slide-tags snRNA-seq data were processed and nuclei were embedded 
in UMAP space as described above. Slide-seqV2 and DBiT-seq total 
UMIs per spatial spot (10 μm beads in Slide-seqV2) were normalized 
to 10,000 (CP10K) and log-transformed to report gene expression as 
E = log[CP10K + 1]. The top 2,000 highly variable genes were identified 
after using variance-stabilizing transformation correction66. Gene 
expression values were scaled and centred. For visualization in two 
dimensions, we embedded spatial spots in UMAP space using the top 30 
principal components, with number of neighbours =30, min_dist = 0.3, 
spread =1, local connectivity = 1 and the cosine distance metric. We 
identified shared nearest neighbours using the top 30 principal com-
ponents. For Slide-seqV2, clusters of similar cells were detected using 
the Louvain method for community detection, implemented using 
FindClusters, with resolution = 1. RNA clusters from the Spatial-ATAC–
RNA-seq publication13 were used for DBiT-seq data. Standard deviations 
for the top 30 principal components were plotted using ElbowPlot in 
Seurat. Dot plots display the SCTransformed expression values for 
DBiT-seq from the Spatial-ATAC–RNA-seq publication.

Mouse embryonic brain at E14 analysis
The output generated by Cell Ranger was read into R (v.4.1.1) using 
Seurat (v.4.3.0)21. We normalized the total UMIs per nucleus to 10,000 
(CP10K) and log-transformed these values to report gene expression 
as E = log[CP10K + 1]. We identified the top 2,000 highly variable genes 
after using variance-stabilizing transformation correction66. All gene 
expression values were scaled and centred. For visualization in two 
dimensions, we embedded nuclei in a UMAP67 using the top 30 prin-
cipal components, with number of neighbours = 40, min_dist = 0.3, 
spread = 15, local connectivity  = 12 and the cosine distance metric. 
We identified shared nearest neighbours using the top 30 principal 
components. Clusters of similar cells were detected using the Louvain 
method for community detection, implemented using FindClusters, 
with resolution = 0.8. Each cell was then assigned a predicted identity 

based on mapping to a mouse embryo at E14 reference dataset18, using 
FindTransferAnchors and then TransferData, with the first 25 principal 
components in both cases. For each computed cell cluster, an identity 
was assigned using the highest proportion of transferred labels, and 
confirmed using known marker genes.

Human brain analysis
Quality control and cell type assignment. The output generated by 
Cell Ranger was filtered by CellBender and read into R (v.4.2.2). The ma-
trix was subsetted down to cells that had exactly one DBSCAN location 
and fewer than 5% mitochondrial UMIs, which were then loaded into 
Seurat (v.4.3.0)21 to perform normalization, finding variable features, 
scaling, PCA, finding neighbours (dims=30) and finding clusters, and 
to create a UMAP, all with the default parameters (unless otherwise 
specified). Each cluster was assigned a cell class (excitatory neuron, 
inhibitory neuron, oligodendrocyte, OPC, Astroce, endothelial cell, 
microglia) by plotting canonical cell type marker genes on the UMAP 
and manually assigning each cluster a cell type. Subsequently, excita-
tory and inhibitory neuron subtypes were mapped from a published 
human cortex dataset25 by label transfer using Harmony v.0.1.1 and 
spatially plotted in Supplementary Figs. 2b and 3b.

Identification of layers and layer-dependent gene expression. 
The layer assignment of each cell (L1–2, L3–5, L6, WM) was calculated 
by manually drawing boundaries between the layer-specific mapped 
neuron subtypes and assigning each cell a label depending on which 
two boundaries it was between. The numerical laminar coordinate 
was then calculated by taking the Euclidean distance of each cell to 
the nearest boundary and dividing it by the sum of the distances to the 
two neighbouring boundaries, adding a constant factor depending on 
the layer assignment.

Before computing the spatial variation score for each gene, nuclei 
were removed if they contained expression above a Z-score of 2 for 
a marker gene of a different cell type. Subsequently, each gene was 
assigned a spatial variation score by computing the kernelized density 
of the gene expression along the laminar coordinate of filtered cells 
using a uniform kernel and taking the difference between the high-
est and lowest expression density values (Supplementary Table 2). 
Complex gradients were found by taking the intersection of each cell 
type’s spatially variable gene list, and a visually selected interesting 
subset is shown in Fig. 2l.

Gene Ontology analysis was performed on all genes with a spatial 
variation Z score above 7.0 using EnrichGO from clusterProfiler v.4.6.0 
(using the default parameters) and using annotations from org.Hs.eg.
db v.3.16.0 (Supplementary Table 3) under the biological process ontol-
ogy. For display in Fig. 2k, the terms were further subsetted to include 
only terms with Padj < 1 × 10−8 in at least one cell type.

Genes with a spatial variation Z score above 10 in excitatory/inhibi-
tory neurons and above 8 in astrocytes/OPCs are shown in the heat 
maps in Fig. 2i,j and Extended Data Fig. 6d,e. Genes that additionally 
had a minimum expression below 0.8 were spatially plotted in Sup-
plementary Fig. 4–6.

Reproducibility analysis. The percentage of high-quality nuclei 
that were spatially positioned and the density of mapped nuclei were 
compared across four human cortex Slide-tags runs (Supplementary  
Table 4). For each run, the cell calls generated as output by Cell Ranger 
were used and low-quality cells were removed if they belonged to a 
cluster with an average mitochondrial nUMIs percentage of greater 
than 5%. Then, the percentage of mapped nuclei was computed by 
dividing the number of nuclei with exactly one DBSCAN location  
by the total number of nuclei. The nucleus density was calculated by  
selecting a window of tissue with equal white and grey matter area 
and dividing the number of spatially positioned nuclei in the window 
by the window area.
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Tonsil analysis
Quality control and cell type assignment. The output generated by 
Cell Ranger and filtered by CellBender was read into R (v.4.1.1) using 
Seurat (v.4.3.0)21. We normalized the total UMIs per nucleus to 10,000 
(CP10K) and log-transformed these values to report gene expression 
as E = log[CP10K + 1]. We identified the top 2,000 highly variable genes 
after using variance-stabilizing transformation correction66. All gene 
expression values were scaled and centred. For visualization in two 
dimensions, we embedded nuclei in a UMAP67 using the top 30 principal 
components, with number of neighbours =30, min_dist = 0.3, spread =1, 
local connectivity = 1 and the cosine distance metric. We identified 
shared nearest neighbours using the top 30 principal components. 
Clusters of similar cells were detected using the Louvain method for 
community detection, implemented using FindClusters, with resolu-
tion = 1. Annotation of de novo clusters was aided by marker genes and 
Azumith21 reference-based mapping from the human tonsil atlas72.

Spatially varying gene expression. Significantly non-random genes 
were discovered in GCB cells as described previously9. In brief, for each 
single-nucleus assigned as a germinal centre B cell that was positioned 
in one of the four largest germinal centres that we profiled, we first 
calculated the matrix of pairwise Euclidean distances between cells for 
each germinal centre individually. We then compared the distribution 
of pairwise distances between the cells expressing at least one count 
of that transcript to the distribution of pairwise distances between an 
identical number of cells, sampled randomly from all mapped beads 
within the set with probability proportional to the total number of UMIs 
per cell. Specifically, we generated 1,000 such random samples, and 
for each sample calculated the distribution of pairwise distances. We 
then calculated the average distribution of pairwise distances, averaged 
across all 1,000 samples. Finally, we calculated the L1 norm between 
the distribution of pairwise distances for the true sample of cells and 
the average distribution. We defined p to be the fraction of random 
samples with distributions closer to the average distribution (under 
the L1 norm) than the true sample. We calculated an Z score for the true 
sample given the distribution distances from the average distribution 
of random samples. Finally, we aggregated p values for spatial variation 
from each of the four tested germinal centres using Fisher’s method.

We intersected our computed spatially varying genes with genes 
that were previously implicated in germinal centre zone distinction73. 
We calculated the percentage variance in gene expression space and 
plotted it against the spatial effect size from our spatial permutation 
test to identify genes with relatively low gene expression variance but 
high spatial variance.

Germinal-centre zonation. We used spatially varying genes (P < 0.05) 
identified as described above to classify GCB cells into light-zone, 
dark-zone and transitional states. Specifically, we subsetted our data 
to GCB cells, rescaled and recentred values, and ran PCA on the 1,068 
significant spatially varying genes. We then identified shared near-
est neighbours using the top 15 principal components. Clusters of 
similar cells were detected using the Louvain method for community 
detection, implemented using FindClusters, with resolution = 0.4. 
We annotated clusters as light-zone, dark-zone and transitional states 
using marker genes and Azumith21 reference-based mapping from the 
human tonsil atlas72.

After classifying GCB cells into states, we spatially segmented ger-
minal centres into light zones and dark zones using dark-zone B cell 
spatial density. We ran DBSCAN62 on dark-zone B cells of the two largest 
germinal centres, using eps = 60 and minPts = 6 for the largest germinal 
centre, and eps = 60 and minPts = 10 for the second-largest germinal 
centre. We considered cells within the top DBSCAN cluster to constitute 
the dark zone and segmented around the outer cells. The remaining 
cells in both germinal centres were considered to be in the light zone 

and segmentation borders were drawn accordingly. We tested for zone 
bias of T follicular helper cells and follicular dendritic cells using chisq.
test from the stats package in R (v.4.2.2).

Spatial receptor–ligand prediction. To detect receptor–ligand in-
teractions between cell type pairs, we computed a receptor–ligand 
score based on a spatial correlation index74, SCI, which we defined as:
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between N cells of ‘sender cell type’ expressing receptor r and M cells 
of ‘receiver cell type’ expressing ligand l, where expression is sctrans-
form counts75. We defined the spatial weights matrix of dimensionality 
N × M as an adjacency matrix, denoting 1 for when sender cell i is within 
100 μm of receiver cell j and 0 otherwise. We first ran LIANA33 (v.0.1.12) 
to generate a putative list of receptor–ligand interactions between cell 
type pairs in a spatial agnostic manner, filtering to receptor–ligand 
interactions that are expressed in at least 50 cells of sender and receiver 
cell types (log[CPM] > 0), or in 30% of sender and receiver cells. We 
then computed a spatial correlation index for each receptor–ligand 
interaction to determine whether the receptor and ligand are spatially 
co-expressed in a given cell type pair.

To determine the spatial significance of a receptor–ligand score, 
we used an adaptive spatial permutation test, running 1,000 permu-
tations for each receptor–ligand interaction. In each permutation, 
we randomly permuted the spatial locations of cells within a given 
cell-type. For interactions with a nominal P value less than or equal 
to 0.005, we ran an additional 9,000 permutations. We corrected for 
multiple-hypothesis testing using the Benjamini–Hochberg procedure. 
We also computed the log-transformed FC between the observed SCI 
statistic and the median SCI statistic of the empirical null distribution. 
This enabled us to compare SCI log-transformed FC values between 
receptor–ligand interactions for different cell types without explicitly 
correcting for the number of cells of each cell type.

Spatial contextualization of receptor–ligand interactions. To spa-
tially contextualize receptor–ligand interactions, we decomposed 
spatial correlation indices for each significant interaction between GCB 
cells, T follicular helper cells and follicular dendritic cells (Padj < 0.05) 
into interaction intensity scores for individual cells76. These decom-
posed scores reflect each individual cell’s contribution to the total 
spatial correlation index, defined as follows for receiving cell i and 
vice versa for sender cell j:
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comparing interaction intensity scores of the receptor of each cell 
between dark zones and light zones. We corrected P values using the 
Benjamini–Hochberg method. Zone-specific receptor expression was 
tested using SCTransformed expression values compared between 
dark zones and light zones also using wilcox.test in R.

Melanoma analysis
Quality control and cell type assignment. snRNA-seq data. The Cell 
Ranger output was filtered by CellBender and read into R (v.4.1.1) using 
Seurat (v.4.3.0)21. We normalized the total UMIs per nucleus to 10,000 
(CP10K) and log-transformed these values to report gene expression 
as E = log[CP10K + 1]. We identified the top 2,000 highly variable genes 
after using variance-stabilizing transformation correction66. All gene 
expression values were scaled and centred. For visualization in two 
dimensions, we embedded nuclei in a UMAP67 using the top 30 principal 
components, with number of neighbours =30, min_dist = 0.3, spread =1, 



local connectivity = 1 and the cosine distance metric. We identified 
shared nearest neighbours using the top 30 principal components. 
Clusters of similar cells were detected using the Louvain method for 
community detection, implemented using FindClusters, with resolu-
tion = 1. Annotation of de novo clusters was aided by marker genes.
Multiome ATAC and snRNA-seq data. The RNA expression matrix 
generated by Cell Ranger was read into R (v.4.1.1) using Seurat21. The 
ATAC-filtered feature-barcode matrix generated by Cell Ranger was 
read into R (v.4.1.1) using Signac (v.1.9.0)77, and added as its own assay 
slot in the Seurat object containing RNA expression counts. Peaks were 
recalled using the CallPeaks function, which uses MACS2 (v.2.2.7.1)78, 
across all cells. Fragments were mapped to the MACS2-called peaks and 
assigned to nuclei using the FeatureMatrix function in Signac. Peaks in 
non-standard chromosomes were removed using keepStandardChro-
mosomes from GenomeInfoDb (v.1.35.15)79 and problematic regions 
of the hg38 genome were removed using subsetByOverlaps according 
to the blacklist available at GitHub (https://github.com/Boyle-Lab/
Blacklist)80. This final peaks–barcode matrix was then added to the 
‘peaks’ assay within the Seurat object.

For cell type annotation, the snRNA-seq data from the multi-
ome experiment were normalized for the total UMIs per nucleus to 
10,000 (CP10K) and log-transformed to report gene expression as 
E = log[CP10K + 1]. The top 2,000 highly variable genes were identi-
fied after using variance-stabilizing transformation correction66. We 
then integrated the gene expression data from Slide-tags multiome 
with gene expression data from Slide-tags snRNA-seq using SelectIn-
tegrationFeatures, FindIntegrationAnchors and IntegrateData across 
all features with the default parameters of Seurat (v.4.3.0). Integrated 
gene expression values were scaled and centred. For visualization in 
two dimensions, we embedded nuclei in a UMAP67 using the top 30 
principal components, with number of neighbours =30, min_dist = 0.3, 
spread =1, local connectivity = 1 and the cosine distance metric. We 
identified shared nearest neighbours using the top 30 principal com-
ponents. Clusters of similar cells were detected using the Louvain 
method for community detection, implemented using FindClusters, 
with resolution = 1. Cells from Slide-tags multiome were annotated 
based on marker genes and co-clustering with Slide-tags snRNA-seq 
cells. Gene expression counts from Slide-tags multiome were rescaled 
and reclustered as described above using the non-integrated object 
for subsequent analyses.

Inferring CNV. InferCNV (v.1.3.3) was used to infer large-scale CNVs 
from standard snRNA-seq data and from snRNA-seq data from a 10x 
multiome experiment as previously recommended (inferCNV of the 
Trinity CTAT Project; https://github.com/broadinstitute/inferCNV). 
CellBender-corrected counts were extracted from annotated Seurat 
objects, where normal reference cells were specified as all cells that 
were not labelled as tumour. InferCNV was run under the following 
parameters: cutoff = 0.1, cluster_by_groups = T, denoise = T, HMM = T, 
num_threads = 60.

TCR analysis. TCR analyses focused on CD8+ T cells; we used Fisher’s 
exact test to test whether (1) the β-chain sequence CASRASNEQFF was 
tumour-compartment biased compared against all CD8+ T cells with 
profiled β-chains, where tumour compartment segmentation was per-
formed manually based on tumour subpopulation density; and (2) 
paired CD8+ T cells with TCR α-chain CAEWYNQGGKLIF and β-chain 
CASRASNEQFF were tumour-compartment biased.

ATAC analysis. Latent semantic indexing (LSI) was performed on 
the peaks assay using Signac, with the RunTFIDF and RunSVD func-
tions. For visualization in two dimensions, we embedded nuclei in 
a UMAP67 using LSI dimensions 2–30. Nuclei were visualized using 
the combination of modalities profiled, with weighted-nearest neigh-
bour analysis. Multimodal neighbours were identified using Seurat’s 

FindMultiModalNeighbors function, with the RNA PCA dimensions 
1:50, and the ATAC LSI dimensions 2:50. These neighbours were then 
used as an input into RunUMAP for visualization.

To annotate the motifs present in peaks, the Signac function Create-
MotifObject was used to create a motif object, with all human motifs 
from the Jaspar 2020 database. Motif accessibility Z scores were 
then calculated using Signac’s RunChromVAR function (chromVAR 
v.1.16.0). Gene activity scores were calculated using the Signac func-
tion GeneActivity. We normalized these gene scores by normalizing 
the total gene score per nucleus to the median nUMI for the RNA assay 
(NGS) and log-transformed these values to report gene expression as 
E = log[NGS + 1].

Differential gene expression, differential chromatin gene scores 
and gene set enrichment analysis. Differential gene expression analy-
ses were performed using the MAST implemented in FindMarkers from 
Seurat81. Analysis comparing tumour cluster 1 and tumour cluster 2 
from Slide-tags snRNA-seq and comparing compartment-specific CD8+ 
T cells from Slide-tags multiome data used min.pct = 0.25 and log2fc.
threshold = 0.25. Analysis comparing tumour cluster 1 and tumour 
cluster 2 from Slide-tags multiome data used min.pct = 0.1 and log2fc.
threshold = 0.25. Gene Ontology biological process (GO_Biological_Pro-
cess_2021) gene set enrichment analysis was performed using the Enri-
chr package (v.3.1) in R82–84 on tumour cluster 2 enriched differentially 
expressed genes with log2[FC] < −0.5 and Padj < 0.05. Differential chro-
matin gene score analysis was conducted using the Wilcoxon rank-sum 
test implemented in FindMarkers from Seurat with min.pct = 0.1 and 
log2fc.threshold = 0.

Melanocytic-like and mesenchymal-like signatures. We scored tu-
mour cells on melanocytic-like and mesenchymal-like signatures using 
AddModuleScore in Seurat with a list of genes adapted from previous 
work46,85 (Supplementary Table 15). Correlations of chromVAR motif 
scores with mesenchymal scores were tested using Pearson’s correla-
tion coefficient and P values were corrected using the Benjamini–Hoch-
berg procedure. Spatial autocorrelations of chromVAR motifs were 
tested using Moran.I from the ape package (v.5.6-2) in R86, where the 
weights matrix was specified as 1/distance2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Slide-tags datasets have been deposited at the Broad Institute Single 
Cell Portal under the following accession numbers: SCP2162 (mouse 
brain), SCP2170 (mouse embryonic brain), SCP2167 (human brain), 
SCP2169 (human tonsil), SCP2171 (human melanoma) and SCP2176 
(human melanoma multiome). Raw and processed mouse data have 
been deposited at the Gene Expression Omnibus under accession 
number GSE244355.

Code availability
Code for processing spatial sequencing libraries is available at GitHub 
(https://github.com/broadchenf/Slide-tags (https://doi.org/10.5281/
zenodo.2571615).
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Extended Data Fig. 1 | Cell type assignment and spatial mapping in the mouse hippocampus. a, Expression of marker genes by cell type cluster. b, Spatial 
positions of each cell by cell type cluster. All scale bars denote 500 μm. CA1 = Cornu Ammonis area 1, CA3 = Cornu Ammonis area 3. n = 839 nuclei.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Assessing the mapping of single nuclei using spatial 
barcodes in the mouse hippocampus. a, Each recovered signal and noise 
spatial barcode is shown coloured by the number of detected UMIs. b, The 
proportion of nuclei mapped for each minPts parameter tested in DBSCAN.  
c, The proportion of nuclei mapped at different median spatial barcode nUMIs 
per cell. d-e, Violin plots showing different spatial barcode metrics for every 
cell that is a spatial singlet. f, Violin plot showing the proportion of spatial 
barcode UMIs that are assigned to the DBSCAN singlet cluster (signal) vs. all 
other spatial barcode UMIs recovered for that cell. g, Violin plot showing the 
mean radial distance for spatial barcodes for each spatial singlet cluster. h, The 
proportion of cells that are assigned to each number of DBSCAN clusters. i, plot 
showing the concentration of oligos released by time under illumination at the 
same light source power, for each bead type used in Slide-tags experiments. 

The time used for cleavage for each bead type is shown with the dotted lines.  
j, Plot showing the standard error (SE) for each singlet true spatial barcode 
cluster in x and y. Density shows: centre line, median; adjacent lines, upper and 
lower quartiles. k, The full set of spatial barcodes recovered for each of the 
nuclei plotted in Fig. 1c, with their xy positions, kernel density estimates, and 
coloured by nUMI associated with each cell are plotted (top). Points centred 
around the signal cluster are shown at higher magnification with final cell 
position shown as a cross (bottom). Scale bars denotes 500 μm, except for 
magnified plots, where scale bars denote 200 μm. Boxplots show: centre line, 
median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile 
range; points, outliers. CA1 = Cornu Ammonis area 1, DG = dentate gyrus.  
a,j, n = 839 nuclei. d-g, n = 1042 nuclei. b,c,h, n = 1889 nuclei.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Spatial resolution measurements in the mouse 
hippocampus and Slide-tags snRNA-seq enables characterization of the 
deep and superficial sublayers in the mouse hippocampal CA1 field.  
a, A 10 um nissl-stained section (left) was taken adjacently to the Slide-tags 
profiled section (right). b, The CA1 nuclei were subsetted in each case and a line 
was fitted to measure the midpoint of this structure. For Slide-tags, nuclei were 
selected based on their cell type assignment in Figure S1, with 2 spatial outliers 
removed. For Nissl, nuclei were computationally segmented. Orthogonal 
distances from this midpoint were then calculated and points are coloured by 
this distance. c, Violin plots showing the distribution of distances from the 
fitted line in b. d, PCA plot showing cells from the CA1 cluster after subsetting, 
reprojection, and reclustering. Cells are coloured according to their new  

sub-cluster assignment. e, Cells from a are plotted according to their spatial 
location (top). The spatial density of nuclei from each population is plotted 
(bottom). f, Volcano plot showing differentially expressed genes between sps 
and spd. g, Violin plots showing gene expression differences between each 
subcluster (top) and the expression of these genes spatially (middle), as well  
as in situ hybridization data (bottom) from Allen Mouse Brain Atlas23. Genes 
were selected based on being discovered as differentially expressed between 
these two sub-clusters in our dataset and also identified in previous studies  
as defining these two sub-layers68,69. Boxplots show: centre line, median; box 
limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, 
outliers. All scale bars denote 500 μm. For Slide-tags CA1, n = 155 nuclei. For 
imaging data, n = 898 segmented nuclei.
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Extended Data Fig. 4 | Comparison of Slide-tags to Bulk RNA-seq, Slide-seqV2 
and DBiT-seq. a, Slide-tags snRNA-seq vs. bulk RNA-seq. b, Slide-seqV2 vs. 
bulkRNA-seq. c, Slide-seqV1 vs. bulkRNA-seq. Log10 transformations are shown 
in each bulk comparison case. d, Violin plots of log10-transformed genes and 
UMIs per nucleus (Slide-tags) or 20 μm spatial spot (Slide-seqV2 and DBiT-seq / 
spatial-ATAC-RNA-seq) in the mouse brain. n = 839 nuclei for Slide-tags, 
n = 18,950 20 μm pixels for Slide-seq, and n = 9,215 pixels for DBiT-seq. e, Elbow 
plot of standard deviations of principal components from Slide-tags snRNA-seq, 

Slide-seqV2, and DBiT-seq in the mouse brain. f, UMAP embeddings of snRNA-seq 
profiles from Slide-tags snRNA-seq (cell type labels), Slide-seqV2 (de novo 
clusters), and DBiT-seq (RNA clusters from Zhang et al.13) in the mouse brain.  
g, Dotplot expression of select markers across transcriptome clusters from 
Slide-tags snRNA-seq, Slide-seqV2, and DBiT-seq in the mouse brain. Boxplots 
show: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range; points, outliers.



Extended Data Fig. 5 | Slide-tags snRNA-seq applied to the embryonic mouse 
brain at E14. a, Schematic of Slide-tags snRNA-seq on a 3 mm diameter region 
of the embryonic mouse brain at E14. b. A haematoxylin and eosin stained 
section which was adjacent to the profiled section. c. UMAP embedding of 
snRNA-seq profiles coloured by cell-type annotations. d. Spatial positions of 
cells coloured as in C. e. Spatial marker gene expression. Expression counts for 

each cell were divided by the total counts for that cell and multiplied by 10,000, 
this value + 1 is then natural-log transformed. f. Comparison metrics plotted for 
Slide-tags snRNA-seq on the mouse E14 embryonic brain. * = XYZeq was not 
performed on embryonic mouse brain at E14 and so these metrics may not be 
directly comparable due to tissue-specific effects. All scale bars denote 500 μm.
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Extended Data Fig. 6 | Slide-tags snRNA-seq applied to the human brain 
enables spatial mapping of cell types and cell-type specific spatially varying 
gene expression. a, Individual plots of per-cell type spatial distribution. The 
diagram was created using BioRender. b, Dotplot showing the marker genes 
used to assign cell types to clusters. c, The gene expression distribution of four 

canonical layer marker genes in excitatory neurons. d,e, A 1D gene expression 
heatmap for genes in inhibitory neurons and astrocytes. All scale bars represent 
500 μm. Oligo = Oligodendrocyte, OPC = Oligodendrocyte precursor cell, 
Astro = Astrocyte, Endo = Endothelial, WM = White matter. Gene names and 
details in Supplementary Table 2.



Extended Data Fig. 7 | Receptor-ligand prediction from Slide-tags human 
tonsil data. a, Expression of select marker genes by cell type cluster. b, Spatial 
mapping of cell types. c, Scatter plot of gene expression variance not explained 
by count noise and spatial permutation effect size of previously reported dark 
zone and light zone marker genes. d, Spatial mapping of dark zone, light zone, 

and transitional germinal centre B cells in two representative germinal centres. 
e, Volcano plot of receptor interaction intensity scores compared between zones 
in two representative germinal centres. All scale bars denote 500 μm. T double 
neg = T double negative, mDC = myeloid dendritic cells, pDC = plasmacytoid 
dendritic cells.
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Extended Data Fig. 8 | Slide-tags snRNA-seq on human melanoma.  
a, Schematic representation of Slide-tags snRNA-seq and Slide-tags multiome 
(Fig. 4) profiled regions across tumour 1 and 2 compartments. b, UMAP 
embeddings of snRNA-seq profiles coloured by cell type. c, Spatial mapping  
of cell types. d, Spatial mapping of profiled cell types. e, Expression of select 

cell type marker genes and melanoma cell state marker genes. f, Inferred copy 
number alterations from transcriptomic data. NT indicates a representative 
subset of non-tumour cells. All scale bars denote 500 μm. T reg = T regulatory 
cells, mDC = myeloid dendritic cells, Mono-mac = monocyte-derived 
macrophages, pDC = plasmacytoid dendritic cells.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Slide-tags multiome on human melanoma. a, Mean 
TSS enrichment score. b, Violin plots of log10-transformed unique fragments 
and fraction of reads in peaks (FRiP) percentage. n = 2,529 nuclei. Boxplots 
show: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5x 
interquartile range; points, outliers. c, Weighted nearest neighbour UMAP 
embeddings of snRNA-seq and snATAC-seq profiles coloured by cell type.  
d, Spatial mapping of cell types. e, ATAC sequence track and gene expression 
violin plot of MLANA and CCL5 across cell types. f, TCR pairing chord plot of 
alpha and beta chain pairing frequencies in CD8 T cells. g, Differential gene 

expression volcano plot between CD8 T cells in tumour compartment 1 vs 
tumour compartment 2. h, Scatter plot of melanocytic-like scores and 
mesenchymal-like scores of tumour cluster 1 cells in tumour compartment 1. 
Pearson’s r value is reported. Error band represents the 95% confidence 
interval. i, Mesenchymal-like cell state score spatial distribution. j, Spatial 
distribution of JUNB and MITF chromVAR motif scores. All scale bars denote 
500 μm. T reg = T regulatory cells, mDC = myeloid dendritic cells, Mono-mac = 
monocyte-derived macrophages.



Extended Data Fig. 10 | Differential gene expression and gene set enrichment 
analysis between tumour cluster 1 and 2. a, Volcano plot of differentially 
expressed genes comparing tumour cluster 1 against tumour cluster 2  
from the Slide-tags snRNA-seq run. b, Gene ontology biological process  

(GO_Biological_Process_2021) gene set enrichment analysis on genes 
upregulated in tumour cluster 2 (negative log2FC) compared with tumour 
cluster 1 from the Slide-tags snRNA-seq experiment.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection For alignment of sequencing reads, we used: Cell Ranger v6.1.2, CellBender v0.2.0, Cell Ranger-arc v2.0.2, seqtk v1.3-r106.

Data analysis For processing of aligned data, MiXCR v4.l.0, MACS2 v2.2. 7.1, inferCNV vl.3.3.  
The following R packages were used within R 4.1.1: DBSCAN vl.1-11, Seurat v4.3.0, Harmony v0.1.1, stats v4.2.2, Signac vl.9.0, GenomelnfoDb 
vl.35.15, LIANA v0.l.12, Enrichr v3.l, ape v5.6-2.  The following R packages have been used in R 4.2.2: Seurat v4.3.0. Dependencies have not 
been listed for brevity.   
 
Code for processing spatial sequencing libraries is available on Github: https://github.com/broadchenf/Slide-tags. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Slide-tags datasets have been deposited on the Broad Institute Single Cell Portal, under the following accession numbers: mouse brain (SCP2162), mouse embryonic 
brain (SCP2170), human brain (SCP2167), human tonsil (SCP2169), human melanoma (SCP2171), human melanoma multiome (SCP2176). Raw and processed mouse 
data has been  deposited in GEO under the accession number: GSE244355.  

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Human brain data was from female. No gender available for human tonsil and melanoma specimens due to excess surgical 
collection from deidentified subjects.

Population characteristics Human brain data was from 78 year old female. No age infomration available for human tonsil and melanoma specimens due 
to excess surgical collection from deidentified subjects. Melanoma specimens were acquired from a patient who underwent 
axillary lymphadenectomy for metastatic BRAF-mutant melanoma prior to starting PD-1 inhibitor. 

Recruitment No recruitment was done. Human tonsil and melanoma specimens collected from excess surgical material from deidentified 
subjects. Human brain sample was from post-mortem deidentified specimen.

Ethics oversight This was determined to be non-human subject research by Broad IBC.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Samples sizes were chosen primarily based on experiment length, sample availablity, and 
sequencing costs. These sample sizes are sufficient because each sample serves as a proof-of-concept for the new technology.

Data exclusions No data was excluded.

Replication All attempts at replication were successful. We performed replication on human brain Slide-tags datasets (2 technical datasets). 

Randomization Randomization was not applicable because the focus of this paper is the development of a new genomic technology and did not involve 
allocating samples/organisms/participants into experimental groups.

Blinding Blinding was not applicable because because the focus of this paper is the development of a new genomic technology and did not involve 
group allocation.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Mus musculus strain C57BL/6J 56 days old, Mus musculus strain C57 E14

Wild animals This study did not involve wild animals.

Reporting on sex Sex was not important for this study since the tissues are used to benchmark a new genomics protocol, which we anticipate would 
provide identical results regardless of sex.

Field-collected samples No field-collected samples were used. 

Ethics oversight All procedures involving animals at the Broad Institute were conducted in accordance with the US National Institutes of Health Guide 
for the Care and Use of Laboratory Animals under protocol number 0120-09-16

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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