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Single-cell analysis of chromatin accessibility 
in the adult mouse brain
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Maria Luisa Amaral1, Yuelai Wang1, Andre Chu1, Yang Xie1, Michael Miller3, Jie Xu1, 
Zhaoning Wang1, Kai Zhang1, Bojing Jia1, Xiaomeng Hou3, Lin Lin3, Qian Yang3, Seoyeon Lee1, 
Bin Li1, Samantha Kuan1, Hanqing Liu4, Jingtian Zhou4, Antonio Pinto-Duarte5, Jacinta Lucero5, 
Julia Osteen5, Michael Nunn6, Kimberly A. Smith7, Bosiljka Tasic7, Zizhen Yao7, Hongkui Zeng7, 
Zihan Wang8, Jingbo Shang8, M. Margarita Behrens5, Joseph R. Ecker6, Allen Wang3, 
Sebastian Preissl3,9 & Bing Ren1,3 ✉

Recent advances in single-cell technologies have led to the discovery of thousands of 
brain cell types; however, our understanding of the gene regulatory programs in these 
cell types is far from complete1–4. Here we report a comprehensive atlas of candidate 
cis-regulatory DNA elements (cCREs) in the adult mouse brain, generated by analysing 
chromatin accessibility in 2.3 million individual brain cells from 117 anatomical 
dissections. The atlas includes approximately 1 million cCREs and their chromatin 
accessibility across 1,482 distinct brain cell populations, adding over 446,000 cCREs 
to the most recent such annotation in the mouse genome. The mouse brain cCREs are 
moderately conserved in the human brain. The mouse-specific cCREs—specifically, 
those identified from a subset of cortical excitatory neurons—are strongly enriched 
for transposable elements, suggesting a potential role for transposable elements in 
the emergence of new regulatory programs and neuronal diversity. Finally, we infer 
the gene regulatory networks in over 260 subclasses of mouse brain cells and develop 
deep-learning models to predict the activities of gene regulatory elements in different 
brain cell types from the DNA sequence alone. Our results provide a resource for the 
analysis of cell-type-specific gene regulation programs in both mouse and human 
brains.

The Brain Initiative Cell Census Network aims to achieve a comprehen-
sive understanding of the cellular and molecular composition of the 
mammalian brain1. As an experimental model, the laboratory mouse has 
a critical role in the investigation of gene function in vivo as well as in the 
development and safety evaluation of various therapeutics. A detailed 
catalogue of cell types in the mouse brain along with their spatial distri-
bution and functional connections would therefore greatly facilitate the 
study of the complex neurocircuits and gene pathways as well as help in 
the development of treatments for neurological disorders. Single-cell 
transcriptomics studies2–7 have identified hundreds of subclasses and 
thousands of cell types across the brain. This considerable cellular and 
spatial complexity underscores the need for a better understanding of 
the cis-regulatory elements (CREs) that are responsible for the identity 
and gene expression patterns in each cell type.

CREs control spatiotemporal gene expression through the binding 
of sequence-specific transcription factors (TFs) and the recruitment 
of chromatin remodeller proteins and/or transcription machinery to 
their target genes8–10. These elements, including promoters, enhancers, 

insulators, silencers and other less-well-characterized regulatory 
sequences work together to drive cell-type-specific gene expression in 
development11,12, differentiation and disease13,14. Comprehensive map-
ping of CREs in mouse brain cells will provide mechanistic insights into 
gene regulation and function in different brain cell types and advance 
our understanding of brain development and neurological disorders.

Previous catalogues of cCREs in mouse brain cells were derived 
through epigenomic profiling of a limited number of brain regions 
and are therefore incomplete2,15–22. To more comprehensively delin-
eate the cCREs in the mouse brain cells, we used the single-nucleus 
assay for transposase-accessible chromatin followed by sequencing  
(snATAC–seq) to profile chromatin accessibility at the single-cell reso-
lution across the entire adult mouse brain. In a previous study19 that 
focused on the mouse cerebrum, we reported the delineation of 160 
cell types comprising approximately 800,000 brain cells across 45 
anatomic dissections, and the annotation of 491,818 cCREs that are 
probably deployed in one or more of these cell types. Here we report 
the analysis of an additional 1.5 million brain cells from the rest of mouse 
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brain regions, including 72 new anatomical dissections. Through inte-
grative analysis of a total of 2.3 million mouse brain cells, we provide 
a comprehensive map of cCREs representing 1,482 brain cell types. 
Our results not only provide independent evidence to support the 
complexity and diversity of cell types across brain regions, but also 
double the annotated mouse brain cCREs to 1 million.

A large fraction of the mouse brain cCREs has sequence homology 
in the human genome, and displays chromatin accessibility in the 
human brain cells23, suggesting conserved gene regulatory functions. 
Consistent with previous reports10,24,25, mouse-specific brain cCREs, 
especially those found in the subclasses of excitatory neurons, are 
strongly enriched for transposable elements (TEs) including LINE-1 
and endogenous retrotransposons, highlighting a potential role of 
TEs in the evolution of neuronal functions in the mammalian brain. We 
also predict gene regulatory networks (GRNs) in over 260 subclasses 
of brain cell types and develop deep-learning-based models to predict 
cell-type-specific use of cCREs from DNA sequence information.

Single-cell analysis of the mouse brain
We dissected 117 brain regions from the isocortex, olfactory bulb 
(OLF), hippocampal formation (HPF), striatum (STR), pallidum (PAL), 
amygdala (AMY), thalamus (TH), hypothalamus (HY), midbrain (MB), 
pons (P), medulla (MY) and cerebellum (CB) in 8-week-old male mice 
(Fig. 1a, Extended Data Fig. 1 and Supplementary Table 1), including 
45 dissections from the isocortex, OLF, HPF, STR and PAL reported 
previously19. The dissections were performed on 600-µm-thick coronal 
brain slices according to the Allen Brain Reference Atlas26 (Extended 
Data Fig. 1) with two replicates obtained from pools of the same region 
dissected from at least two brains (Fig. 1a and Methods). We performed 
snATAC–seq for all of the 234 samples using an automated single-cell 
combinatorial indexing ATAC–seq27 protocol. The sequencing reads 
corresponding to each nucleus were then deconvoluted on the basis 
of nucleus-specific DNA barcode combinations (Extended Data 
Fig. 2a–e). High correlations between biological replicates (median, 
0.99; range, 0.96–1.0) and between datasets from similar brain regions 
(ranges: 0.97–0.99 (AMY); 0.94–0.98 (CB); 0.89–0.99 (HPF); 0.97–
0.99 (HY); 0.93–0.99 (isocortex); 0.94–0.99 (MB); 0.98–0.99 (MY); 
0.89–0.99 (OLF); 0.95–0.99 (PAL); 0.94–0.99 (P); 0.83–0.98 (STR); 
and 0.92–0.99 (TH)) support the high reliability and robustness of the 
assays (Extended Data Fig. 2f). We confirmed the high quality of all of 
the datasets (n = 234: 117 dissections with 2 replicates) using a set of 
quality-control metrics (Methods and Extended Data Fig. 2a–f). For 
the subsequent analyses, we focused on the nuclei with at least 1,000 
sequenced fragments and the transcriptional start site (TSS) enrich-
ment above 10 (Extended Data Fig. 3a). We next removed potential 
doublets in each dataset based on a modified Scrublet28 procedure 
using SnapATAC229. As Scrublet was originally designed for single-cell 
RNA-sequencing (scRNA-seq) doublet removal, we compared it using 
another method, AMULET30, which was recently published for dou-
blet detection and removal in snATAC–seq data. We found that it 
achieved similar results for our data based on a simulation study, in 
which the doublets were simulated from several samples from our data 
(Extended Data Fig. 3b). After removing 7% of nuclei that were deemed 
to be potential doublets (Extended Data Fig. 3c,d), we retained the 
chromatin accessibility profiles from 2,355,842 nuclei, with a median 
4,368 DNA fragments per nucleus (Supplementary Table 2). Among 
them, 817,655 were from the isocortex (including 370,841 from previ-
ous study), 201,113 from the OLF (including 137,209 from previous 
study), 155,952 from the STR (including 114,743 from previous study), 
81,834 from the PAL (including 38,960 from previous study), 271,933 
from the HPF (including 164,568 from previous study), 65,958 from 
the AMY, 142,890 from the TH, 83,321 from the HY, 243,137 from the 
MB, 82,488 from the MY, 103,147 from the pons and 106,414 from the 
CB (Fig. 1a,b and Extended Data Fig. 3e,f). This dataset represents a 

considerable number of single-cell chromatin accessibility profiles 
for the mammalian brain.

Clustering and cell type annotation
We performed iterative clustering using SnapATAC229 to classify the 
2.3 million nuclei into distinct cell groups on the basis of their pairwise 
similarity of chromatin accessibility profiles (Methods, Extended Data 
Figs. 4 and 5 and Supplementary Table 3). Before clustering, we first 
visualized the data using uniform manifold approximation and projec-
tion (UMAP; Fig. 1c) with a 5 kb resolution for genomic bin features in 
SnapATAC31 for a global view. In the UMAP, we marked the nuclei into 
three major divisions, including 998,000 nuclei predominantly com-
prising glutamatergic (Glut) neurons (based on the neurotransmitter 
genes Slc17a7, Slc17a6, Slc17a8); 384,000 nuclei predominantly com-
prising GABAergic neurons (GABA, based on the neurotransmitter 
gene Slc32a1) and 959,000 nuclei consisting of primarily non-neuronal 
cell types. We performed four rounds of iterative clustering to fur-
ther classify the cells into subclasses and cell subtypes (Extended Data 
Fig. 4a). During clustering, we used a 500 bp resolution for genomic 
bin features. After the first iteration (hereafter, L1-level clustering), 
we divided the 2.3 million nuclei into 37 groups for L2-level clustering, 
using over 4 million chromatin features. For each group, we then per-
formed a second and a third round of clustering (L2-level and L3-level 
clustering) sequentially with the top 500,000 genomic bin features 
and identified a total of 248 subgroups and 899 subtypes of brain cells, 
respectively (Extended Data Fig. 4a). A total of 291 out of 899 L3-level 
subtypes consisted of more than 400 cells per subtype and, in total, 
they captured 1.8 million cells. For these 291 L3-level subtypes, we also 
performed a fourth round of clustering (L4-level clustering) to further 
classify them into a total of 874 clusters. In summary, we identified a 
total of 1,482 cell clusters (874 L4-level clusters and 608 L3-level clus-
ters without L4-level clustering). The number of nuclei in each cluster 
ranges from 34 to 48,694, with a median number of 484 nuclei per 
cluster (Supplementary Tables 3 and 4). We used the term subtypes to 
represent the 1,482 clusters in the latter part of this Article.

To annotate the cell type identity of the 1,482 subtypes, we performed 
integration analysis using the data reported in a companion single-cell 
RNA-seq study of 2 million cells (over 5,300 clusters) from adult male 
mouse brains5. We first calculated the gene expression scores in each 
nucleus using SnapATAC2 with the fragments mapped to the gene 
promoter (up to 2 kb to TSSs) and gene body regions as described previ-
ously31,32. We next performed integration analysis using the Seurat32,33 
separately for neuronal cells and non-neuronal cells (Methods). The 
co-embedding of both the scRNA-seq and the snATAC–seq neuronal 
cells showed excellent overlap between the two modalities (Fig. 1d) 
and the mouse brain major regions (Extended Data Fig. 6a,b). We 
also observed the same result for non-neuronal cells (Extended Data 
Fig. 6c–e). The consensus matrix calculated on the basis of the ratio 
of transferred labels from the scRNA-seq data to our snATAC–seq data 
showed excellent correspondence between the two datasets, suggest-
ing the robustness of the cell type identification based on either tran-
scriptome or chromatin accessibility (Fig. 1e, Extended Data Fig. 6f–h 
and Supplementary Table 5). For each snATAC–seq-based subtype, we 
used the top-ranked cluster label transferred from the scRNA-seq data 
to represent its scRNA-seq cluster-level annotation. In total, 1,267 neu-
ronal subtypes in the snATAC–seq data were mapped to 965 scRNA-seq 
clusters. In the scRNA-seq data, the 5,300 clusters were grouped into 
338 cell subclasses, the most representative layer for cell type analysis. 
To annotate our data more robustly, we next mapped our cell subtypes 
into this layer using the hierarchical relationship between cell cluster 
and cell subclass defined in the scRNA-seq data. The heat map of the 
consensus matrix between our subtypes and the scRNA-seq subclasses 
showed excellent correspondence (Fig. 1e and Supplementary Table 5). 
To reduce the potential annotation bias induced by different numbers 
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Fig. 1 | Single-cell analysis of chromatin accessibility in the adult whole 
mouse brain. a, Schematic of the sample dissection strategy. The brain map was 
generated using coordinates from the Allen Mouse Brain Common Coordinate 
Framework (CCF) v.3 (ref. 26). b, The number of nuclei for 117 dissections after 
quality control and doublet removal. The dot size is proportional to the size of 
cells and the dissections that were not covered by our previous study19 are shown 
in grey. A to L on the left were used as the dissection region labels on each  
slice (details are provided in Extended Data Fig. 1). The number of dissections 
represents the number of dissections covered by our previous study (last) and 
updated in the current study (new). The total number of cells represents the 
number of cells covered by our previous study (last) and updated in the current 
study (new). c, UMAP81 embedding and clustering analysis of snATAC–seq data. 
The light colours denote major cell classes. NN, non-neuronal cells. Cells are 
coloured on the basis of major regions as in b. d, The co-embedding UMAP 
embedding of the neuronal cells from scRNA-seq data5 and the snATAC–seq 
data on the same space coloured by the two modalities. e, The consensus score 
between neuronal subclasses from the scRNA-seq data above and L4-level 

neuronal clusters from our snATAC–seq data. f, The 253 neuronal subclasses in 
our snATAC–seq data matched to neuronal subclasses in the scRNA-seq above, 
and ordered on the basis of the subclass IDs (for all of the following figures, the 
order was kept the same unless otherwise mentioned). From left to right, the 
bar plots represent the class, major neurotransmitter (NT) type, biological 
replicate distribution of nuclei, major region distribution of nuclei, number  
of clusters and number of nuclei. Detailed information about class, 
neurotransmitter type and subclass is reported in the companion paper5. A list 
of full names of the subclasses is provided in Supplementary Table 3. CTX, 
cerebral cortex; HYa, anterior hypothalamus; L6b, layer 6b; LSX, lateral septal 
complex; IT, intratelencephalic; ET, extratelencephalic; NP, near-projecting; 
CT, corticothalamic; OB, olfactory bulb; CR, Cajal-Retzius; DG, dentate gyrus; 
IMN, immature neurons; CGE, caudal ganglionic eminence; MGE, medial 
ganglionic eminence; CNU, cerebral nuclei; LGE, lateral ganglioniceminence; 
MH, medial habenula; LH, lateral habenula; Chol, cholinergic neurons; Dopa, 
dopaminergic neurons; Glyc, glycinergic neurons; Sero, serotonergic neurons.
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of cells in the clusters, for each of our 1,482 subtypes, we manually 
checked the major regions of the top three cluster-related subclasses, 
and the gene markers for some subclasses using the bigwig data and 
gene expression scores (Extended Data Fig. 7) generated using Sna-
pATAC2. Finally, 275 out of 338 subclasses were annotated to the 1,482 
subtypes. This includes 253 out of 315 neuronal subclasses, covering 
28 neuronal classes and 7 neurotransmitter types, as well as 22 out of 
23 non-neuronal subclasses, covering 5 non-neuronal classes (Sup-
plementary Table 4). We confirmed that the matched subclasses in our 
snATAC–seq data were robust to variations in the sequencing depth, 
signal-to-noise ratio between brain regions and replicates (Extended 
Data Fig. 4b,c) by performing the k-nearest-neighbour batch effect 
test34 and local inverse Simpson’s index analysis35 (Extended Data 
Fig. 4d,e) and by comparing the ratio of biological replicates across 
multiple subclasses (Extended Data Fig. 5). The unmatched 63 sub-
classes correspond mainly to rare cell populations, accounting for a 
total of 1.7% of the scRNA-seq data. For example, the only unmatched 
non-neuronal subclass is monocytes, with 21 cells. Other unmatched 
subclasses correspond to rare cell subclasses mainly from the MB, 
pons and MY regions, in which the subtle differences between cell 
types may hinder their identification using chromatin accessibility 
profiles alone5. Nevertheless, the general agreement between the 
open-chromatin-based clustering and transcriptomics-based clus-
tering laid the foundation for integrative analysis of cell-type-specific 
gene regulatory programs in the mouse brain, as for the mouse cerebral 
region19. In the text below, we focus on the snATAC–seq subclasses 
and the subtypes within each subclass based on the above integrative 
analysis.

Most neuronal cell types and some non-neuronal cell types showed 
strong regional specificity (Fig. 1f and Extended Data Fig. 8). For exam-
ple, in the CB region, we identified 15 subtypes consisting of 97,000 
nuclei that were annotated as CB granule Glut neurons; and two  
Bergmann glial subtypes including about 1,600 nuclei. In the HY region, 
one subtype with 297 nuclei specifically showed the imputed gene 
expression of the neuropeptide gene Pmch, which integrated well with 
the lateral hypothalamic area Pmch-positive Glut neurons from the 
scRNA-seq data. A series of astrocyte-related cells were identified with 
region specificity, such as astrocytes in the telencephalon region, astro-
cytes in non-telencephalon regions, choroid plexus cells and tanycytes, 
which were integrated well with the corresponding subclasses in the 
scRNA-seq data (Extended Data Fig. 6i).

Identification and annotation of cCREs
To identify the cCREs in each of the 1,482 subtypes, we aggregated the 
DNA-sequence reads from cells in the subtype and determined peaks of 
open chromatin signals using MACS236 (Extended Data Fig. 9a). When 
the number of cells of a subtype was fewer than 200, we combined it 
with other subtypes that were within the same L3-level subtype and 
mapped to the same cluster in the scRNA-seq data. Only 19 subtypes 
were affected by this step. Finally, we performed the peak calling on 
the resulting 1,463 clusters. We selected the genomic regions mapped 
as accessible chromatin in both biological replicates. To account for 
potential biases introduced by factors such as sequencing depth and/
or number of nuclei in individual clusters, we retained only the repro-
ducible peaks based on a modified MACS2 score (hereafter, score 
per million (SPM))37 (Methods and Extended Data Fig. 9a). The peaks 
with SPM ≥ 5 were retained. For each subtype, we retained the peaks 
that were determined to be open chromatin regions in a significant 
fraction of the cells (false-discovery rate (FDR) < 0.01, zero-inflated 
β-model; Extended Data Fig. 9b). In total, we identified a union of 
1,053,811 open chromatin regions (500 bp extension surrounding the 
peak summit) or cCREs (Supplementary Table 6), which together make 
up 19% of the mouse genome (Supplementary Tables 7 and 8). This 
list includes 98% of the cCREs reported in our previous study on the 

mouse cerebral regions19 (Extended Data Fig. 9c), and further expands 
it by an additional 446,606 cCREs. They are also enriched for active 
chromatin states or potential insulator-protein-binding sites mapped 
in bulk mouse brain tissues (Extended Data Fig. 9d). Nearly all of the 
frequently interacting regions previously identified from the mouse 
cortex region38 (3,158 out of 3,169) overlap with our cCREs (Methods and 
Extended Data Fig. 9e,f). Only 2.3% were in promoter regions (defined as 
1.5 kb upstream and 500 bp downstream of the TSS) of protein-coding 
and long non-coding RNA genes, while 34.2% were in intron regions, 
35.9% in intergenic regions and 22.8% in TEs, including long terminal 
repeats (LTRs), long interspersed nuclear elements (LINEs), short inter-
spersed nuclear element (SINEs) and other repeats (Fig. 2a). We found 
an average of 45,303 (range, between 4,947 and 177,906) peaks (501 bp 
in length) in each cell cluster (Extended Data Fig. 9g).

The list of cCREs greatly expands the previous catalogue of mouse 
cCREs defined by bulk chromatin accessibility data. Importantly, 
44% of the mouse brain cCREs (Supplementary Table 9) did not over-
lap with the DNase-hypersensitive sites (DHSs) mapped in a broad 
spectrum of mouse tissues (not limited to brain) and multiple devel-
opmental stages39,40 (Fig. 2b). Several lines of evidence indicate that 
these cCREs probably participate in regulatory functions. First, they 
display higher levels of sequence conservation compared with ran-
dom genomic regions with similar GC content (Fig. 2c). Second, they 
feature cell-type-restricted accessibility, a potential factor in their 
lack of detection in previous bulk tissue assays. More than 62% of the 
cCREs are active in less than ten subtypes, and more than 19% of them 
are accessible in only one cell subtype (Fig. 2d,e and Extended Data 
Fig. 9h). Third, the cell-type-specific chromatin accessibility profiles 
of these cCREs strongly correlate with DNA hypomethylation41 (Fig. 2f, 
Methods and Extended Data Fig. 9i). The cCREs were organized on the 
basis of the non-negative matrix factorization (NMF)42 using the matrix 
of normalized chromatin accessibility of the cCREs (all of the cCREs 
and the cCREs with no overlaps with the DHSs separately) across the 
275 cell subclasses (Methods and Supplementary Tables 10 and 11). 
Notably, two subclasses show DNA hypomethylation across most of 
the cCREs (Extended Data Fig. 9j).

Inferring GRNs
To further dissect the gene regulatory programs in each of the 275 sub-
classes on the basis of the subtype-specific cCREs identified previously, 
we first assessed the relationship between the chromatin accessibility 
at the cCREs with transcription levels of putative target genes across 
the cell subclasses, and we then constructed cell-subclass-specific 
GRNs43. We performed the analysis at the subclass level because cell 
clusters are sufficiently resolved and the open-chromatin landscapes 
align strongly with scRNA-seq dataset.

We began with detecting pairs of co-accessible cCREs within 500 kb 
for each cell subclass using Cicero44 and inferred candidate target pro-
moters for each distal cCRE located more than 1 kb away from the anno-
tated TSSs in the mouse genome (Fig. 3a and Methods). We determined 
hundreds of thousands of cCRE–cCRE pairs within 500 kb of each other 
in 274 out of 275 cell subclasses (Supplementary Table 12). This set 
included the promoter-distal cCRE combinations between 502,704 dis-
tal cCREs and 24,414 promoters of protein-coding and long non-coding 
RNA genes (Extended Data Fig. 10a,b). The median distance between all 
of the promoter-distal cCREs pairs is 156 kb (Extended Data Fig. 10c).

To link potential enhancers to their putative target genes, we looked 
for the subsets of distal cCREs showing positive correlations between 
their chromatin accessibility and RNA expression of the putative target 
genes across the 275 cell subclasses. We computed Pearson correlation 
coefficients (PCCs) between the normalized chromatin accessibil-
ity signals and the RNA expression for each pair of distal cCRE and 
the corresponding genes of the proximal cCRE (Fig. 3a). As a control, 
we randomly shuffled the cCREs and the putative target genes, then 
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computed the PCCs of the shuffled cCRE–gene pairs (Fig. 3b and Meth-
ods). This analysis revealed a total of 613,485 positively correlated 
distal cCRE (putative enhancer)–gene pairs and 107,413 negatively 
correlated distal cCRE–gene pairs at an empirically defined significance 
threshold of FDR < 0.01 (Extended Data Fig. 10d and Supplementary 
Table 13). The median distance between the potential enhancers and the 
target promoters was 133 kb (Extended Data Fig. 10e). Each promoter 
region was assigned to a median of 24 putative enhancers (Extended 
Data Fig. 10f). The top proximal–distal cCRE pairs and positive pairs 
showed enrichment signals using the chromatin conformation data 
from the companion study41 (Methods and Extended Data Fig. 10g,h). 
For the subsequent analysis, we focused mainly on the positively 
correlated pairs, including 281,200 potential enhancers and 20,703 
putative target genes. To investigate how the putative enhancer may 
regulate cell-type-specific gene expression, we further classified them 
into 54 modules using the NMF42 on the matrix of normalized chro-
matin accessibility across the cell subclasses based on the integra-
tion analysis with the scRNA-seq data, and organized the distal cCREs 

based on the modules (Fig. 3c and Supplementary Tables 14 and 15). 
The putative enhancers in each module showed cell-subclass-specific 
chromatin accessibility profiles co-occurring with the RNA expres-
sion of their putative target genes (Fig. 3c). We next performed the 
motif-enrichment analysis for each module using HOMER45 with a 
threshold of P < 10−10 (Fig. 3c and Supplementary Table 16). The known 
motifs showed a similar cell-subclass-specific pattern, which indicated 
cell-subclass-specific regulatory programs. For example, EBF transcrip-
tion factor 1 (EBF1), which is important for B cell development, was 
expressed in the pericytes from human brain tissues46. We found that 
EBF1 motifs are enriched in the cCREs from pericytes in the mouse brain 
(Fig. 3c). For example, motifs for both the TF PU.1 and interferon regula-
tory factor 8 (IRF8) were enriched in border-associated macrophages 
(BAMs) and microglia (Fig. 3c and Supplementary Tables 15 and 16). IRF8 
is critical to transform microglia into a reactive phenotype47,48. PU.1 is 
especially expressed in microglia and can regulate genes associated 
with Alzheimer’s disease in primary human microglia49. PU.1 and IRF8 
also have essential roles in macrophages50,51.
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We next applied CellOracle52 to the snATAC–seq and scRNA-seq data 
(Methods and Extended Data Fig. 11a,b) for GRN analysis. To achieve 
this, the subclass-specific distal cCREs detected using Cicero above 
were first mapped to mouse TFs based on TF-binding motifs using the 
tool gimmemotifs53. A regularized linear regression model was then 
used to predict the gene expression at the single-cell level on the basis 
of the mapped TF-motif instances surrounding each gene promoter 
and generate GRNs for each subclass. The 3,000 most variable genes 
across all of the subclasses from the scRNA-seq data using Seurat and 
499 TFs reported to have essential roles in defining cell subclasses in the 
scRNA-seq data5 were included for this analysis. Finally, we successfully 
inferred GRNs for 267 out of 275 cell subclasses (one example of GRN 
from the subclass ASC-TE_NN, that is, astrocytes from the telencephalon 
region, is shown in Fig. 4a). The resulting GRNs contained a total of 403 
TFs and 2,628 non-TF genes (Methods and Supplementary Table 17). 
As expected, the connectivity of the nodes follows a power-law dis-
tribution54 (Fig. 4b) in 266 of 267 of them (Extended Data Fig. 11c). On 
average, each GRN owned 312 TFs and 681 genes (Fig. 4c).

Recurring network motifs are a common feature of GRNs55. We 
compared the 17 common network motifs56 in each of the above GRNs 
(Methods and Supplementary Table 18) across different cell classes 
defined in the scRNA-seq data (Extended Data Figs. 11d,e and  12a) and 
across different brain regions (Methods, Extended Data Fig. 12b and 
Supplementary Table 19). We first mapped the 267 subclasses to five 
main regions, that is, the telencephalon (isocortex, OLF, AMY, STR, 
PAL), diencephalon (TH, HY), hindbrain (pons, MY), MB and CB, only 
if at least 60% (248 subclasses left) of the cells in the subclass could be 
mapped to these regions, and identified regulated double-positive 
motifs (TF A increases the expression of both TF B and TF C, and TF B 
and TF C can positively regulate each other) (Fig. 4d and Supplementary 
Table 20). The GRN from BAMs (BAM_NN; Fig. 4e) includes a regulated 

double-positive motif composed of activating transcription factor 3 
(ATF3), KLF4 and TAL1, indicating that the three factors may positively 
regulate each other in the BAM subclass. ATF3 is an inflammatory medi-
ator and a key regulator of interferon response in macrophages57. KLF4 
from the Kruppel-like family of factors has an essential role in mono-
cyte differentiation58, and is a mediator of proinflammatory signals in 
macrophages59. The Tal1 gene, which encodes a basic helix-loop-helix 
TF, is expressed during monocyte–macrophage lineage differentiation 
and has an important role in cell cycle progression and proliferation 
during monocytopoiesis60,61. Using the Cistrome Data Browser62 as a 
resource for chromatin immunoprecipitation followed by sequenc-
ing data, we noticed that ATF3 binds to putative enhancers near both 
Tal1 and Klf4 in bone-marrow-derived macrophages (Gene Expression 
Omnibus: GSE99895; Extended Data Fig. 12c,d). Overall, non-neuronal 
cells showed higher numbers on several network motifs (such as the 
regulated double-positive motif) compared with Glut neurons and 
GABAergic neurons (Fig. 4e and Extended Data Figs. 11d and 12a).

Furthermore, we highlighted the importance of key TFs within these 
networks by calculating their eigenvector centrality scores using  
CellOracle. In Fig. 4f, the 267 subclasses and 226 TFs were ordered in 
the same manner as described in the companion paper5 (Supplemen-
tary Table 21). Notably, we observed a similar pattern of importance 
scores for the TFs as seen in the scRNA-seq data, where normalized 
gene expression was shown. This consistency of the TF signatures 
across modalities reinforced the fidelity of our GRN inferences. It also 
demonstrated how regulatory codes of TFs across the whole mouse 
brain could be revealed through integrated analysis of snATAC–seq 
and scRNA-seq data.

TFs such as JUN, JUNB and FOS have high importance scores across 
multiple neuronal and non-neuronal subclasses. TFs of the bHLH  
family such as NEUROD1, NEUROD2, NEUROD6 and BHLHE22 have 
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high importance scores for many types of neurons such as the Glut 
neurons in the isocortex region. Our analysis also indicated potential 
regulation of gene expression in GABAergic neurons by TFs such as 
ARX, SP8 and SP9 in the telencephalon regions, whereas TFs such as 
GATA2, TAL1 and GATA3 showed high importance scores for GABAergic 

neurons in the MB and pons regions. TCF7L2, SHOX2 and EBF1 had 
high importance scores associated with Glut neurons specifically in 
the TH region. Moreover, TCF7L2 exhibited high importance in the MB 
region. Next, we observed that the TFs FOXA1 and FOXA2 had a specific 
association with the Glut neurons in the MB region. HOX-family TFs 
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Supplementary Table 18.
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displayed high importance scores in both GABAergic and Glut neurons 
in the MY region. Last, MAF and MAFB showed high importance scores 
in GABAergic neurons in the cortex region.

Conservation of the mouse brain cCREs
To investigate the conservation of the gene regulatory landscapes in 
mouse brain cells, we compared the mouse brain cCREs defined in 

this study with a separate study of single-cell chromatin accessibility 
in 42 human brain regions23. We first identified orthologues of mouse 
cCREs in the human genome by performing reciprocal homology 
searches and found 613,073 cCREs (58% of total mouse cCREs) defined 
in mouse brains to have orthologous sequences in the human genome 
(more than 50% of bases lifted over to the mouse genomes) (Fig. 5a 
and Extended Data Fig. 13a). The percentage of orthologous cCREs is 
significantly higher than the random expectation (32% orthologous 
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for randomly shuffled cCREs). Among these orthologous cCREs, 
39% (22% of total mouse cCREs) were identified as open chromatin 
regions in one or more cell types in the human brains (Extended Data 
Fig. 13a,b). We therefore defined the 22% of mouse cCREs with both DNA 
sequence similarity and open chromatin in the human brain cells as 
chromatin-accessibility-conserved cCREs. This modest rate of conser-
vation may reflect the still incomplete annotation of cCREs in the human 
brain. Indeed, nearly 33% of the human brain cCREs defined in the other 
study have a homologous sequence in the mouse genome that also dis-
plays chromatin accessibility in one or more mouse brain cell types23. 
Nevertheless, the chromatin-accessibility-conserved cCREs appear to 
have constraints during evolution, and probably have important regula-
tory roles in mammalian brain cells. Consistent with a recent report63, 
the fraction of cCREs that are classified as chromatin-accessibility 
conserved in the human brain vary significantly among different brain 
cell types. Furthermore, the chromatin-accessibility-conserved cCREs 
tend to be at promoter regions (Extended Data Fig. 13c) and accessible 
in a broader spectrum of cell types (Extended Data Fig. 13d–f).

Mouse-specific cCREs are enriched for TEs
Notably, 42% of mouse cCREs defined in mouse brain cells lack 
orthologous genome sequences in the human genome (Fig. 5a). These 
mouse-specific cCREs show strong enrichment of TEs, especially the 
LINEs, SINEs and LTRs (Fig. 5b and Extended Data Fig. 14a). Notably, 
cCREs defined in 22 subclasses of excitatory neurons display an unusu-
ally high rate of overlap with TEs, and we refer to them as highTE-Glut 
subclasses (Fig. 5c and Extended Data Fig. 14b–e). In total, 20 out of 22 
highTE-Glut subclasses were specifically found in the isocortex, OLF 
and HPF. Notably, the genes near the 115,772 TE-overlapping cCREs, 
including both mouse-specific and orthologous cCREs, and expressed 
in at least one of the highTE-Glut neuron subclasses were enriched for 
those involved in synaptic-related functions (Extended Data Fig. 14f–h). 
We found 14,619 genes whose expression was positively correlated with 
chromatin accessibility at 31,137 TE-overlapping cCREs (hereafter, 
TE-cCREs) across the different subclasses of brain cells, and found that 
they were also significantly enriched for synapse-related functions 
(Fig. 5d,e, Extended Data Fig. 14i and Supplementary Table 22). The 
large number of genes with nearby accessible TE-cCREs is unexpected. 
To further investigate the genes potentially subject to TE-derived regu-
latory cCREs, we performed differential chromatin accessibility (DCA) 
analysis between highTE-Glut and other cell subclasses, and uncov-
ered 1,331 such TE-cCREs. Among them, accessibility profiles at 228 
DCA TE-cCREs, including L1MB8, L2 and ORR1E, were correlated with 
expression of synaptic-related genes (Fig. 5f, Extended Data Fig. 14j 
and Supplementary Table 23). Motif analysis of these DCA TE-cCREs 
showed enrichment of many bHLH-family and bZIP-family TFs, such as  
NeuroG2, TCF4 and FRA1 (Fig. 5g and Supplementary Table 24).  
Examples of positively correlated TE-cCRE and synaptic-related gene 
pairs are shown in Fig. 5h and Extended Data Fig. 14k. Furthermore, 
we examined the superfamilies and families of the DCA TE-cCREs in 
highTE-Glut, comparing them to all TE-cCREs in highTE-Glut as the 
background. We observed a significant enrichment of DCA TE-cCREs 
in the LINE superfamily (FDR = 8.05 × 10−36) and the L1 subfamily 
(FDR = 1.27 × 10−38). L1, an actively retrotransposon in both mouse 
and human, has accumulated in mammalian genomes. It can serve 
as a source of evolutionary novelties by providing essential motifs64.

On the basis of the analysis of variability of chromatin accessibility 
of TEs, we found 90 TEs that display variable patterns of chromatin 
accessibility across brain cell subclasses (Extended Data Fig. 15a,b). 
Most of them showed strong negative correlation with DNA CpG meth-
ylation signals in the matched cell subclasses. Many of them, such as 
LTR64, X2_LINE and MamTip1, also showed positive correlations with 
RNA expression signals in the matched cell subclasses, suggesting a 
potential role for these TEs in regulating gene expression. We further 

performed motif analysis on those variable TEs that may have a regula-
tory role. We found that distal variable TEs in positive proximal–distal 
cCRE connections were enriched for many binding sites of TFs, includ-
ing HF1-halfsite, RORγt and HNF1 (Extended Data Fig. 15c). In addi-
tion to the above variable TE families, a greater number of TEs showed 
invariable chromatin accessibility across brain cell types (Extended 
Data Fig. 15d).

Deep-learning models for brain cCREs
Deep-learning models have shown great promise in the dissection 
of gene regulatory mechanisms65–69. Sequence-based predictors of 
gene expression or epigenetic features have been developed for large 
mammalian genomes using cell-type-specific epigenetic and tran-
scriptional profiles as training data65,67,70. These models can help to 
annotate sequence motifs that drive regulatory element function, 
and to predict the influence of DNA variants on gene regulation. 
To develop sequence-based predictors of chromatin accessibility 
in different brain cell types (Fig. 6a and Methods), we adapted the 
deep-learning model architecture Basenji, which uses densely con-
nected dilated convolution neural networks that are used in natural 
language processing tasks65. We generated training, validation and 
testing datasets (Methods) from the 275 subclasses (also referred to 
as cell types in this section) and evaluated the model on the 221 sub-
classes with at least 500 cells including 93 GABAergic and 111 Glut cell 
subtypes, and 17 non-neuronal types (Fig. 6b). The resulting model 
successfully predicted open chromatin regions across these cell types, 
with an average PCC of 0.825 between the predicted signals and true 
chromatin accessibility signals across cell types (Fig. 6c). To further 
improve the model performance in under-represented cell types, we 
introduced a weighted loss function to enable the model to better learn 
the cell-type-specific signals during training (Methods). To compare 
the peaks identified from experimental signals to the peaks called from 
predicted signals, we calculated the area under the receiver operating 
characteristic (AUROC) and demonstrated that the model can predict 
the open chromatin regions very well (from 0.72 to 0.94, and 0.85 on 
average) for different cell types (Fig. 6d and Supplementary Table 25). 
This high performance was comparable to the prediction of chromatin 
accessibility signals from the most advanced deep-learning model67. 
We further evaluated the model’s ability to predict cell-type-specific 
chromatin accessibility at each cCRE across the diverse cell subclasses, 
achieving a median PCC of 0.59 for the variable cCREs (coefficient of 
variation > 1) in the testing set (Fig. 6e). To demonstrate the perfor-
mance of our model, we visualized predictions in unseen test regions 
among 12 cell types representing diverse brain regions, cell classes 
and neurotransmitters (Fig. 6f). Our model not only recapitulated 
signals that were common across subclasses (Nr4a2), but also showed 
subclass-specific predictions. For example, signals around Apoe were 
specific in astrocytes (Astro-TE-NN and Bergmann-NN) and signals 
around Ecel1 were specific in neurons.

While still poorly characterized, the grammar and syntax of gene 
regulatory elements are believed to be evolutionarily conserved71. We 
therefore tested how well the above-described deep-learning model 
trained using mouse single-cell chromatin accessibility data can predict 
cCREs in the matched human brain cell types with human sequences 
as inputs23 (Fig. 6g and Extended Data Fig. 16). Satisfyingly, we found 
that the mouse deep-learning model can predict chromatin accessibil-
ity profiles in the matching human brain cell types fairly accurately 
(AUROC, 0.75 on average) (Fig. 6h). It achieves modest accuracy in 
predicting cell type specificity among cCREs (median PCC = 0.41) 
(Fig. 6i). The cell-type-specific distal cCREs, such as the ones close 
to marker genes CUX2, GAD2, DRD1 and OLIG1, were well predicted 
(Fig. 6j). These results open a window to evaluate the influence of risk 
variants on regulatory activities across corresponding cell types in 
the human brain.
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Discussion
Here we describe a comprehensive cCRE catalogue of the mouse brain, 
through single-cell chromatin accessibility analysis of more than 
2.3 million cells from 117 anatomical dissections in the adult mouse 
brain. This catalogue represents a comprehensive annotation of can-
didate gene regulatory elements of the mammalian brain. It greatly 
expands on the previous cCRE annotation of the mouse brain cells, 
adding more than 460,000 cCREs. This addition is enabled by the use 
of single-cell-resolution chromatin profiling, which enables the iden-
tification of chromatin accessibility in rare brain cell types that are 
under-represented in previous bulk assays and brain regions that were 
not surveyed in previous studies. Indeed, more than two-thirds of the 
new cCREs are detected in ten or fewer brain cell subtypes (Fig. 2d), 
with a median of six cell subtypes. By comparison, the cCREs reported 
in the previous catalogues39,40 based on bulk tissue studies are typi-
cally detected as accessible in ten or more cell types, with a median 
of 28 cell subtypes. It is possible that additional mouse brain cCREs 

remain to be discovered because many cell types defined by scRNA-seq 
or other molecular modalities are not currently represented in the 
snATAC-based cell clusters. Furthermore, the current catalogue was 
at the resolution of cell subclasses, and may not reflect subtle differ-
ences between cell types, subtypes and states defined in the companion 
single-cell transcriptomics or single-cell methylome studies5,6,41.

We have attempted to reconstruct the GRNs in over 260 different 
brain cell subclasses by applying CellOracle52 to the single-cell ATAC–seq 
and RNA-seq datasets collected from the adult mouse brain. The GRNs 
that we inferred for brain cells would be the first such GRNs character-
ized for the mammalian brain cells. We characterized the common 
network motifs in these cell types. Indeed, the GRN-based eigenvector 
centralities of TFs across the subclass (Fig. 4f) showed similar pattern 
in the scRNA-seq study5. There is a limitation to the GRNs inferred using 
the CellOracle strategy. For example, owing to the use of a regression 
model, CellOracle cannot infer autoregulatory loops. Besides, the 
double-negative network motif (A inhibits B and B inhibits A) was seldom 
predicted, potentially also due to the limitation of using a regression 
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model. In our opinion, instead of treating all of the cells in one popula-
tion in such a static way, the pseudotime reconstruction models72–75 from 
the single-cell data can be used to organize the cells in a dynamic manner, 
which would enable time-series-related models76,77 to be used to predict 
the autoregulatory loops and the double-negative-network-motif-like 
structures. Indeed, a recent method, Dictys78, uses stochastic process 
modelling to infer the feedback loops. Furthermore, to have more con-
fident GRNs, from the computational view, multiple methods from 
different aspects can be combined to provide diverse evidence43.

We investigated the sequence conservation of gene regulatory ele-
ments in the whole mouse brain by comparing the cCRE atlas in the 
mouse brain defined in the present study to a cCRE atlas obtained from 
a separate snATAC–seq analysis of 42 adult human brain regions in 
three adult male donors. We found that around 22% of cCREs defined 
in the current study are conserved in both sequence and in chromatin 
accessibility in the human brain. This modest number of conserved 
cCREs is probably due to the still incomplete cataloguing of cCREs in 
the human brain cells. Nevertheless, the cCREs showing conserved 
chromatin accessibility and sequence in both the mouse and human 
brains are clearly under evolutionary constraints and, therefore, prob-
ably possess functional importance. Consistent with previous reports, 
the chromatin-accessibility-conserved cCREs tend to be promoters 
or distal elements (probable enhancers) that display accessibility in 
a broader spectrum of cell types24,63. By contrast, the mouse-specific 
cCREs are strongly enriched for TEs, implicating a potential role of 
TEs in cell-type-specific gene expression patterns in the mouse brain. 
The finding is consistent with previous observations of TE reactiva-
tion in development and in various tissues79. Note that the strongest 
enrichment of TE in cCREs is observed especially in 20 Glut (excita-
tory) neurons from the isocortex, OLF and HPF. We speculate that TEs 
may contribute positively to transcriptional regulation and chroma-
tin structure in these cells. In support of this possibility, nearly 1,300 
TE-overlapping cCREs display positive correlation between chroma-
tin accessibility and mRNA levels from potential target genes. Their 
putative target genes include those involved in synaptic function and 
synapse organization. Our results raise the interesting possibility that 
neural circuit diversity could be influenced by TEs during evolution.

By extracting the context information from DNA sequence, deep- 
learning methods have recently been used for the prediction of  
various genomic functional features, such as epigenetic modifications, 
3D interactions and gene expression65–69. We adapted this approach to 
develop sequence-based models to predict the chromatin accessibility 
in 275 mouse brain cell subclasses. We achieved excellent performance 
comparable to the prediction of ATAC–seq signals from the most recent 
attention-based model architecture67. Although previous efforts have 
attempted to train deep-learning models simultaneously on multiple 
genomes80, evaluation of how well the sequence-based predictors 
trained in one species can be applied to a different species is lacking 
for matched cell types between species. Our results demonstrate that 
deep-learning models trained using open chromatin landscapes in the 
mouse brain cell types generalize well in the corresponding human 
brain cell types.
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Methods

Tissue preparation and nucleus isolation
All experimental procedures using live animals were approved by the 
SALK Institute Animal Care and Use Committee under protocol number 
18-00006. Adult C57BL/6J male mice were purchased from Jackson 
Laboratories. Brains were extracted from 56–63-day-old mice and sec-
tioned into 600 µm coronal sections along the anterior–posterior axis 
in ice-cold dissection medium2,83. Specific brain regions were dissected 
according to the Allen Brain Reference Atlas26 (Extended Data Fig. 1) 
and nuclei were isolated as described previously26. For each region, dis-
sected brain tissues were pooled from 2–31 (only 2 dissections from the 
mouse CB region had 2 animals for snATAC–seq library construction, all 
of the other samples had 4–31 animals) of the same sex to obtain enough 
nuclei for snATAC–seq for each biological replica, and two biological 
replicas were performed. We shared the same fluorescence-activated 
cell sorting (FACS) sequential gating/sorting strategy and the Sony 
SH800S software with our previous study19.

scATAC–seq analysis
snATAC–seq libraries were generated as described using version 2 
indexing19. PCR amplification was performed for 11 or 12 cycles. A 
step-by-step-protocol for library preparation is available online (https://
doi.org/10.17504/protocols.io.4zzgx76). Libraries were sequenced 
using the HiSeq 2500 (Illumina), a HiSeq 4000 (Illumina) or NovaSeq 
6000 (Illumina) system with the following settings: 50 + 10 + 12 + 50 
(read1  +  index1  +  index2 + read2).

Processing and alignment of sequencing reads
Paired-end sequencing reads were demultiplexed and the cell index 
was transferred to the read name. Sequencing reads were aligned to 
the mm10 reference genome using bwa84. After alignment, we checked 
the fragment length contribution, which is characteristic for ATAC–seq 
libraries (Extended Data Fig. 2e) for each of the 234 samples. We then 
combined the sequencing reads to fragments using the make_frag-
ment_file function of SnapATAC229 and, for each fragment, we applied 
the following quality control criteria: (1) retain only fragments with 
quality scores MAPQ > 30; (2) remove PCR duplicates. Reads were also 
sorted on the basis of cell barcodes in read names, and shifted +4 bp 
for positive strand and −5 bp for negative strand to correct the 9 bp 
duplication induced from Tn5 transposase85 during processing.

TSSe calculation
Enrichment of ATAC–seq accessibility at TSSs was used to quantify data 
quality without the need for a defined peak set. We followed a previously 
described procedure86, and used the function filter_cells in SnapATAC2 
to calculate TSS enrichment (TSSe). TSS positions were obtained from 
the GENCODE87 database v.16. In brief, Tn5-corrected insertions (reads 
aligned to the positive strand were shifted +4 bp and reads aligned to 
the negative strand were shifted –5 bp) were aggregated ±2,000 bp 
relative (TSS-strand-corrected) to each unique TSS genome wide. This 
profile was then normalized to the mean accessibility ±1,900–2,000 bp 
from the TSS and smoothed every 11 bp. The maximum of the smoothed 
profile was taken as the TSSe.

Nucleus filtering by quality control
Nuclei with ≥1,000 uniquely mapped fragments and TSSe ≥ 10 were 
filtered for each of 234 samples according to the ENCODE ATAC–seq 
data standards and process pipeline (https://www.encodeproject.org/
atac-seq/). We used the filter_cells function of SnapATAC2 to achieve 
this.

Doublet removal
We used a modified version of Scrublet28 to remove potential doublets 
for every sample independently using SnapATAC2. First, we used the 

add_tile_matrix function to add the 500 bp genomic bin features, then 
used the select_features function to filter out the features with frequen-
cies along the samples of lower than 0.5% or higher than 99.5%. We then 
applied the scrublet function of SnapATAC2 to get the doublet scores. 
The parameter expected_doublet_rate was set to 0.08, which is based on 
our previous experiment on the snATAC–seq pipeline19. Barcodes with 
scrublet scores of greater than 0.5 were treated as potential doublets 
and removed from our analysis.

We compared Scrublet with another recently published method 
named AMULET30, which is used for doublet detection and removal 
in snATAC–seq data. We simulated datasets containing singlets and 
artificial doublets from eight samples in the primary motor area and 
evaluated the performances of the two methods using precision-recall 
curve (PRC) and area under PRC (AUPRC).

Iterative cell clustering
After nucleus filtering by quantity control and doublet removal, we 
adapted a fourth-round iterative clustering using SnapATAC2 for later 
identification of cell-type-specific cCREs (Extended Data Fig. 4a). The 
following basic procedure was used. For the first round of clustering 
(L1-level clustering), we used all of the 2.3 million nuclei to perform 
the standard clustering. At the second round (L2-level), for each of the 
37 clusters above, we performed independent clustering. At the third 
round (L3-level), for each of the 248 clusters above, we performed inde-
pendent clustering again. At the fourth round of clustering (L4-level 
clustering), we performed only clustering for the L3-level clusters with 
number of cells no less than 400. The details are as follows.

Feature selection. We applied the function add_tlle_matrix from  
SnapATAC2 to extract the cell by genomic bin count matrix. The size of 
a consecutive genomic region was chosen as 500 bp. We filtered out any 
bins overlapping with the ENCODE blacklist and removed the top 0.5% 
and tail 0.5% bins based on the read coverage from the count matrix. 
Only chromosomes 1–19, X and Y were considered. For our L1-level 
clustering, we used all of the bin features (over 4 million) that passed 
the criteria above as non-neuronal cells and diverse neuronal cells were 
all included. For clustering of other levels, we chose the default top 
500,000 features using the function select_features of SnapATAC2.

Dimensionality reduction. We applied the function of spectral from 
SnapATAC2 to convert the high-dimension sparse 500 bp genomic 
bin features per cell into low dimensional representations, which used 
spectral embedding of the normalized graph Laplacian defined by the 
cell-to-cell similarity matrix using cosine distance. For L1-level and 
L2-level clustering, we chose 50 as the dimension of the low-dimensional 
representation space as usually a large number of cells and potentially 
diverse cell types was involved in the two levels. We used ‘elbow plot’ to 
rank all of the principal components to make sure that the top 50 com-
ponents were sufficient for our analysis. For later analysis, we chose 30 
instead. The parameter ‘weighted_by_sd’ in the function spectral was set 
to be true for all dimensional reduction. We did not use the parameter 
‘sample_size’ in the function spectral, so no approximation method 
was used for the spectral embedding. For 2.3 million cells, it took about 
300 GB memory in our high-performance computing system88.

Graph-based clustering. We then applied the function knn from  
SnapATAC2 to construct the k-nearest neighbour graph using the  
parameter n_neighbors = 50 and the parameter method was set to 
‘kdtree’. We next used the function leiden of SnapATAC2 for clustering 
with the parameter object_function set as modularity. The parameter 
resolution, which affected the number of clusters a lot, was selected 
from 0.1 to 2 with a step size 0.1 based on the silhouette coefficient89 
using the Python package Scikit-learn90. We also manually checked 
the UMAP81 for each clustering result to make sure that the resolution 
was suitable corresponding to the top silhouette coefficient. UMAP 
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projections were calculated using the Python package umap with the 
parameters a as 1.8956, b as 0.8005 and init as spectral. All of the reso-
lution parameters during clustering are provided in Supplementary 
Table 3. In our later analysis, we used the term subtypes to represent 
all of the final clusters from L3-level clustering and L4-level clustering.

Integration analysis with scRNA-seq data
We performed integration analysis of the 1,482 subtypes with all of over 
5,300 clusters reported in a companion scRNA-seq study of 4.5 mil-
lion cells for the whole adult mouse brain5. Only cells from male mice 
were considered in the scRNA-seq data, which is over 2 million cells. 
The scRNA-seq data are mainly from 10x v.2 and 10x v.3 platforms, 
and only a few thousand cells are from snRNA-seq. On the basis of our 
integration analysis, we did not see significant differences between 
using 10x v.3 alone and using all of them. Very few cell clusters were 
found using the 10x v.2 but not using the 10x v.3 platform. We therefore 
used all of the cells without distinguishing their platform information 
in the later analysis.

We first imputed RNA expression levels according to the chromatin 
accessibility of the gene promoter (up to 2 kb to TSSs) and gene body 
as described previously32 using the function make_gene_matrix in  
SnapATAC2. We next performed integration analysis using Seurat32 for 
neuronal cells and non-neuronal cells separately. For neuronal cells, in 
the scRNA-seq data, we randomly selected 50 cells for each of over 5,100 
clusters, and finally got more than 200,000 cells. To have a comparable 
number of cells in our snATAC–seq data, we randomly selected 150 cells 
for each of over 1,260 L4-level neuronal subtypes and got over 180,000 
nuclei. For non-neuronal cells, we sampled 500 cells per cluster and got 
35,000 cells in the scRNA-seq data. For the snATAC–seq, we sampled 
300 cells per L4-level subtypes, and got over 57,000 nuclei.

For the variable features, we applied the >8,000 genes from differ-
ential expression analysis in the scRNA-seq study5, and used their data 
as the reference. We next applied the canonical component analysis for 
integration using Seurat v.5. Canonical component analysis was recom-
mended for the cross-modality integration, which indeed showed more 
promising results than reciprocal principal component analysis in our 
experiments. Seurat v.5 is specifically designed to handle large-scale 
datasets and is especially important for our scenario. We used the 
function FindTransferAnchors with the parameter k.anchor as 50 for 
single-cell level label transfer. k.anchor is important for large-scale 
data integration as mentioned in Seurat. The default k.anchor value 
is 5 for that function, and we tested k.anchor as 5, 10, 30, 50, 70, 100 
and 120; a k.anchor value of 50 showed more reliable results compared 
with others. For UMAP visualization, we used the FindIntegration-
Anchors function of Seurat, and then calculated UMAP based on the 
co-embedding space. It was also recommended by Seurat to perform 
integration in this manner. The transfer label scores for a given L4-level 
subtype in our snATAC–seq data is a numeric vector, where each ele-
ment is the number of cells annotated as the corresponding cluster 
in the scRNA-seq data divided by the number of cells in that L4-level 
subtype. For each L4-level subtype, we used the corresponding top 
3 clusters in the scRNA-seq data as the candidate annotations, then 
mapped the three clusters to the subclasses defined in the scRNA-seq 
data, and manually checked whether they were consistent on mouse 
brain major regions and gene markers.

Identification of reproducible peak sets in each cell cluster
We performed peak calling according to the ENCODE ATAC–seq pipe-
line (https://www.encodeproject.org/atac-seq/) on 1,482 L4-level sub-
types and used the same procedure to filter the peaks at both the bulk 
and single-cell level (Extended Data Fig. 9a) as in our previous study19. 
Before calling peaks, we merged clusters with the number of cells less 
than 200 if they shared the same cell cluster annotation based on the 
integration analysis before and were in the same L3-level cluster. Next, 
1,463 subtypes (including merged ones) were used.

For every cell cluster above, we combined all properly paired reads 
to generate a pseudobulk ATAC–seq dataset for individual biological 
replicates. Moreover, we generated two pseudoreplicates comprising 
half of the reads from each biological replicate. We called peaks for 
each of the four datasets and a pool of both replicates independently. 
Peak calling was performed on the Tn5-corrected single-base insertions 
using MACS236 with the following parameters: --shift -75 --extsize 150 
--nomodel --call-summits --SPMR -q 0.01. Finally, we extended peak 
summits by 250 bp on either side to a final width of 501 bp for merging 
and downstream analysis. If the number of cells in any of the pseudobulk 
ATAC–seq from either individual biological replicates or individual 
pseudoreplicates is fewer than 200, we did not run MACS2 for it. We 
did this to reduce the potential false negatives during the next filtering 
step induced by the limited number of cells in the replicates.

To generate a list of reproducible peaks, we retained peaks that  
(1) were detected in the pooled dataset and overlapped ≥50% of peak 
length with a peak in both individual replicates or (2) were detected in 
the pooled dataset and overlapped ≥50% of peak length with a peak in 
both pseudoreplicates.

We found that, when the cell population varied in read depth or num-
ber of nuclei, the MACS2 score varied proportionally due to the nature 
of the Poisson distribution test in MACS219. Ideally, we should perform 
a reads-in-peaks normalization but, in practice, this type of normaliza-
tion is not possible because we do not know how many peaks we will 
get. To account for differences in the performance of MACS2 based on 
read depth and/or number of nuclei in individual clusters, we converted 
MACS2 peak scores (−log10[q]) to SPM37. We filtered reproducible peaks 
by choosing a SPM cut-off of 5.

We then retained only reproducible peaks on chromosome 1–19 and 
both sex chromosomes and filtered ENCODE mm10 blacklist regions. 
A union peak list for the whole dataset was obtained by merging peak 
sets from all of the cell clusters using BEDtools91.

Finally, as snATAC–seq data are very sparse, we selected only ele-
ments that were identified as open chromatin in a significant fraction 
of the cells in each cluster. To this end, we first randomly selected the 
same number of non-DHS regions from the genome as background 
using the shuffleBed function of BEDtools, and calculated the fraction 
of nuclei for each cell type that showed a signal at these sites. We next 
fitted a zero-inflated β-model, and empirically identified a significance 
threshold of FDR < 0.01 to filter potential false positive peaks. Peak 
regions with FDR < 0.01 in at least one of the clusters were included in 
downstream analysis. Given one cell subclass, we treat all of the peaks 
from the subtypes mapped to this subclass as the peaks for the subclass.

Identification of cis-regulatory modules
We used NMF42 to group cCREs into cis-regulatory modules on the basis 
of their relative accessibility across major clusters. We adapted NMF 
(Python package sklearn90) to decompose the cell-by-cCRE matrix V 
(N × M, N rows: cCRE, M columns: cell clusters) into a coefficient matrix 
H (R × M, R rows: number of modules) and a basis matrix W (N × R), with 
a given rank R19:

The basis matrix defines module-related accessible cCREs, and 
the coefficient matrix defines the cell cluster components and their 
weights in each module. The key issue to decompose the occupancy 
profile matrix was to find a reasonable value for the rank R (that is, the 
number of modules). Several criteria have been proposed to decide 
whether a given rank R decomposes the occupancy profile matrix 
into meaningful clusters. Here we applied two measurements, Sparse-
ness92 and Entropy42, to evaluate the clustering result. Average values 
were calculated from five NMF runs at each given rank with a random 
seed, which ensures that the measurements are stable (Extended Data 
Fig. 9f).

We next used the coefficient matrix to associate modules with dis-
tinct cell clusters. In the coefficient matrix, each row represents a mod-
ule, and each column represents a cell cluster. The values in the matrix 

https://www.encodeproject.org/atac-seq/


Article
indicate the weights of the clusters in their corresponding module. 
The coefficient matrix was then scaled by column (cluster) from 0 to 1. 
Subsequently, we used a coefficient > 0.1 (~95th percentile of the whole 
matrix) as a threshold to associate a cluster with a module.

Moreover, we associated each module with accessible elements using 
the basis matrix. For each element and each module, we derived a basis 
coefficient score, which represents the accessible signal contributed 
by all clusters in the defined module. We also implemented and calcu-
lated a basis-specificity score called feature score for each accessible  
element using the kim method42. The feature score ranges from 0  
to 1. A high feature score means that a distinct element is specifically 
associated with a specific module. Only features that fulfil both fol-
lowing criteria were retained as module specific elements: (1) feature 
score greater than median + 3s.d.; (2) the maximum contribution to 
a basis component is greater than the median of all contributions  
(that is, of all elements of W ).

Inference of cis-co-accessible cCREs
Cis-co-accessibility cCREs are predicted for all open regions in each 
of the 275 cell subclasses separately using Cicero for Monocle 372,93 
with the default parameters and the mouse mm10 genome, scanning 
the mouse genome with a window size of 500 kb. For each subclass, 
we randomly selected 5,000 nuclei, and used all of the nuclei for cell 
clusters with <5,000 nuclei. Only one subclass failed during running 
Cicero, which was annotated as ‘Hypendymal_NN’ with 92 nuclei in 
total, and showed the smallest number of peaks (less than 5,000) of 
all of the subclasses. To find an optimal co-accessibility threshold for 
each subclass, we randomly shuffled the columns of the cell-by-cCREs 
matrix (that is, the cCREs) in the cells as the background and identified 
co-accessibility regions from this shuffled matrix. A normal distribu-
tion is then used to fit the co-accessibility scores from the shuffled 
background using the R package fitdistrplus94. Co-accessibility cCREs 
were filtered out only if their co-accessibility scores were significantly 
larger than the background (FDR < 0.001 using Benjamini–Hochberg 
adjustment). CCREs outside of ±1 kb of TSSs in GENCODE mm10 ver-
sion 23, were treated as distal cCREs, others as proximal ones. All of 
the cis-co-accessibility cCREs were then grouped into three classes: 
proximal-to-proximal, distal-to-distal and distal-to-proximal pairs. In 
our study, we focused only on distal-to-proximal pairs.

Enrichment analysis of FIREs
We called frequently interacting regions (FIREs) in the mouse cortex38 
by applying the criteria in our group’s FIRE paper95. The result showed 
that most FIREs (3,158 out of 3,169) overlap with cCREs in the mouse 
brain, and a fraction of the cCREs (71,626 out of 1,053,811) overlap with 
FIREs (Extended Data Fig. 10e).

We next tested whether cCREs are enriched at FIREs through permu-
tation analysis. In brief, we shuffled the mouse genome 1,000 times, 
each time generating 1,053,811 random regions with equivalent sizes 
as the cCREs. We then calculated the number of overlaps between 
the randomly generated regions and the FIREs during each shuffle. 
We found that cCREs are significantly enriched at FIREs (P < 0.001; 
Extended Data Fig. 10f), with the actual number of overlaps on FIREs 
substantially higher than expected.

Motif enrichment
We performed both de novo and known motif-enrichment analysis 
using Homer45.

Enrichment analysis of chromatin conformation
We cross-referenced the dataset from the companion study41, in which 
a comprehensive chromatin conformation/methylome joint profile 
throughout the adult mouse brain is described, and most of the subclass 
annotations (244 subclasses of 275 subclasses in our data) are shared 
between these two datasets.

To evaluate the confidence of identified subclass-specific cCRE–gene 
pairs, we randomly selected 11 major subclasses (Sst_GABA, Pvalb_
GABA, CBX_MLI_Megf 11_GABA, Vip_GABA, CA1-ProS_Glut, CB_granule_
Glut, L6_CT_CTX_Glut, L2-3_IT_CTX_Glut, Astro-TE_NN, Microglia_NN, 
Bergmann_NN), and calculated the Hi-C signal enrichment (at 1 kb 
resolution) at the top 20% subclass-specific cCRE–gene pair anchors 
identified in this study. We found that there is statistically significant 
higher enrichment (P = 0.004) of chromatin interaction signal at the 
corresponding subclass-specific cCRE–gene pair anchors, compared 
with non-corresponding pair anchors (Extended Data Fig. 10g), suggest-
ing that subclass-specific cCRE–gene pairs are more likely to interact 
in the cell types in which the cCREs are active.

Meanwhile, we selected the two peak modules that show global acces-
sibility across the subclasses based on the NMF analysis (Fig. 2f (top 
left)). We then selected all of the proximal–distal connections with 
cCREs in the peak modules above and ranked the proximal–distal con-
nections based on the highest Cicero scores they have. We treated them 
as global proximal–distal connections and performed the Hi-C signals 
by aggregating all of the Hi-C data. From the heat maps (Extended Data 
Fig. 10h), we observed the strong enrichment signals for the global 
proximal–distal connections.

Predicting GRNs for each cell subclass
We adapted the recently published Python package CellOracle52 on 
our data to infer GRNs for each cell subclass across the whole mouse 
brain based on our integration analysis between our snATAC–seq data 
and the scRNA-seq data5. Three steps were followed. First, we identi-
fied the co-accessibility distal-to-proximal pairs, which was described 
previously for each subclass. Second, we mapped the distal cCREs to 
TFs. Lastly, we identified the regulatory relationships between TFs 
and the potential target genes by fitting a regularized linear regres-
sion model using scRNA-seq data. For the second step, according to 
the CellOracle tutorial, we used the Python package gimmemotifs53 
for the TF-binding-motif scan with the mouse genome mm10 and the 
default motif database provided by CellOracle. The proximal cCREs 
were mapped to the genes based on GENCODE mm10 (v.23, the same as 
above). We used Seurat32 to randomly sample 1,000 cells per subclass 
(all of the cells of a cell subclass were used if it had <1,000 cells). To 
select the variable features, we performed the FindVariableFeatures 
function of Seurat to select the top 3,000 genes, and then we manually 
added the 499 TFs (if any of them were missed in the previous 3,000 
genes) that were reported in the scRNA-seq data of ref. 5. For each sub-
class, we performed CellOracle on the scRNA-seq data with the default 
parameters. We used P < 0.001 and the top 10,000 edges based on 
the absolute values of the weights to filter the predicted interactions 
between TFs and genes as suggested by CellOracle. Finally, 267 out of 
275 subclasses successfully had the predicted GRNs.

Sequence conserved, chromatin accessibility conserved and 
mouse-specific cCREs
The orthologous cCREs of the mouse brain in the human genome 
were identified by performing reciprocal homology searches using 
the liftover tool96. The mouse cCREs for which human genome 
sequences had high similarity (more than 50% of bases lifted over 
to the mouse genome) were defined as orthologous cCREs. We next 
compared these orthologous cCREs in the mouse brain with our 
previously identified cCREs in the human brain23. Those ortholo-
gous cCREs, which both were DNA sequence conserved across spe-
cies and had open chromatin in orthologous regions, were defined 
as chromatin-accessibility-conserved cCREs. The other orthologous 
cCREs, which were only sequence conserved to orthologous regions 
but had not been identified as open chromatin regions in other 
species, were defined as chromatin-accessibility-divergent cCREs. 
Mouse-specific cCREs were those ones that were not able to find orthol-
ogous regions in the human genome.



TE analysis
The TE annotation of cCREs was annotated using Homer45 and UCSC 
mm10 refGene and RepeatMasker annotation. To define the high 
TE-cCREs fraction of subclasses, we fitted a mixture model for the 
TE-cCRE fraction across all subclasses using the R package mixtools97 
(v.2.0.0). The P value was calculated based on the null distribution.

To annotate the TE-cCREs, we used two strategies. One was based 
on the genomic regions. We mapped the TE-cCREs to genes within 
3 kb flanking regions using the R package ChIPseeker98 (v.1.34.1). 
Another method to link the gene to TE-cCREs was based on the cCREs 
and gene correlation. For each GO test, we also filtered unexpressed 
genes in defined subclasses based on the single-cell RNA-seq data (see 
the companion manuscript5). The DCA of TE-cCREs between groups 
was calculated using the Wilcoxon rank-sum test. Motif-enrichment 
analysis of TE-cCREs was performed using Homer software using the 
‘given size’ parameter.

To analyse the TE-accessible variability with decreased noise, the TE 
signal was aggregated from the TE-cCREs. To calculate the correlation 
between chromatin accessibility and mCG methylation in TEs across 
subclasses, we averaged and normalized the TE-cCRE mCG signal for 
each TE in matched subclasses from the companion paper41. To calcu-
late the correlation between chromatin accessibility and RNA expres-
sion, we aggregated RNA signals at TE-cCREs of each TE in matched 
subclasses from a previous study99.

GO enrichment
We performed GO enrichment analysis using R package clusterPro-
filer100,101. The background genes were selected on the basis of the 
enrichment analysis and described in text. The P value was computed 
using the Fisher exact test and adjusted for multiple comparisons using 
the Benjamini–Hochberg method.

Deep-learning model
Our model was trained on all 275 subclasses annotated based on the 
integration with the scRNA-seq data. We generated aggregated genome 
signal tracks in bigwig format by running MACS236. The training, val-
idation, and testing datasets have been generated using the script 
basenji_data.py from Basenji65 with the parameters: “-b mm10.blacklist.
bed -l 131072 --local -p 16 -t 0.1 -v 0.1 -w 128”.

The model architecture, layers and parameters are adapted from the 
mouse model from a previous study80, with modification only in the 
last output head layer with parameter: “units”: 275. To encourage the 
model to predict cCREs in under-represented cell types, we created 
one novel loss function:

w y= cov( )i i i i, true( , )

∑w w n= /
i

n

ii
=1

y y yPoisson loss = − × log( )i j i j i jpred( , ) true( , ) pred( , )

wloss function = ⋅ Poisson loss

The i represent the cell type, and j represents genomic bins. The 
ytrue represents the genomic bin-by-type matrix calculated from true 
signals. The ypred represents the predicted genomic bin-by-type matrix. 
The pairwise covariance wi,i was calculated between cell types. We 
then sum the scores across rows and normalize the number of cell 
types as weights. Last, the weights w was dot multiplied by the original 
poisson loss.

We trained the subclass-level deep-learning model on four NVIDIA 
A100 80 GB GPUs using the script basenji_train.py from Basenji65. 

For training, we set the parameter batch size to 32, epochs to 150 and 
patience to 30.

To evaluate the model’s ability to identify cell-type-specific patterns 
of cCRE, we compared the Spearman correlation of model predictions 
to true accessibility across cell types in all peaks in the test set. We fur-
ther compared cross-cell-type correlation to the coefficient of variation 
(the ratio of s.d. to mean) of each peak.

We also evaluated the model’s accuracy when applied to human 
cell types. We first identified matched human cell types from a previ-
ous study23. For each subclass in human and mouse cCREs, we per-
formed spearman correlation across orthologous cCREs (Extended 
Data Fig. 16). We next selected pairs based on correlation and annota-
tion matching. We then used the model to predict chromatin acces-
sibility in the paired human cell types, across all chromosomes.  
We further evaluated this prediction accuracy within and across cell 
types.

External datasets
External datasets used were as follows: (1) ENCODE rDHS regions for 
both hg19 and mm10 are obtained from SCREEN database (https://
screen.encodeproject.org)39,40. (2) ChromHMM38,102 states for mouse 
brain are download from GitHub (https://github.com/gireeshkbogu/
chromatin_states_chromHMM_mm9) and coordinates are LiftOver 
(https://genome.ucsc.edu/cgi-bin/hgLiftOver) to mm10 with the 
default parameters96. (3) PhastCons103 conserved elements were down-
loaded from the UCSC Genome Browser (http://hgdownload.cse.ucsc.
edu/goldenpath/mm10/phastCons60way/). (4) The ENCODE mm10 
blacklist file was downloaded from http://mitra.stanford.edu/kundaje/
akundaje/release/blacklists/mm10-mouse/mm10.blacklist.bed.gz.  
(5) Mouse mm10 genome information was downloaded from GENCODE 
(https://www.gencodegenes.org/mouse/).

Statistics
No statistical methods were used to predetermine sample sizes. 
There was no randomization of the samples, and investigators were 
not blinded to the specimens being investigated. However, cluster-
ing of single nuclei based on chromatin accessibility was performed 
in an unbiased manner, and cell types were assigned after clustering. 
Low-quality nuclei and potential barcode collisions were excluded 
from downstream analysis as described above.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Demultiplexed FASTQ files are available at the NEMO archive (NEMO, 
RRID: SCR_016152) at https://assets.nemoarchive.org/dat-bej4ymm 
(the raw directory under the source data URL in this archive), and at 
the NCBI under GEO accession number GSE246791. Processed data are 
available at our web portal (http://www.catlas.org) and the same GEO 
accession number above.

Code availability
Custom code and scripts used for analysis are available at GitHub 
(https://github.com/beyondpie/CEMBA_wmb_snATAC).
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Extended Data Fig. 1 | Maps of the 117 anatomical dissections of the adult 
whole mouse brain. a, Schematic of brain tissue dissection strategy. Mouse 
brains were cut into 600-µm-thick coronal slices. b, These brain maps were 
generated using coordinates from the Allen Mouse Brain Common Coordinate 
Framework (CCF) v3 (ref. 26). Brain regions dissected from each coronal slice 

are marked according to the Allen Brain Reference Atlas26. The frontal view of 
each slice from slices 1–18 is shown, with the dissected regions alphabetically 
labelled on the left, and the anatomic labelling listed on the right. A detailed  
list of the dissected regions and the full anatomic labelling can be found in 
Supplementary Table 1.
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Extended Data Fig. 2 | Quality control metrics of the snATAC-seq datasets 
at the bulk level. a, Box plots showing the distribution of mapping ratios (the 
fraction of the mapped sequencing reads) in replicates (rep) 1 and 2 of the 
snATAC-seq experiments from each brain dissection. b, Box plots showing the 
distribution of the number of proper read pairs (reads are correctly oriented) 
in rep 1 and 2 of the snATAC-seq experiments. c, Box plots showing the 
distribution of numbers of unique chromatin fragments detected in rep 1 and 2 
of the snATAC-seq experiments. d, Box plots showing the distribution of the 
number of unique barcodes captured in replicates 1 and 2 of snATAC-seq 

experiments. In a-d, the number per each boxplot (rep1 or rep2) is 117. In each 
boxplot, the box spans the first to third quartiles, the horizontal line denotes 
the median, and whiskers show 1.5x the interquartile range. e, Frequency 
distribution plot showing the fragment size distribution of each snATAC-seq 
sample or datasets (234 samples/datasets in total). f, Heat map showing the 
pairwise Spearman correlation coefficients of the mapping correlations of the 
bam files between the snATAC-seq datasets. The column and row names consist 
of two parts: brain region name and replicate label. Study represents dissections 
covered by our previous study (Last) or updated in the current study (New).



Extended Data Fig. 3 | Quality control metrics of the snATAC-seq datasets 
at the single-cell level. a, Dot plot illustrating fragments per nucleus and 
individual TSS enrichment. Nuclei in the top right quadrant were selected for 
analysis (TSS enrichment > 10 and > 1,000 fragments per nucleus). b, Box plots 
showing the AUPRCs of AMULET30 and Scrublet28 on the simulated data sets 
from the corresponding samples labelled in x axis. Each bar represents the 
mean value of 10 random experiments with 1x standard deviation as the error 
bar. Two-sided t-tests were used, and *** means P-value < 0.0001. c. Box plots 
showing the doublet rates across the samples. Samples were grouped based on 

their replicate information. n = 117 biologically independent samples for each 
replicate 1 and 2. d, Number of nuclei retained after each step of quality control. 
e, Bar plots showing the numbers of nuclei passing quality control for subregions. 
f, Box plots showing the TSS enrichments and unique fragments per nuclei for 
the replicates in different mouse brain regions. The smallest sample size is ORB 
region replicate 1 with n = 4,943 cells, while the largest is PAL-2 replicate 1 with 
n = 12,464 cells. In c and f, boxes span the first to third quartiles, horizontal line 
denotes the median, and whiskers show 1.5x the interquartile range.
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Extended Data Fig. 4 | Iterative clustering for the snATAC-seq data.  
a, A multi-stage cell clustering pipeline is organized for all the nuclei passing 
our quality control. b, Violin plots showing the number of unique fragments 
per nucleus in each cell subclass. c, Violin plots showing the TSS enrichment in 
each nucleus of each cell subclass. d, Boxplots of acceptance rates from k-nearest 

neighbour batch effect test34 (kBET) for the 275 subclasses. Boxes span the first 
to third quartiles, horizontal line denotes the median, and whiskers show 1.5× the 
interquartile range. Two-sided t-tests showed no significant P-values between 
the values from the two boxes. e, Distribution of the local inverse Simpson’s 
index35 (LISI) scores for cells in each subclass.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Quality and reproducibility of the cell clusters. a, CDF 
plot showing the consistency of the estimated fraction of each cell subclass 
between the biological replicates. Two-sided Kolmogorov-Smirnov test shows 
no significant difference between the biological replicates. b, Box plots of the  
P values of two-sided Kolmogorov-Smirnov tests illustrate consistent results 
between the two biological replicates for each subclass across major brain 
regions, sub-regions and brain dissections tested. n = 12 comparisons for major 
regions, n = 41 comparisons for sub-regions and n = 117 comparisons for 
dissection regions. c, Heat map showing the pairwise Spearman correlation 
coefficients of cell subclass composition between each replicate of brain 

dissections. The column and row names consist of two parts: brain region name 
and replicate label. For example, CB-1.1 represents the replicate 1 of the first 
brain dissection of the cerebellum (CB-1). The embedded box plot shows the 
distribution of Spearman correlation coefficients between two biological 
replicates, replicates from intra-major brain regions and inter-major brain 
regions. Significance is denoted as ***P < 2.2e-16, determined by one-sided 
Wilcoxon rank-sum test. n = 22720 pairs for “intra-major regions” group, n = 4424 
pairs for “inter-major regions” group, n = 117 for “between replicates” group. 
Boxes span the first to third quartiles, horizontal line denotes the median, and 
whiskers show 1.5x the interquartile range.



Extended Data Fig. 6 | Integration analysis between the snATAC-seq and the 
scRNA-seq data for neurons and non-neurons separately. UMAP on the 
co-embedding space of neurons from the snATAC-seq data (a) and scRNA-seq 
data (b). Colours as major regions. c, The co-embedding UMAP embedding of 
non-neuronal cells from the scRNA-seq data and the snATAC-seq data on the 
same space coloured by the two modalities. UMAP on the co-embedding space 
of non-neurons from snATAC-seq data (d) and scRNA-seq data (e). Colours  
as major regions. f, Consensus scores (i.e., transfer-label scores) between 
non-neuronal subclasses from the scRNA-seq data and L4-level non-neuronal 

clusters from the snATAC-seq data. g, Consensus scores between neuronal 
clusters from the scRNA-seq data of Allen Institute and L4-level neuronal clusters 
from the snATAC-seq data. h, Consensus score between non-neuronal clusters 
from the scRNA-seq data and L4-level non-neuronal clusters from the snATAC-seq 
data. i, The 22 non-neuronal subclasses matched to the non-neuronal subclasses 
in the scRNA-seq. From left to right, the bar plots represent class, biological 
replicate distribution of nuclei, major region distribution of nuclei, number of 
clusters, and number of nuclei.



Article

Extended Data Fig. 7 | Marker genes for the subclasses after integration in 
the snATAC-seq data using the imputed gene expressions. Dotplot showing 
the snATAC-seq gene activity scores of the marker genes (columns) used for 
identification of the scRNA-seq data across the cell subclasses5. The first 13 
columns correspond to major neuronal cell type marker genes including 
neurotransmitter genes as follows: Snap25 (Neuron), Gad1 (GABA), Gad2 (GABA), 

Slc32a1 (GABA), Slc17a6 (Glut-subcortical), Slc17a7 (Glut-cortical), Slc17a8 (Glut), 
Slc6a5 (Gly-GABA), Slc6a4 (Glut-Sero), Slc6a3 (Dopa), Slc18a3 (Chol), Hdc (Hist), 
Slc6a2 (Nora). The subsequent columns are the most occurring marker gene 
reported within each Allen Institute subclass designation corresponding to 
each subclass annotation (row) of the snATAC-seq data.



Extended Data Fig. 8 | Cellular composition of brain dissections for cell 
subclasses. a, Bar plot shows the total number of nuclei sampled for each brain 
dissection region. b, Normalized percentages (pct) of each subclass in all the 

dissected regions are shown as different sized dots. The sizes of dots correspond 
to the percentage and the colours of the dots indicate the brain dissections.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Statistics of peak calling on snATAC-seq data for each 
cell subtype. a, Schematic of peak calling and filtering pipeline. b, Density 
distribution plot showing the fraction of cells per cell type in which a peak was 
accessible and a corresponding background for each cell type. For each cell 
type, the background is defined as the non-DHS and non-peak regions randomly 
picked from the genome. c, Venn plot showing the overlapping between the 
peaks from the whole mouse brain and the ones from the cerebral regions19.  
d, Enrichment analysis of the peak sets with a 15-state ChromHMM model in the 
mouse brain chromatin102. e, Density map comparing the median and maximum 

variation of chromatin accessibility at each cCRE across cell subclasses. The 
left density map refers to the cCREs overlapping with the ENCODE DHSs, and 
the right one refers to the cCREs having no overlaps with the ENCODE DHSs.  
i, Scatter plot showing entropy (blue) and sparseness (red) trends when 
increasing the number of modules used for non-negative matrix factorization. 
When the module number is 150, we can see a significant drop in entropy and a 
significant increase in sparseness. j, The red arrows point to the two subclasses 
with lowest number of cells in the snmC-seq data41.
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Extended Data Fig. 10 | Characterization of predicted cCRE-target gene 
pairs. a, Scatter plot showing the number of identified connections between 
all the cCREs pairs within 500k bp along with the number of nuclei for each cell 
subclass identified based on the integration analysis. b, Scatter plot showing 
the number of proximal-distal cCREs along with the number of nuclei for each 
cell subclass. c, Histogram showing the distances along the genome for each 
proximal-distal cCREs. d, Histogram showing the distances along the genome 
for each pair of enhancer and targeted gene’s promoter (positive proximal-distal 
cCREs) inferred by the correlation study (Fig. 3b). e, In total, 613,485 positively 
correlated proximal-distal cCREs and 107,413 negatively correlated proximal- 
distal cCREs were identified. f, Boxplot showing the identified potential 

enhancers for each of 20,703 gene in the positively correlated pairs. g, Boxplots 
of the enrichment scores (1 kb resolution) of aggregate peak analysis (APA)  
for the top 20% positive proximal-distal connections (ppdc) from several 
represented subclasses. Match, the subclass’s Hi-C data41 used for the same 
subclasses. Unmatch, the subclass’s Hi-C data used for other subclasses as a 
random background. 11 data points were included in the match group and 110 
points in the unmatched groups. P value was calculated by the one-sided 
Wilcoxon rank sum test. In f and g, boxes span the first to third quartiles, 
horizontal line denotes the median, and whiskers show 1.5x (f) and 2x (g) the 
interquartile ranges. h. Heatmaps of enrichment signals for the top 10% global 
proximal-distal connections (pdc) and enrichment signals for the random pairs.



Extended Data Fig. 11 | Inference of gene regulatory networks (GRNs) at cell 
subclass level across the whole mouse brain. a, Schematic of identifying 
co-accessible cCREs for each cell subclass using Cicero44. b, Schematic view of 
inference of GRNs from predicting the putative target genes’ expression with the 
corresponding transcription factors (TFs) for each cell subclass using CellOracle52. 
c, Boxplot of 267 P values from two-sided Kolmogorov-Smirnov test to check 
power-law distributions of the nodes’ degrees from GRNs. Only one cell subclass 
(OB_Eomes_Ms4a15_Glut) did not pass this examination with the P values smaller 
than 0.05. The box spans the first to third quartiles, the horizontal line denotes 

the median, and whiskers show 1.5x the interquartile range. d, 15 commonly used 
network motifs56 used in our analysis. Each node is a TF or a gene, and edges 
describe the regulation directions, i.e., arrows pointed to the ones that were 
regulated by the source nodes or TFs. The blue colour means the negative 
regulation (TFs inhibit target gene expressions), while the orange colour means 
the positive regulation (TFs upregulate target gene expressions). PFL, positive- 
feedback loops; RDP, regulated double-positive; FC, fully connected triad; FFL, 
feedforward loops. SIM, single-input module. e, Stacked bar plots of the ratio of the 
network motifs above in each subclass. Each column responds to one cell subclass.
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Extended Data Fig. 12 | Histograms of the counts of the network motifs in 
each subclass’s gene regulation network (GRN) grouped by main class (a) or 
regions (b). The names of the network motifs are the same ones in Extended 
Data Fig. 11d. Only the class with at least 3 subclasses were shown here. For each 
histogram, we added the corresponding density plot. The telencephalon region 
includes isocortex, olfactory bulb, hippocampus, striatum, pallidum, and 

amygdala; the diencephalon region includes thalamus and hypothalamus; the 
hindbrain includes pons and medulla. c, Normalized signals of Atf3 ChIP-seq at 
Klf4 in bone marrow-derived macrophages (BMM) showing Klf4 is likely to be a 
putative target of Atf3. d, Normalized signals of Atf3 ChIP-seq at Tal1 in bone 
marrow-derived macrophages (BMM) showing Tal1 is likely to be a putative 
target of Atf3.



Extended Data Fig. 13 | Comparison of chromatin accessibility (CA) 
conserved and divergent cCREs between mouse and human. a, A schematic 
of CA conserved and divergent cCREs. The CA-conserved cCREs are the cCREs 
in our snATAC-seq data that are conserved across species and have open 
chromatin in orthologous regions. The CA divergent cCREs are sequence 
conserved to orthologous regions but have not been identified as open 
chromatin regions in other species. The bar plot shows the numbers of 
CA-conserved and CA-divergent cCREs. b, Bar plot showing the relative fraction 
of CA conserved and divergent cCREs across subclasses. c, Radar chart showing 

the fraction of genomic distribution of CA-conserved and CA-divergent cCREs. 
The CA-conserved cCREs show an increase in percentage in Promoter-TSS 
regions. d, Histograms showing the number of CA-conserved and CA-divergent 
cCREs in subclasses. The number of CA-conserved cCREs is higher than 
CA-divergent cCREs. e, Histograms showing the CA-conserved cCREs captured 
by the number of cell subclasses. A fraction of CA-conserved cCREs are captured 
by more than 200 cell subclasses. f, Histograms showing the CA-divergent 
cCREs captured by the number of cell subclasses. Most CA-divergent cCREs are 
captured by less than 50 cell subclasses.
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Extended Data Fig. 14 | See next page for caption.



Extended Data Fig. 14 | Analyses of chromatin accessibility at transposon 
elements (TEs) of cCREs. a, Pie charts showing the genomic distribution of 
mouse-specific cCREs. b, Histograms showing the fraction of cCREs overlap 
with TEs in subclasses of glutamatergic neurons (Glut), non-glutamatergic 
neurons (nonGlut-Neu), and non-neurons (NN). c, Boxplot showing the fraction 
of cCREs overlap with TEs in highTE-Glut, other-Glut, nonGlut-Neu, and NN 
subclasses. The P values are calculated by the one-sided Wilcoxon rank-sum test. 
Boxes span the first to third quartiles, horizontal line denotes the median, and 
whiskers show 1.5× the interquartile range. There are n = 22 subclasses in the 
“highTE-Glut” group, n = 108 subclasses in the “other-Glut” group, n = 123 
subclasses in the “nonGlut-Neu” group, and n = 22 subclasses in the “NN” group. 
d, Heatmap showing the fraction of genomic distribution of cCREs in each cell 
subclass. e, Heatmap showing the fraction of TE family distribution of cCREs in 
each cell subclass. f, GO analysis showing genes near TE-cCREs in highTE-Glut 

versus genes near TE-cCREs in all subclasses are enriched for neuronal specific 
functions. g, GO analysis showing genes near TE-cCREs in highTE-Glut versus 
genes near all cCREs in highTE-Glut are enriched for neuronal specific functions. 
h, Top3 motif families enriched in the TE-cCREs in highTE-Glut. The unadjusted 
P-values were calculated using a two-sided Fisher’s exact test. i, Top3 motif 
families enriched in the TE-cCREs which showed positively correlated with genes 
and occurred in highTE-Glut. The unadjusted P-values were calculated using a 
two-sided Fisher’s exact test. j, Volcano plot showing differential chromatin 
accessibility (DCA) TE-cCREs in highTE-Glut subclasses compared to other 
subclasses. The red colour labelled all DCA TE-cCREs which correlated with 
synaptic related genes. k, Genome browser tracks of aggregate chromatin 
accessibility profiles for NN, GABA, highTE-Glut, and other Glut subclasses at 
selected DCA TE-cCREs and gene pairs. RNA signals shown here were collected 
from previous study99.



Article

Extended Data Fig. 15 | Accessible variability at transposon elements  
(TEs) across cell subclasses. a, Density scatter plot comparing the averaged 
accessibility and coefficient of variation across cell subclasses at each 
transposon element. Variable TEs are defined on the upper right side of dash 
lines, invariable TEs are defined on the upper left of dash lines. b, Normalized 
accessibility at variable TEs in different cell subclasses. The middle bar plot 
showing correlation between mCG level and accessibility at variable TEs across 
subclasses. The right bar plot shows correlation between expression level and 

accessibility at variable TEs across subclasses. c, Top10 motifs enrich in 
positively distal cCREs overlapped with variable TEs. The unadjusted P-values 
were calculated using a two-sided Fisher’s exact test. d, Normalized accessibility 
at invariable TEs in different cell subclasses. The middle bar plot showing 
correlation between mCG level and accessibility at invariable TEs across 
subclasses. The right bar plot showing correlation between expression level 
and accessibility at invariable TEs across subclasses.



Extended Data Fig. 16 | Spearman correlation across orthologous cCREs between all paired human and mouse subclasses (mba: mouse brain atlas; hba: 
human brain atlas).
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