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Theintestine isa complex organ that promotes digestion, extracts nutrients,
participatesinimmune surveillance, maintains critical symbiotic relationships with
microbiota and affects overall health'. The intesting has a length of over nine metres,
along which there are differences in structure and function® The localization
ofindividual cell types, cell type development trajectories and detailed cell
transcriptional programs probably drive these differences in function. Here, to better
understand these differences, we evaluated the organization of single cells using
multiplexed imaging and single-nucleus RNA and open chromatin assays across eight
differentintestinal sites from nine donors. Through systematic analyses, we find cell
compositions that differ substantially across regions of the intestine and demonstrate
the complexity of epithelial subtypes, and find that the same cell types are organized
into distinct neighbourhoods and communities, highlighting distinctimmunological

niches that are present in the intestine. We also map gene regulatory differencesin
these cells that are suggestive of aregulatory differentiation cascade, and associate
intestinal disease heritability with specific cell types. These results describe the
complexity of the cell composition, regulation and organization for this organ, and
serve as animportant reference map for understanding human biology and disease.

The humanadultintestinal systemis acomplex organ that consists of
approximately 7 m of small intestine and 2 m of large intestine. This
system completes the digestive process that begins in the oral cavity
and stomach, first absorbing water and small-molecule nutrients (such
as sugars, monovalent ions and amino acids) in the small intestine,
thenaccumulating larger molecules such as fibre in the large intestine,
which serves as an anaerobic fermentation chamber enabling the
breakdown and absorption of by-products and the synthesis, often
through alimentary gut microbiota, and absorption of other nutrients
such as vitamins'.

The small intestine is phenotypically heterogeneous, comprising
three morphologically distinct regions—the duodenum, jejunum
and ileum? The large intestine can be partitioned into the ascend-
ing, transverse, descending and sigmoid regions. Each of these ana-
tomical regions contains animmense diversity of phenotypically and
morphologically distinct cell types. Epithelial, stromal and immune
cells, each comprising multiple cell types, reside throughout the intes-
tine. Immune cells are of particular interest, as they interact with the

microbiome and foreign material present in the gut®. Although these
broad celltypes are commontoall portions of the intestinal system, spe-
cificcelltypes are known to display locational preferences. For example,
Paneth cells populate the small intestine, and enteroendocrine L cells
arefound primarily in the ileum and large intestine**. Moreover, these
celltypesarespatially organized into different ‘neighbourhoods’ across
theseintestinal regions, and both the composition of these neighbour-
hoods and the molecular phenotypes of the underlying cellular types
varyinrelatively unknown ways across these anatomical regions. These
differencesinboththe composition of functional neighbourhoods and
the molecularidentity of the cell states that comprise these neighbour-
hoods define the composition and function of the human intestine.
Here, we map many portions of the intestine at the single-cell resolu-
tion using single-nucleus RNA, open chromatin and spatial proteomic
imaging technologies. Previous studies have mapped cell types using
single-cell RNA-sequencing (scRNA-seq) and have catalogued cell types
across the intestine®. We extend this research by spatially mapping
cells and proteins using co-detection by indexing (CODEX)”° as well
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as mapping gene regulatory information using single-cell assay of
open chromatin using single-nucleus assay for transposase-accessible
chromatinwithsequencing (snATAC-seq)". We define the relative abun-
dance of distinct cell types across the intestine, including the enormous
complexity of epithelial cells across different intestinal regions, and the
organization of cells into different multicellular structural niches. We
alsomap generegulatory differencesin these cells that are suggestive
ofaregulatory differentiation cascade. These results provide important
insightsinto cell function, regulation and organization for this complex
organ and serve as animportant reference for understanding human
biology and disease.

Mapping the humanintestine

We mapped the cell composition, regulatory information and spatial
distribution of single cells across the intestines of multiple donors
using single-nucleus RNA-seq (snRNA-seq), which measures nuclear
RNA transcripts in individual nuclei; snATAC-seq, which measures
open chromatin in single cells; and CODEX, which stains the same
tissue section with up to 54 antibody probes against different targets
(usually proteins). We analysed eight sections from nine individuals:
seven individuals of European ancestry (five male and two female)
and two African Americanindividuals (one male and one female). Age
rangeswere from 24 to 78 years. The eight regions (in order of trajectory
from the stomach) were as follows: the duodenum, proximal jejunum,
mid-jejunum and ileum from the small intestine, and the ascending,
transverse, descending and sigmoid regions of the large intestine.

Multiplexed imaging of the intestine

To create a spatial map of the intestine across the eight regions, we
used CODEX multiplexed imaging, which enables insightsinto cellular
interactions, composition of multicellular tissue units and spatial
relationships to the overall function of the intestine®°. We first vali-
dated and optimized CODEX staining, imaging and image process-
ing for 16-mm? sections of fresh-frozen samples on one participant
(BOO1) (Supplementary Figs. 1-3). For the other eight donors, we
expanded our CODEX antibody panel by adding and validating 17
intestine-specific markers (Supplementary Information 1 and Sup-
plementary Fig.4) for atotal of 54 antibodies that enabled the spatial
identification of 25 cell types™ (Extended Data Fig. 1c and Supple-
mentary Figs.5and 6).

We used theresultant dataset (atotal of 2.7 million cells) to compare
the cellular composition and organization across the different tissue
regions, normalizing to overall cell grouping (Fig. 1a-c). Within the
stromal compartment, moving from the small intestine to the colon,
we observed adecrease inendothelial cellsand anincrease in smooth
muscle cells (Fig. 1a and Extended Data Fig. 1d). To verify that this was
notanartefact of capturing more muscularis externa within samples of
the colon compared with the smallintestine, we calculated the percent-
ages of all cell types within the four different pathological compart-
ments of the intestine: the mucosa, muscularis mucosa, submucosa
and muscularis externa. Indeed, even when comparing all of the cell
types found within the muscularis externa, there was still a significant
decrease in endothelial cells and an increase in smooth muscle cells
(Extended Data Fig. 1e). Thus, not only is there less vasculature more
broadlyinthe colon, but thereis less within the muscularis externa and
ahigher density of smooth muscle cells.

Intheimmune compartment, we observed adecreasein CD8" T cells
fromthe smallintestineto the colon (Fig.1b, Extended Data Fig. 1f and
Supplementary Fig. 7a-c), consistent with previous observations®.
Conversely, we observed an increase in the percentage of dendritic
cells within the colon compared with in the smallintestine thatis also
seen when examining total cell percentages within the mucosa (Fig.1b
and Extended Data Fig. 1f).

In the epithelial compartment, we observed a decrease in entero-
cytes, an increase in secretory enterocytes (goblet cells) and CD66"
enterocytesand anabsence of Paneth cells when moving from the small
intestine to the colon (Fig. 1¢c, Extended Data Fig. 1g and Supplemen-
tary Fig. 7d). We also detected a rare population of CD57* enterocytes
that is enriched within the duodenum compared with in other areas
of the intestine (Extended Data Fig. 1h and Supplementary Fig. 7e).
These gastric-like cells are enriched in areas of the duodenum within
submucosal glands (Extended Data Fig. 1iand Supplementary Fig. 7f).

Cell type associations with clinical data

We also evaluated cell type changes with donor metadata. M1 macro-
phage levels had the highest correlation with body mass index (BMI)
(Fig.1d) and were restricted to the mucosa (Fig. 1e). M1 macrophages
are pro-inflammatory and have beenimplicated in chronic inflamma-
tory disease, autoimmunity and problems with wound healing in the
intestine'* ', Similarly, obesity increases the risk of gastrointestinal
disorders". Although the donors did not have histories of gastrointes-
tinal disorders, we found that individuals with aBMI characterized as
overweight (25-29.9) have a fivefold increase in M1 macrophages and
individuals with obesity (BMI > 30) have an eightfold increase compared
with individuals who are normal weight (18.5-25). We also observe
decreasesinendothelial cells (from 25% to 20%) and CD8' T cells (from
42% to 25%) in donors with a history of hypertension (Fig. 1f). High
pressure dueto alower ratio of total vasculature is expected, but asub-
stantial decreasein CD8" T cellsis surprising (Supplementary Fig. 7a).

Spatial restriction ofimmune cells

In addition to cell type composition, cellular density can highlight
whether a cell has broad functions over large regions, is spatially
restricted for specialized functions or has the need for specific cell-
cell interactions. We quantified the local cell density for all cell types
(Fig. 1g and Extended Data Fig. 1j,k). Visual inspection suggested
that plasma cells (-0.2) with the highest same-cell type density were
restricted to specific mucosal areas, followed by CD8" T cells (-0.37),
then M2 macrophages (~0.5), which were diffuse throughout all areas
of the intestine (Extended Data Fig. 11). Indeed, M1 macrophage den-
sity (~0.39) was lower than its M2 counterpart. Quantification of the
distribution of each macrophage subset within the different intesti-
nal tissue units indicates a spatial restriction of macrophage subsets
(Fig. 1h), suggesting important functional roles in these regions and
that other macrophage subtypes among M2 macrophages exist that
may also be spatially restricted. In summary, these results suggest an
important role for spatial restriction of immune cell subtypes along
thelength of the intestine.

Stromal multicellular neighbourhoods

Toprovide aglobal view of intercellular interactions, cellular densities
and overallmulticellular structures of the intestine, we performed cel-
lular neighbourhood analysis'® (Methods and Extended Data Fig. 1a).
This revealed 18 significant multicellular structures with major epi-
thelial, stromal and immune-based neighbourhoods (Fig. 2a,b and
Extended Data Fig. 2b-d). Eight neighbourhoods were classified as
stromal neighbourhoods and identified major structures within the
intestine: micro-and macrovasculature, innervated stromaand smooth
muscle, and innateimmune hubs within the stroma and smooth muscle
areas (Fig. 2a). Only the Smooth Muscle neighbourhood increased
moving from the smallintestine to the colon, whereas the innervated
and innateimmune smooth muscle neighbourhoods did not (Extended
Data Fig. 2e and Supplementary Fig. 8a). This further suggests that
these dense compartmentalized smooth muscle cell areas (Extended
DataFig. 2f) increase within the colon.
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Fig.1| CODEX multiplexed imaging of eight regions from the small
intestine and colon to create asingle-cell map of the healthy human
intestine. a-c, Cell type percentages from CODEX data averaged across eight
donors. Celltypes are normalized to the stromal (a),immune (b) and epithelial
(c) compartments. Statistical analysis was performed using two-sided t-tests
comparingthedifferenceincell type percentage between the small bowel (SB)
and the colon (CL); *P< 0.05.1CC, interstitial cells of Cajal; NK, natural killer
cells; TA, transit-amplifying cells. d, The percentage of Ml macrophages within
the smallbowel and colon for all donors plotted versus donor BMI (Pearson
correlationr=0.86). e, Cell type maps of the mid-jejunum from representative

Immune multicellular neighbourhoods

Congruent with our observation of high plasmacell density (Fig. 1g), we
observed a Plasma-Cell-Enriched neighbourhood driven by increased
density of plasma cells (Fig. 2a). This Plasma-Cell-Enriched neighbour-
hoodalso exhibits co-enrichment of CD4* T cells and antigen-presenting
cellssuch asdendritic cellsand macrophages (Fig. 2a) and is localized
within the mucosa lamina propria (Extended Data Fig. 2g-i). These
observations are consistent with observations suggesting that secre-
tion or ligand engagement of plasma cells from antigen-presenting cells
within the bone marrow can maintain long-term survival in plasma-
specific niches®2°,

Notably, despite their relatively low density in the intestine, CD8"
T cellswere enriched in two major neighbourhoods (Fig. 2a). One neigh-
bourhood (CD8' T Cell-Enriched IEL (intraepithelial lymphocyte))
exhibits enrichment of both epithelial cell types and CD8" T cells. Thus,
the neighbourhood analysis was able to separate the CD8" T cells that
are intraepithelial lymphocytes, which are critical for rapid immuno-
logical responses against infection? and maintenance of epithelial
integrity®>. This CD8" T Cell-Enriched IEL neighbourhood was one of
the neighbourhoods of which the prevalence changed from the small
intestine (-30%) to the colon (-3%) (Extended Data Figs. 2cand 3aand
Supplementary Fig. 8a). Thisis the spatial compartment from which we
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individuals (n =8 donors) with high or low BMI with M1 macrophages (black)
highlighted among stromal (light grey) and epithelial (grey) cell types also
shown.Scalebar, 250 pm.f, Cell type percentages for endothelialand CD8"
T cells compared for donors with or without a history of hypertension.
Statistical analysis was performed using two-sided t-tests; *P=0.038,
***P=0.00013.n=3-5donors.g, Quantification of the same-cell density
measured as an average distance of its five nearest same-cell neighbours
divided by the maximal possible same-cell distance within the tissue.n = 64
tissue sections. h, The percentage of macrophage subsets across major
intestinal compartments.

observed aglobal decreasein CD8" T cell percentage (Fig.1b) and also
significantly decreases with a history of hypertension (Extended Data
Fig.3b). We suggest that the ability of CD8" T cells to survive or locate
within intraepithelial spaces is negatively affected by hypertension.

Thedecreaseinthe CD8" T Cell-Enriched IEL neighbourhood is met
withanincreasein the Plasma-Cell-Enriched neighbourhood within the
colon (Extended DataFigs.2cand 3a). In particular, there is a significant
decreasein Plasma-Cell-Enriched neighbourhoods within the ileum as
compared to the colon (Supplementary Fig. 7c-d). By contrast, there
isalso anincrease in the Adaptive-Immune-Enriched neighbourhood
within theileum as compared to the colon (Supplementary Fig. 7e-f).
Notably, although proximal to the colon, the ileum has the most distinct
immune microenvironment from the colon.

CD4" T cells contributed to five diverse multicellular neighbour-
hoods (Fig. 2a). This broad neighbourhood membershipis fitting, given
that CD4" T cells coordinate innate and adaptive immune responses.
CD4" Tcell, B cell and dendritic cellmembership defined two different
follicle-based structures. The first of these structures, which exists
in outer regions of the follicle, exhibited higher enrichment of CD4*
T cells, whereas inner regions of the follicle were enriched for B cells
(Fig.2a). The presence of the Inner Follicle (thatis, the germinal centre)
neighbourhood was dependent on a fully mature lymphoid follicle
like a Peyer’s patch within the image (Fig. 2b). However, the Outer
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Fig.2|Multicellular neighbourhood analysis of the intestine. a, Twenty
uniqueintestinal multicellular neighbourhoods were defined by enriched cell
typesas compared to the overall percentage of cell typesinthe samples. b, An
exampleinwhich neighbourhoods mapped back to the tissue show overall
tissue structures. Scale bar, 0.5 mm. ¢, The percentage of Neuroendocrine-
Enriched neighbourhood of all of the neighbourhoods as determined by
individually characterizing cellular neighbourhoods by region.n =8 donors.
Thebox plots show the median (centreline), 25th to 75th percentile (box limits),
minimum and maximum values (whiskers), and outliers (points outside

1.5x theinterquartilerange). d,e, Quantification of the same-cell density for
neuroendocrine cells compared across the small bowel and colon (n =32 tissue

Follicle neighbourhood was found across the intestine irrespective
of the presence of a fully mature follicle. Out of the 64 tissues that we
imaged, 11 had mature follicles that we segmented for comparison
(Supplementary Fig. 9a-b). The cell type and neighbourhood compo-
sitions differed between each follicle irrespective of location, driven
primarily by percentage of dense B cells (Supplementary Fig. 9a), found
withinthe Inner Follicle neighbourhood (Supplementary Fig. 9b). The
variationintheratio of Inner Follicle neighbourhood to Outer Follicle
neighbourhood across the intestine suggests a continuum of lymphoid
tissues within the intestine? 2,

Variation in the multicellular composition of cellular neighbour-
hoods may indicate a core functionality as well as a need for composi-
tional flexibility based on anatomical location. We compared the cell
type compositionsin the smallintestine versus the colon for all neigh-
bourhoods and found thatbothinnerand outer follicle structures are
less conserved, whereas stromal neighbourhoods are more conserved
(Extended Data Fig. 3c). We observed differences in neighbourhood

sections) (d) or the epithelial neighbourhoods as determined by individually
characterizing cellular neighbourhoods by region (n = 64 tissue sections) (e).
Avg., average; max., maximum. f, Asubset of epithelial neighbourhoods mapped
backtoarepresentative magnified region (n =8 donors) of the mucosaofa
transverse colonsection.Scale bar,250 pum. g,h, Theapproachtocalculate
concentricincreasing neighbourhoods around a Paneth cell (g) togenerate
cellular neighbourhoods for Paneth cells atincreasing radii (h).,j, Schematic
(i) and CODEX fluorescence dataillustrating arepresentative (1of 32 sections
from 8 donors) magnified portion of the proximal jejunum depicting
colocalization of Paneth cells (DEFAS, green) and CD8" T cells (CD8, cyan) and
CD4" T cells (CD4, yellow) in the intestinal crypt environment (j). Scale bar, 50 pm.

composition in Paneth-Cell-Enriched (significantly less abundant in
the colon than the small bowel) and Transit-Amplifying-Zone (not dif-
ferentin terms of abundance) neighbourhoods that are both enriched
for early epithelial progenitor cells, potentially indicating different
crypt microenvironments across the intestine (Extended Data Fig. 2d
and Supplementary Fig. 9¢,d).

Intestinal crypt neighbourhoods

Aswe observed differencesin neighbourhood cell type conservation,
we performed neighbourhood analysis on each individual region
of the intestine separately and then concatenated the results. All
aggregated neighbourhoods (Fig. 2a) were identified (Extended
Data Fig. 3d). We also identified two unique neighbourhoods:
Neuroendocrine-Enriched, which was found only in the colon,
and Neutrophil-Enriched, which was found throughout the intes-
tine but enriched in the colon (Fig. 2c and Extended Data Fig. 3e,f).
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The Neutrophil-Enriched neighbourhood was characterized by a
high density of neutrophils associated with vasculature and innate
immune cells, found often within stromal and smooth muscle areas
(Extended Data Fig. 3d). The Neuroendocrine-Enriched neighbour-
hood had a mixture of epithelial and immune cell types enriched
(Extended Data Fig. 3d).

Theidentification of the Neuroendocrine-Enriched neighbourhood
suggested differential organization of neuroendocrine cellsin the small
intestine compared with in the colon. Indeed, neuroendocrine cells
were found to be denser within the colon compared with in the small
intestine (Fig. 2d). Furthermore, neuroendocrine cells are most dense
withinthe Neuroendocrine-Enriched neighbourhood as comparedto
neuroendocrine cellsin other epithelial neighbourhoods (Fig. 2e), and
the density decreases with the maturity of the epithelial cell types that
define these epithelial neighbourhoods (Fig. 2e). This suggests that
the Neuroendocrine-Enriched neighbourhood represents the colon
crypt neighbourhood, which is confirmed by its localization near the
muscularis mucosa (Fig. 2f).

Identification of this crypt environment only within the colonand not
inthe smallintestineis consistent with our finding of variationin early
epithelial environmentsin our first neighbourhood analysis (Extended
DataFig.3c), and Paneth-Cell-Enriched neighbourhoods are observed
only withinthe smallintestine (Extended DataFig. 3e).Indeed, Paneth
cells are known to be restricted to the small intestine and also to be
enriched within the intestinal crypt. As aconsequence, to understand
whether the Neuroendocrine-Enriched neighbourhood was similar to
the small intestine crypt environment, we examined the neighbours
surrounding Paneth cells with increasing window size (Fig. 2g). This
analysis revealed that there was a high enrichment of neuroendocrine
cells, butitalsounderscored thatinterstitial cells of Cajal, CD4" T cells
and CD8" T cells were enriched within the local microenvironment
(Fig. 2h-j). This agrees withenrichment of CD4" T cells and interstitial
cells of Cajal found within the Neuroendocrine-Enriched neighbour-
hood (Extended Data Fig. 3d).

Hierarchical structural organization

Multicellular neighbourhood analysis revealed key differences in the
structural composition across the intestine as well as in the composi-
tion of these neighbourhoods, particularly with relation to the adaptive
immune system and the intestinal crypt. However, how these multi-
cellular neighbourhoods interact with one another, and how they
are spatially structured in the tissue is unclear. Understanding how
multicellular groups are related is key to both defining the hierarchy of
tissue organization, as well as defining key functional tissue interfaces.

Weinvestigated higher-order structural organization using several
methods. First, we clustered windows of neighbourhood compositions
inamanner similar to how we clustered windows of cell types (Fig. 3a)
to define neighbourhoods (Fig. 3b). This generated communities of
neighbourhoods (Fig. 3c and Extended Data Fig. 4a-c), which we then
leveraged to identify major tissue units such as the muscularis mucosa
(Fig.3d and Supplementary Fig.10). The Paneth-Cell-Enriched neigh-
bourhood was enriched within the Adaptive-Immune-Enriched com-
munity (Extended Data Fig. 4a). Indeed, concentric neighbourhood
environments surrounding the Paneth-Cell-Enriched neighbourhood
also showed colocalization with Outer Follicle and Adaptive-Immune-
Enriched neighbourhoods (Extended Data Fig. 4d). These results sup-
porttheideathat the adaptiveimmune system forms a conserved niche
with the intestinal crypt.

Torelatethe various levels of spatial organization, we created a hier-
archical structure network graph (Fig. 3e and Supplementary Fig. 11).
Eachlevel of this graphis connected to the next by its major contribu-
tors. Using this intuitive formalism, we can observe many levels of intes-
tinal celland tissue-structure organization. For example, we observed
crosstalk between stromal and smoothmuscle cell types and structures,
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whichareinturnisolated from epithelial and immune components that
are more entwined with one another (Fig. 3e (red bracket)).

Using this graph structure, we can also observe multilevel relation-
shipsbetween the structures. For example, Paneth cells (Fig. 3e (green
circle)) are arare cell subset (size) and are primarily enriched within
Paneth-Cell-Enriched neighbourhoods (Fig. 3e (light blue square)),
which are enriched in the Adaptive-Immune-Enriched community
(Fig.3e (orangetriangle)) that, inturn, is enriched within the muscularis
mucosa tissue unit (Fig. 3e (red diamond)). This relationship can be
seen within the tissue, where we see the Adaptive-Immune-Enriched
community localized to the bottom of the colon crypt (Fig. 3f).

Visualizing the communities also revealed spatial layering of the
intestine, moving from the smooth muscle, stroma and particularly
within epithelial areas (Fig. 3f). To formalize these observations of
intercommunity-level spatial interactions, we created” a spatial con-
text map? (Methods) that revealed major structural relationships
between communities within the colon (Fig. 3g). For example, moving
from left to right in the spatial context map parallels tissue organiza-
tion in a cross-section of the intestine moving from the muscularis
externato thetop of the mucosa (Fig. 3f,g). In brief, the Smooth Muscle
community (red triangle) is often found alone (size of circle), indi-
cating its compartmentalization from other communities (Fig. 3g).
However, it is found next to the Stromal community (grey triangle),
with which it forms aninterface (grey and red triangle combination)
(Fig. 3g (yellow highlighted edge)). This then forms a trio interface
with the Adaptive-Immune-Enriched community (orange triangle).
Movingto theright, we observe another trio that involves the Smooth
Muscle, Adaptive-Immune-Enriched and Secretory Epithelial com-
munities (Fig. 3g (green box)). This pattern continues across the
Plasma-Cell-Enriched community (yellow triangle) and then the Mature
and CD66" Epithelial community (teal triangle) (Fig. 3g).

We confirmed these community-community interactions using
an established method for identifying two-combination community
motifs” (Methods). Significant associations with just the Adaptive-
Immune-Enriched community shared across the intestine demon-
stratethat there are connections to the Plasma-Cell-Enriched, Smooth
Muscle, Secretory Epithelial, Stromal and Follicle communities but not
to the Mature Epithelial community (Extended Data Fig. 5b and Sup-
plementary Fig.12), which aligns with our previous analyses (Fig. 3f,g).
Similarly, analysis of other shared significant motifs shows that the
Plasma-Cell-Enriched community intersects with both the Secretory
Epithelial and Mature Epithelial communities (Extended Data Fig. 5c).
We created a spatial context map for just the cells found in the mucosa
(Extended Data Fig.5d-f) and, again, observed a high-frequency inter-
section between the Plasma-Cell-Enriched, Secretory Epithelial and
Transit-Amplifying Zone neighbourhoods (Extended Data Fig. 5f (red
box)) with many connections to the Plasma-Cell-Enriched neighbour-
hood, implicating animportantrole in overall intestinal tissue structure.

In summary, these results indicate that immune-cell-enriched
neighbourhoods have important roles in intestinal tissue organiza-
tion. Indeed, we found enrichment of cell types moving from the
smooth muscle community to the lumen (Fig. 3h and Extended Data
Fig. 5g,h), which shows an increase in adaptive immune cells in the
base of the crypt, restricted zones of plasma cells, and an increase in
innate immune cells and CD8" T IELs towards the top of the intestine
(Fig.3h).In conclusion, our hierarchical mapping data further confirm
compositional differences in multicellular structures between the
smallintestine and colon but also highlight conserved multicellular
structure interactions and an important distribution of distinct cell
typesinsubregions of the intestine.

Single-nucleus RNA and chromatin atlas

The CODEX experiments revealed distinct cellular arrangements across
intestinal regions, but included only 54 probes, potentially limiting
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and colon. a-d, Representation of multiple levels of hierarchical description:
celltype (a), multicellular neighbourhood (b), community (based on clustering
windows of cell neighbourhoods) (c) and tissue units (based on clustering
communities) (d) comparing the small bowel with the colon for two
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boththe number and complexity of cell types identified. To overcome
these limitations, we performed 10x multiome sequencing analysis
ofintestinal regions from six donors and separate 10x snRNA-seq and
snATAC-seqanalysis of intestine regions from three additional donors
(Fig. 4a, Methods and Extended Data Fig. 6a, b).

We first annotated all snRNA cells from both the snRNA and multi-
ome experiments together, by dividing cellsintoimmune, stromaland
epithelial compartments, revealing a total of 10 immune, 16 stromal
and 16 epithelial cell types (Fig. 4b-d), and annotated the remaining
SCATAC cells from three donors separately. Cell types were anno-
tated by examining gene expression levels and gene activity scores of
known marker genes as well as by labelling the datasets with previously
published scRNA-seq data®® (Methods).

The majority ofimmune cell types wereidentified in both the single-
nucleusand CODEX data (Supplementary Table 2). To determine which
celltypes were significantly differentially abundant betweenlocations,
we applied two methods that control for the compositional nature of
single-cell data®>°. We found that CD8" T cells were more abundantin
the small intestine, whereas B cells were more abundant in the colon
(Fig. 4f and Extended Data Fig. 7), consistent with the CODEX results
(Fig.1b).

Within the stromal compartment, we annotated eight fibroblast
subtypes—interstitial cells of Cajal (KIT, ANO), glial cells (SOX10, CDH19,

trajectory highlighted within this Article. The red bracket indicates separation
of stromal tissue units from the mucosal tissue units. f, Magnified mucosal area
ofacoloncommunity map shownwithinc.Scalebar,100 pm. g, The spatial-
context maps of the colon highlighting relationships of communities across
theentiresample. This structureis defined by the number of unique
communities required to make up atleast 85% inagiven window. Thecircles
represent the number of cells represented by agiven structure. Thegreen
rectangle highlightsastructure discussed in this Article and maps this
structurebacktog. The coloursareasindicatedinc.h, Thecelltype percentage
of immune cells shown for each community ordered in relative order of general
increasing proximity to the lumen on the basis of community spatial-context
analysis.

PLPI),neurons (SYP,SYTI,RBFOXI), pericytes (NOTCH3, MCAM1, RGSS),
adipocytes (PLIN1, LPL) and three endothelial cell clusters (Fig. 4b and
Extended Data Fig. 6f). Cells with high expression of MYH11 and ACTA2
were classified as smooth muscle/myofibroblasts. One of these clus-
ters had high expression of DES, which we labelled DES"&" and may
represent smooth muscle. We also identified fibroblasts with high
levels of WNT agonists, such as RSPO3, and the BMIPantagonist GREM]1,
which are probably present at the crypts, and fibroblasts with high
expression of WNT5B and BMPtranscripts thought to be present at the
villi?® (Extended Data Fig. 6f). Elsewhere, the ADAMDECI"" popula-
tion hasbeenreferred to as S1fibroblasts, the WNT5B and BMPsignal-
ling fibroblasts as S2 fibroblasts, and the KCNN3"€" population as S3
fibroblasts®*. Similar to theimmune cells, we observed changes in cell
type abundance along the intestine (Fig. 4f and Extended Data Fig. 7).
For example, two smooth muscle/myofibroblast clusters were less
abundantin the small intestine than in the colon. Conversely, villus
fibroblasts and endothelial cells were most abundantin the duodenum
andjejunum, less abundantinthelleum andleast abundantin the colon.

Asepithelial cellsinitially clustered on the basis of location (Extended
DataFig. 6c), wesubclusteredand annotatedepithelial cellsfromdifferent
primarylocations—duodenum, jejunum, ileum and colon—separately.
Ineachintestinal region, we observed a differentiation trajectory from
stem cells to mature absorptive cells (enterocytes). We divided this
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Fig.4|Single-cell atlas of gene expression and chromatin accessibility
inthe humanintestine. a, Sections of the intestine analysed by separate
snRNA-seqand snATAC-seq experiments or multiome experiments. b,c, UMAP
representation of allsnRNA stromal (b) and immune (c) cells coloured by cell
type.DC, dendritic cells; fib., fibroblasts; ILC, innate lymphoid cells; myofib.,
myofibroblasts; SM, smooth muscle cells.d, UMAP representation of snRNA
epithelial cellsin the four primaryregions of theintestine. Jejunumincludes
both proximal-and mid-jejunum samples. Colonincludes samples from the
ascending, transverse, descending and sigmoid colon. e, Expression of INSL5
andtheINSL5receptor, RXFP4, indifferent cell typesindifferent regions of the
intestine. RXFP4 was expressed inless than 2.5% of all epithelial cell types that
were notincludedinthe dot plot. C, colon; D, duodenum; I, ileum;J, jejunum;
enterochrom., enterochromaffin cells; enteroendo., enteroendocrine cells.

differentiation trajectory into five cell types using similar annotations to
other studies (stem > TA2 > TAl > immature enterocyte > enterocyte)*.
However, these cells exist along a continuum and the exact number of
celltypesandlocations of the divisions between cell types is therefore
arbitrary, and changing the resolution during clustering resultsin more
or fewer clusters along this trajectory. In addition to absorptive cells,
wealso observed goblet cells, tuft cellsand enteroendocrine cellsin all
regions of the intestine, while Paneth cells were present only in regions of
the smallintestine. Consistent with recent reports of BEST4" enterocytes
in the small and large intestine®*?, we observed populations of BEST4"
enterocytesin all eight intestinal regions assayed.

To further examine the diversity of enteroendocrine cells along the
intestine, we subclustered enteroendocrine cells from all intestinal
regions and annotated the clusters based on expression of enteroen-
docrine marker genes (Extended Data Fig. 6g,h). We identified many
known subtypes of enteroendocrine cells, including D cells (SS7"&"),
I cells (CCKMe"), K cells (GIP""), Mo cells (MLN""), S cells (SCT™e"), L cells
(GCG"'®" and PYY"'e") and enterochromaffin cells (TPHI"®"). Two clus-
ters of enteroendocrine cells that did not express any of these specific
markers were labelled as enteroendocrine Unl and enteroendocrine
Un2in the subclustered dataset. L cells can be further divided on the

578 | Nature | Vol 619 | 20 July 2023

f,Beeswarm plot showing the log-transformed fold change between the small
intestine and colon for groups of nearest-neighbour cells from different cell
type clusters. Significant changes areindicated in red and blue. Lymph. endo.,
lymphatic endothelial cells. g, Subclustering of specialized secretory cells in
dcolouredby celltype. h, The expression of secretory genes inspecialized
secretory cellsdefineding.i, The percentage of MUC6" enterocytes among all
celltypesfor the four donorsimaged using MUC6 antibodies. j, Representative
CODEX fluorescence image of the duodenum (6 out of 57 markers overlaid)
(left). Hoechst (nuclei), MUC6, MUCI (also found in gland areas), cytokeratin
(pan-epithelial), a-SMA (muscle) and vimentin (stromal) staining is shown.
Right, the magnified area highlights the gland just below the mucosain the
submucosa. This experiment was independently repeated four times.
Scalebars, 500 pm (left) and 50 um (right).

basis of expression of INSL5*, whichis primarily expressed by L cellsin
the colon. To determine which gut cell types the INSL5" L cells may be
signalling, we examined the expression of RXFP4—the cognate recep-
tor for INSL5**. We found that RXFP4 is primarily expressed by colon
enterochromaffin cells and, to a lesser extent, I cells, suggesting that
these are the most likely cell types that the INSL5" L cells are signalling
(Fig.4e).Enteroendocrine and enterochromaffin cells were more abun-
dant in the duodenum and jejunum compared with in the colon, and
we observed shiftsin the fraction of each subtype of enteroendocrine
cells along the intestine (Extended Data Fig. 7). For example, D cells
were most abundant in the duodenum®. These results provide detail
on how populations of enteroendocrine and enterochromaffin cells
change along the length of the intestine.

Finally, the duodenum also contained an additional cluster of cells
that expressed secretory markers, but did not cluster with goblet,
tuft, enteroendocrine or Paneth cells. We subclustered these cells
(Fig. 4g) and identified one cluster with high expression of MUCS5B,
one cluster with high expression of MUC6 and TFF2, and one clus-
ter with high expression of the exocrine markers CELA3B and CPB1
(Fig.4h). The MUC5B* and MUC6' cells are probably different types of
mucin-producing cells, withthe MUC6" cells probably representing the



cells of the Brunner’s glands®. Notably, the MUCSB' cells and exocrine
cellswere primarily presentin only one sample in our dataset, making
it possible that they are contaminating cells from a different tissue,
in which expression of these markers is more common, or a rare cell
type in the duodenum (Extended Data Fig. 6i). The MUC6' cells were
present in the majority of the samples, so we further validated their
presence by labelling cellsin CODEX experiments with MUC6 (Fig. 4i,j).

Within the CODEX data, we made the distinction between CD66"
enterocytes and CD57" enterocytes. When we examined the expres-
sion of these markers in the snRNA data, we found that CD66" entero-
cytestypically represent mature cell typesin the colon (Extended Data
Fig. 8a,b). CD57° cells are much less abundant and CD57 expression
was primarily observed only atlow levelsin the cluster of MUC6 cells,
consistent with the presence of CD57* cellsinglandsin the duodenum
inthe CODEX data (Extended Data Fig. 8a,b).

Molecularinteractionsin nearby cells

The CODEX data enable the assignment of neighbouring cell types and
the snRNA-seq dataprovide RNA expressionlevelsin the corresponding
cell types. By combining both data types, we can nominate potential
ligand-receptor pairs that may facilitate cell-to-cell interactions. We
identified significant pairwise cell type colocalizations and focused
onthose that were significantly different between the small bowel and
colon (Extended DataFig. 8c and Supplementary Table 2). Cell type pairs
involving plasmacells are more colocalized in the descending-sigmoid
colontissue section thanin other sections (Extended Data Fig. 8e).

Using snRNA-seq data from these six cell types, we performed dif-
ferential expression analyses of ligands and receptors (Methods) and
identified 48 pairs of ligands and receptors (across 41 cell-cell pairs)
that are more expressed in the colon than in the small bowel (Supple-
mentary Table 3). For example, we found that the ligand SEMA4D and
receptor MET were upregulated in plasma cells and TA2, respectively,
in colon tissue (Extended Data Fig. 8d), which was not observed in
the small intestine (Supplementary Table 3). SEMA4D signalling has
been associated with B cell aggregation and long-term survival®. The
implication of the MET receptor on TA2 cells in the colon, compared
with TA2 cells in the small intestine, is further evidenced by RAS and
MAPK signalling (Extended Data Fig. 9b, Supplementary Table 4) and
upregulation of plexins (Extended Data Fig. 9b), consistent with the
CODEX imaging data (Fig. 3f,g and Extended Data Figs. 5a-f and 9c).
Using spatial transcriptomics analysis based on Molecular Cartogra-
phy***° (Methods), we validated that TA cells positive for MET and
plasma cells positive for SEMA4D were more colocalized in the colon
(colocalization quotient (CLQ) =1.57). We also validated nine other
receptor-ligand interactions involving plasma cells that were more
colocalized in the colon (Supplementary Table 5). Consequently, this
indicates a potential differential survival signal that maintains the
Plasma-Cell-Enriched neighbourhood in the colon.

Inadditionto colocalization of receptor-ligand pairs, we probed our
spatial transcriptomics dataset and evaluated whether other receptor-
ligand pairs were more expressed by target cells in the colon thanin
the small bowel. We validated 15.3% of our predictions (9 out of 58;
P<0.002; Methods) that have a matching cell type with snRNA-seq
(Methods and Supplementary Table 6). One other example that we
examined was the expression of ligand FN1 (fibronectin) in myofibro-
blasts and its receptor PLAUR (urokinase receptor) in enterocytes
(Extended Data Fig. 9d). Overall, these results nominate potential
ligand-receptor interactions that mediate specific cell type interac-
tions in distinct regions of the intestine.

Integration of CODEX and snRNA data

Our multiplexed imaging analysis also enables examination of the cell-
cell pairsthat are enriched within each neighbourhood or community

regardless of tissue location. We used the same approach to calcu-
late cell-cell colocalization in the Follicle community. This resulted
in 57 colocalized cell pairs, such as the CD8* T cell-CD4" T cell pair,
each pair containing a large list of potential receptor-ligand inter-
actions (Extended Data Fig. 9e). To more comprehensively describe
potential interactions and expressions within neighbourhoods, we
integrated CODEX and snRNA-seq at the single-cell level using Max-
Fuse*, amethod that we specifically designed for these challenging
integration tasks: linear assignment coupled with graph smoothing
and meta cell construction. The overall matching accuracy was 92.1%
and cell types segregated within the co-embedding space, and the
same cell types from snRNA-seq and CODEX were well blended while
showing concordant RNA/protein expression patterns, indicating
robust integration performance (Fig. 5a). Using this integration, we
calculated the differentially expressed genes (DEGs) among the pre-
viously CODEX-defined cellular neighbourhoods with the pair-linked
transcriptome information (Extended Data Fig. 9f). In particular, we
examined the expression levels of DEGs involved with the follicle neigh-
bourhoods (Fig.5a (bottom UMAP)) and identified gene pathways that
areenriched in these spatial organizations, including B-cell-receptor
signalling, T-cell-polarity regulation and tolerance induction of self
antigen pathways (Extended Data Fig. 9g). Thus, integrating CODEX
and snRNA-seq datarevealed specific expression patterns associated
with distinct cellular neighbourhoods.

Regulatory TFsin cells of the intestine

To obtain insights into the factors that control intestinal differentia-
tion, we next investigated potential transcription factors (TFs) that
regulate gene expression in intestinal cell types. We first computed
ChromVar deviation scores* for each cell in our dataset, identifying
TF motifs that are associated with chromatin accessibility in different
celltypes. As many TFs share similar motifs, examining TF expression
in conjunction with motif activity helps to identify the specific TFs
that are functional in different intestinal cell types. We next identi-
fied the TFs with the highest correlation between their gene expres-
sion and the chromatin-accessibility activity level of their putative
DNA-binding motifs* to nominate TFs that directly drive accessibility
changes. Across the intestine, this analysis revealed 61 TFs with motif
activity that was strongly correlated with expression (r > 0.5; Fig. 5b).
Broadly, we observed TFs that are active in the secretory lineage and
TFs that are active in the absorptive lineage with few TFs that partici-
pate in both (for example, KLF4 in colon enterocytes and goblet cells
throughout the intestine; Fig. 5b).

This analysis highlights many TFs that are known to have impor-
tant roles in the intestine. For example, ASCL2, a master regulator
of intestinal stem cells**, exhibited high expression and motif acces-
sibility in stem cells. Other TFs with high expression and motif activ-
ity in stem cells include NFIX, NFIC and HNF1B. Within the secretory
lineage, POU2F3, aregulator necessary for the development of tuft
cells in mice®, was highly expressed and had high motif activity in
tuft cells throughout the human intestine. When comparing the TF
footprinting signal around POU2F3 motifsin tuft cells compared with
enterocytes, we observed greater accessibility flanking POU2F3 motifs
in tuft cells, suggesting that POU2F3 is more likely to be bound to
its motif in tuft cells (Extended Data Fig. 10d). Along with POU2F3,
RUNXI1 and RUNX2 also exhibited high expression and accessibility
in tuft cells throughout the intestine, indicating that they may also
have arole in tuft cell differentiation or maintenance. Among goblet
cells, KLF4, whichis required for terminal differentiation into colonic
goblet cells in mice*®, exhibited high gene expression and motifactiv-
ity. Notably, the expression and motifactivity of KLF4 was also highin
differentiated absorptive epithelial cells (immature enterocytes and
enterocytes) in the colon, but not in other regions of the intestine,
indicating location-specific regulation.
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Several regulatory TFs were nominated in goblet cells, including
ATOHI1 and FOXA3. ATOH1is necessary for secretory lineage commit-
mentinthe mouse intestine*”*%, and here we provide data supporting
asimilar function in human goblet cells. To provide further evidence
that ATOH1 drives accessibility in goblet cells, we compared ATOH1
footprints in goblet cells and enterocytes (Extended Data Fig. 10e).
Indeed, we found greater flanking accessibility around ATOH1 motifs
ingobletcells, consistent with greater ATOH1 binding in these cells. For
FOXA3, thereis evidence that FOXA3leadsto goblet cell metaplasiain
the lungs*, and our findings indicate that it probably is animportant
regulatory TF in the colon. We noted above that goblet cells are more
abundant in the colon compared with in the small intestine, but it is
unclear whatbiases cells to differentiate into goblet cells with greater
frequencyinthe colon. Possible causesinclude differencesin signalling
inthe crypts versus differences in stem cells between the regions. We
identified motifs that are enriched in differential peaks between small
intestine and colon stem cells and found that FOX motifs are enriched
in peaks that are more accessible in colon stem cells (Extended Data
Fig.10a-c). Similarly, FOX TFs have greater motif deviation scores in
colon stem cells compared with insmallintestine stem cells (Extended
Data Fig.10a-c). As we nominate several FOX TFs as potential regula-
tors of goblet cells, increased FOX activity may partially explain why
goblet cells are more abundantin the colon.

Within enteroendocrine/enterochromaffin cells, RFX2, RFX3 and
RFX6 exhibited high expression and accessibility. Of these, RFX6is a
proposed regulator of enteroendocrine cell differentiation, and loss of
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Absorptive cells  Secretory cells Absorptive cells

thelnnerFollicle neighbourhood as determined by CODEX. Min., minimum.
CN, cellular neighbourhood. b, TFs of which theintegrated gene expression
correlated with their motifactivity in one region of the intestine. Row z-scores
of ChromVar deviation scores are shown on the left and row z-scores of
integrated TF expressionare shown on theright. Ent., enterocytes. abs.,
absorptive.

RFX6impairs enteroendocrine cell differentiation in mice®. Together,
these results support previous findings and nominate additional TFs
that may be important regulators of distinct intestinal cell types that
can vary across the different regions of the intestine (for example,
KLF4).

To help to validate these findings, we completed this analysis in the
two separate cohorts: the multiome samples and the samples with
separate snRNA and snATAC data. To examine TF expression in the
latter group, we integrated the snRNA and snATAC data using canoni-
cal correlation analysis to align the datasets and assign snRNA data to
each snATAC cell***?(Methods). This analysis reproduced many of the
findings in the multiome analysis, with 48 out of the 61 TFs originally
identified in the multiome analysis reaching the same significance
criteria (Extended Data Fig. 10f).

To determine which TFs may drive cell function in stromal and
immune cellsin theintestine, we performed the same analysis for cells
ineach ofthese compartments. Within theimmune compartment, this
analysis highlighted many TFs that are known to be important for cell
type differentiation and maintenance, including GATA2 in mast cells®
and PAXSin B cells** (Extended Data Fig.10g). Among stromal cells, we
identified TFs associated within specific lineages, including EBF1in
pericytes—whichwas recently suggested to contribute to pericyte cell
commitment>—PPARG in adipocytes® and SOX10 in glia* (Extended
DataFig.10h). We also nominate potential regulatory TFsininterstitial
cells of Cajal, including HAND1, HOXD11 and MEIS], as well as potential
regulatory TFs for different classes of intestinal fibroblasts.
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Fig. 6 | Regulation of differentiationinthe humanintestine.a, UMAP
projections depicting the cellsin the four primary regions of the intestine
(duodenum, jejunum, ileumand colon), labelled by cell type (left) and
differentiation pseudotime (right). b,c, Variable peaks (b) and genes
(c)identified along the absorptive differentiation trajectories. The rows
represent the z-scores of accessibility for each peak or expression for each
gene. The columns represent the positionin pseudotime from the startto the
end foreachsectionoftheintestine. Peaks and genes were k-means-clustered
and the clusters were labelled on the basis of the dominant time and location
where they are most accessible/expressed. d, Integrated gene expression of
TFsofwhichthe expressionis correlated with ChromVar motif activity along

Absorptive differentiation trajectories

Intestinal stem cells differentiate into mature enterocytes, goblet cells
and specialized cell types such as enteroendocrine, tuft and Paneth
cells, renewing the epithelial lining approximately every three to seven
days®. Tomap the regulatory and gene expression changes that accom-
pany stem cell differentiationinto mature enterocytes, we defined dif-
ferentiation trajectories along this pathway in the single-nucleus data
fromthe duodenum, jejunum, ileum and colon (Fig. 6aand Methods).
We next identified regions of variable chromatin accessibility (peaks)
and variable gene expression across these four differentiation trajec-
tories. An example of the variable genes is TMPRSS15, which encodes
the protein that converts trypsinogen to trypsin in the duodenum;
its expression gradually increases in more differentiated cells in the
duodenum (Extended Data Fig. 10m-p). We clustered these variable
peaks and genes to identify sets with shared behaviour (Fig. 6b,c). The
resulting clustersinclude peaks and genes that are open and expressed
early in the differentiation pseudotime (for example, in stem cells)
in all regions of the intestine, which we denote as early. This cluster
includes general markers of intestinal stem cells, including RGMB,
S0X9, SMOC2 and LGRS. Other clusters of genes and peaks include
those that are predominantly found in differentiated small intestine
cells (for example, MTTP, APOA4, APOC3, MME), in undifferentiated

Dental caries

the differentiation trajectory. e, Accessibility at peaks correlated with the
expression of ETV6 along the differentiation trajectoryineachregion (left).
Each peakis normalized to the maximum accessibility along any of the
trajectories. Right, integrated gene expression of ETV6 along the differentiation
trajectoryineachregionisplotted ontheright. Norm., normalized. f, Linkage-
disequilibrium score regression to identify the enrichment of GWAS SNPs in
cell-type-specific marker peaks. Unadjusted coefficient Pvalues computed
fromlinkage-disequilibriumscore regression are plotted in the heat map.
Significanceisindicated by an asterisk, as determined by a Bonferroni-
corrected coefficient Pvalue of <0.05. Pvalues for determining significance
were adjusted for the number of cell classes tested.

colon (for example, GPX2), in ileum (such as PLB1, CUBN) and in dif-
ferentiated colon (such as SCNN1B*, SLC26A3, CLCA4).

Toidentify both chromatin drivers of cluster-specific regulation and
relevant cluster-specific gene expression programs, we computed
TF-motifenrichmentsin each cluster of peaks (Extended Data Fig.10k)
and KEGG pathway enrichmentineach cluster of genes (Extended Data
Fig.10l). Groups of peaks accessible late in the differentiation trajecto-
ries were enriched for HNF4 and JUN/FOS motifs. As expected, genes
primarily expressed late in the differentiation trajectory in the small
intestine (late duodenumjejunum cluster) were enriched for multiple
metabolic KEGG pathways including fat digestion and absorption and
vitamin digestion and absorption.

We next identified TFs of which the gene expression is correlated
with the activity of their motifs in each of the four differentiation tra-
jectories. We found 67 TFs with expression correlated with their motif
activity (r>0.5) and plotted the integrated gene expression of these TFs
(Fig. 6d). Many TFs display similar activity along all four differentiation
trajectories. For example, ASCL2, amaster regulator inintestinal stem
cells, is highly expressed at the beginning of all four trajectories. Other
TFs, suchas ETV6, exhibit different behaviours in different regions of
theintestine. ETV6isaTF with decreased expressionin colorectal can-
cer compared within the normal colon, and genetic variationinETV6
may confer colorectal cancer susceptibility®®. We found that ETV6 is
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more highly expressed in the colon compared within the smallintestine
and, in contrasttointhe smallintestine, ETV6 expressionincreasesin
more differentiated cells in the colon.

As an example of examining how genes with unique expression
patterns may be controlled, we next investigated which regulatory
elements may be responsible for the variable expression of ETV6 in
different regions of the intestine. We identified accessibility peaks
correlated with ETV6 expression along the differentiation pseudo-
timeinanyregion of the intestine (Fig. 6e). The correlated peaks most
accessibleinthe smallintestine (exonic 1and promoter 1) became less
accessible along the differentiation trajectory, consistent with the
decreased expression along the differentiation pseudotime in these
regions. Similar behaviour was also observed in the colon, in which
these peaks became less accessible along the differentiation trajec-
tory. However, multiple other peaks exhibited increasing accessibility
in more differentiated cells only in the colon, and we speculate that
these regulatory elements may drive the increased expression of ETV6
in differentiated colon cells. The same logic can be applied to iden-
tify regulatory elements that may drive changes in gene expression
throughout theintestine. For example, we identified three peaks that
are highly correlated with expression of TMPRSS15 and may drive its
increased expressioninthe duodenum (Extended DataFig.10p). Taken
together, this analysis provides a reference for the regulation of stem
cell to enterocyte differentiation across the intestine.

We next tested whether disease heritability is enriched in cell-type-
specificmarker peaksinintestine cell types usinglinkage-disequilibrium
score regression (Fig. 6f and Methods). We identified a significant
increase in heritability for Crohn’s disease and coeliac diseasein T cell
marker peaks, consistent with theimportance of T cellsin their patho-
genesis®. We observed the most significant enrichment of heritability
for BMlin enteroendocrine cells, suggesting that genetic variation may
have aneffect on enteroendocrine cells leading to effectson BMI. As a
control, we also tested whether heritability of GWAS SNPs was enriched
in an unrelated trait (dental caries) and found no cell-type-specific
enrichment. These results map important disease traits to specific
cell typesin theintestine.

Discussion

Here we show extensive cellular complexity of the intestine including
considerable epithelial heterogeneity and new secretory cell subtypes,
that the different regions of the intestine have different cell composi-
tions, and that cells are organized into different neighbourhoods that
alsoform communities defined by both distinctareas of epithelialand
immune cells. Additionally, the open chromatin regulatory program
defined key regulators and differentiation pathways used in the dif-
ferent regions of the intestine. Our study greatly extends previous
single-cell studies by combining both spatial proteomic datasets and
single-cell RNA and ATAC technologies, and the resulting datasets serve
as auseful resource for the scientific community.

Our multiplexed imaging is the firstin-depth spatial study of single
cellsin the intestine, to our knowledge. Many of our spatial analyses
revealed importantimmune cell type organization within the intestine
(Supplementary Discussion). We observed a correlation of M1 mac-
rophages with BMI and spatial restriction of macrophage subtypes".
Althoughour donors did not have histories of gastrointestinal diseases,
anincrease in Ml macrophages may potentially indicate an early stage
of gastrointestinal disease progression. We also observed that CD8"
T cellsdecreased from the smallintestine to the colon primarily within
the CD8" T Cell-Enriched IEL neighbourhood. Notably, we also found
that CD8'T cells decrease indonors with a history of hypertension and
withinthe CD8' T Cell-Enriched IEL neighbourhood. Further investiga-
tion of T cell levels within the gut in patients with hypertension may
provide cell type mechanisms for associations of hypertension with
other diseases such as colon cancer®>®,
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We identified intestinal crypt multicellular neighbourhoods that
were co-enriched with adaptive immune cells such as CD4" and CD8*
Tcellsinthe smallbowel and colon. Inthe small bowel, stem cell crypt
areas were identified by Paneth-Cell-Enriched neighbourhoods,
whereas, in the colon, the stem cell crypt was identified with increas-
ing neuroendocrine cell density towards the bottom of the crypt. CD4*
T cells were also the most enriched cell type in the Outer Follicle multi-
cellular neighbourhood, which was present at all sites of the intestine
regardless of the presence of fully developed Inner Follicle structures
across neighbourhoods. This observation suggests that the immune
system appears structurally poised along the intestine to generate
germinal-centre-focused immune responses locally as needed. Inte-
gration of CODEX and snRNA-seq single-cell datarevealed differential
gene expression across these cellular neighbourhoods and highlighted
important gene modules for the immune response in Inner Follicle
neighbourhood structures.

We confirmed the adaptiveimmune and crypt association with hier-
archical spatial analysis and further observed discreteimmune cell com-
position zones across the intestine from an adaptive-immune-enriched
area at the base of the crypt, then a plasma-cell-enriched area in the
middle of the mucosa, with an innate-immune-enriched zone at
the top. Indeed, plasma cells had the highest same-cell density and
were also found to co-localize with antigen-presenting cells in a
multicellular neighbourhood foundinallareas of the intestine. Merg-
ing the snRNA-seq dataand CODEX data showed that plasma cellsand
transit-amplifying epithelial cells co-localized more in the colon than
in the small intestine, and this was validated by spatial transcriptom-
ics. Restriction and layering of the intestine primarily has focused
on epithelial subtypes previously, but we highlight that immune
cells share a spatial restriction and zonation. This hierarchical view
of multiplexed spatial data can serve as a template for other spatial
atlas efforts.

This study extends the work of several scRNA gut atlases®*?. These
previous scRNA datasets examined the diversity of cell types in the
human intestine, whereas the integrated snRNA and snATAC dataset
provides adetailed single-cell regulatory map of the intestine. We used
this dataset to identify TFs in different cell types of which the gene
expression is highly correlated with the accessibility of the motif to
which theybind. This identified TFs that are known to be master regu-
lators of different cell types, including POU2F3 in tuft cells, ASCL2 in
stem cells and RFX6 in enteroendocrine cells, while also nominating
many additional TFs that are probably important regulators in their
respective cell types. This includes RUNX1 and RUNX2 in Tuft cells
and FOXA3 and ATOHL1in goblet cells. Finally, with theinclusion of two
donors fromunder-represented backgrounds, our study also extends
single-cell analyses to include samples from such groups.

Withinallregions of the intestine, intestinal stem cells differentiate
into mature absorptive enterocytes. By integrating gene expression
and chromatin accessibility data along the differentiation trajecto-
riesin different regions of the intestine, we nominate TFs that exhibit
consistent behaviour across absorptive differentiation in all regions
oftheintestine. Amongthese are known intestinal stem cell regulators
such as SOX9 and ASCL2, which are highly expressed and have high
chromatin activity of their binding motifs in cells at the beginning of
the differentiation trajectory in all regions of the intestine. We also
observed differencesin TF dynamics between the trajectoriesin differ-
entregions, such as ETV6, which s highly expressed in differentiated
absorptive cells in the colon, but not other regions of the intestine.
Notably, ETV6 expressionis decreased in colorectal cancer and genetic
variation in ETV6 may confer colorectal cancer risk®®. We speculate that
ETVé6 is important for normal colon differentiation and its loss may
prevent differentiation of colon stem cells. Examining these data also
enables us to link specific regulatory elements with the expression of
TFs along the trajectory. For the case of ETV6, this analysis identifies
onedistal and threeintronicregulatory elements with similar activity



thatare probably responsible for driving expression of ETV6 along the
absorptive differentiation trajectory in the colon.

Together, these data provide a detailed atlas that can serve as a
valuable reference for future studies of the intestine. This includes
contextualizing GWAS studies of intestinal disease, similar to the
analysis performed above showing heritability of BMl is enriched in
enteroendocrine cells, and severing as a reference when comparing
disease state such as cancer to the normal colon®.

Thereare several limitations to our study. First, for each patient, we
typically analysed a single sample from each intestinal region. Second,
CODEX s limited to 54 markers and does not capture the entire breadth
of known cell types within the intestine. Third, it is also important to
note that, although there was variation of ages, all individuals were
above the age of 24, limiting our analysis of the development of the
intestine in children. Also, six out of the nine adults analysed were male.
Although our study represents two ethnicities, the patterns across a
wide range of ethnicities remain to be elucidated. We are also under-
powered to ascertain sex differences, which will probably be important
givendifferencesin disease risk for male and female individuals®. These
limitations can be addressed in the future with the investigation of
more samples.

Insummary, we present a detailed map of the humaniintestine, and
the first multiplexed imaging reference for healthy smallintestine and
colon. Inadditionto biological insights, this can serve asanimportant
reference for intestinal diseases (such asinflammatory bowel disease)
as well as comparisons with other organisms.
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Methods

Tissue collection and processing
This study complies with all relevant ethical regulations and was
approved by the Washington University Institutional Review Board
and the Stanford University Institutional Review Board. Human bowel
tissues were procured from deceased organ donors. Written informed
consent was obtained from the next-of-kin for all donor participants.
Organs were preserved according to surgical protocols to prepare
the bowel for transplantation. Inbrief, alarge-bore cannula was placed
into the infrarenal aorta before circulatory arrest. Immediately after
circulatory cessation, the abdominal viscera was rapidly cooled by
flushing ice-cold HTK preservation solution through the aortic can-
nulaand by packing the abdominal cavity withice. The bowel was kept
cold throughout the transport and dissection process until samples
could be frozen for long-term storage. Tissue samples collected from
the designated bowel sites were preserved by snap freezing in liquid
nitrogen for snRNA-seq/scATAC, and embedded and frozenin optimal
cutting temperature compound (OCT) for CODEX.

Array creation

Imaging data were collected from four human donors, each of whom
constitutes a dataset. Each dataset includes two arrays of tissues that
wereimaged together on the same coverslip with four tissues per array:
colon (sigmoid, descending, transverse and ascending), and smallintes-
tine (ileum, mid-jejunum, proximal jejunum and duodenum). Tissues
wereindividually frozenin OCT moulds and then cut and assembled into
arrays of four tissues with known directionality such that a cross-section
of eachtissue wouldbe achieved cutting the block at once. Arrays were
constructed on the cryostat and sectioned at a width of 7 pm.

Registration of samples with HuBMAP common coordinate
framework

Wehave alsoregistered these blocks within HuBMAP’s tissue registra-
tion in a common coordinate framework®. In brief, male and female
3Dreference objects for11 organsincluding the small bowel and colon
were created using Visible Human Project datasets. Using standard
surgical anatomical landmarks used to collect the eight bowelssites, the
tissue blocks were registered to the reference objects. The anatomical
landmarks used for small bowel segments were as follows: (1) descend-
ing duodenum to the right of the pancreas head; (2) 5 cm beyond the
ligament of Treitz in the jejunum; (3) 200 cm of the jejunum beyond
the ligament of Treitz in the mid-bowel; and (4) 5 cm proximal to the
ileocecal valve for terminal ileum. Five centimetres of bowel at each
site was collected, representing approximately 20 g of tissue at each
site. For the colon, the following landmarks used: (1) the right colon
midway between the ileocecal valve and the hepatic flexure; (2) the
transverse colon midway between the hepatic and splenic flexures;
(3) the left colon midway between the splenic flexure to the appearance
of the sigmoid mesentery; and (4) the sigmoid colon midway to the
rectosigmoid junction where the taenia coli ceased.

CODEX antibody conjugation and panel creation

CODEX multiplexed imaging was performed according to the CODEX
staining and imaging protocol previously described®. Antibody panels
were chosentoinclude targets thatidentify subtypes of intestinal epi-
theliumand stromal cells, and cells of the innate and adaptive immune
system. Detailed panel information is provided in Supplementary
Table 7. Each antibody was conjugated to aunique oligonucleotide bar-
code, after which the tissues were stained with the antibody-oligonu-
cleotide conjugates and we validated that the staining patterns matched
the expected patterns already established forimmunohistochemistry
within positive control tissues of the intestine or tonsil. Similarly, hae-
matoxylin and eosin morphology staining was used to confirm the
location of marker staining. First, antibody-oligonucleotide conjugates

were tested inlow-plex fluorescence assays and the signal-to-noise ratio
was also evaluated at this step, then they were tested all together in a
single CODEX multicycle.

CODEX multiplexed imaging

Thetissue arrays were then stained with the complete validated panel
of CODEX antibodies and imaged?. In brief, this entails cyclic strip-
ping, annealing and imaging of fluorescently labelled oligonucleotides
complementary to the oligonucleotide on the conjugate. After valida-
tion of the antibody-oligonucleotide conjugate panel, a test CODEX
multiplexed assay was run, during which the signal-to-noise ratio was
again evaluated, and the optimal dilution, exposure time and appropri-
ate imaging cycle was evaluated for each conjugate (Supplementary
Table 7). Finally, each array underwent CODEX multiplexed imaging.
Metadatafrom each CODEXrunare providedin Supplementary Table 8.

CODEX data processing

Rawimaging datawere then processed using the CODEX Uploader for
image stitching, drift compensation, deconvolution and cycle con-
catenation. Processed data were then segmented using the CODEX
Segmenter or CellVisionSegmenter, a watershed-based single-cell
segmentationalgorithmand a neural network R-CNN-based single-cell
segmentation algorithm, respectively. The donor sample from indi-
vidual BOO1was segmented using the CODEX Segmenter (with param-
eters tuned as described previously®), whereas all of the other donor
samples were segmented using CellVisionSegmenter. CellVisionSeg-
menter has been shown to work well with segmenting both dense and
diffuse cellular tissues with CODEX data®’. CellVisionSegmenter is an
open-source, pretrained nucleus segmentation and signal quantifica-
tion software based on the Mask region-convolutional neural network
(R-CNN) architecture. Indeed, it was designed and trained on manu-
ally annotated images from CODEX multiplexed imaging data within
our own group. Consequently, the only parameter that was altered
was the growth pixels of the nuclear mask, which we found experi-
mentally to work best at a value of 3. Despite this, no segmentation
algorithm does a perfect job of segmentation in cases in which the
boundaries identified may capture portions of neighbouring cells,
and nuclear segmentation can limit quantified signal that whole-cell
segmentation mightbe able to capture (althoughalsoimperfect from
lack of consistent cell membrane stains), which has been discussed in
more detail in reviews and primary sources of segmentation®” . For
this reason, we performed an in-depth analysis of the different data
normalization techniques and unsupervised clustering methods for
robustidentification of cell typesin CODEX intestine data. This analysis
revealed that there is some segmentation noise that could affect cell
type identification if using manual gating, but using z-normalization,
Vortex or Leiden-based unsupervised clustering, over-clustering the
dataand manually overlaying resultant cell type clusters to the image
results in cell type identification at a much higher fidelity”.

Both the CODEX Uploader and Segmenter software can be down-
loaded from GitHub (https://github.com/nolanlab/CODEX), and the
CellVisionSegmenter software is available at GitHub (https://github.
com/bmyury/CellVisionSegmenter or https://github.com/michael-
leel/CellSeg). After the upload, the images were again evaluated for
specific signal: any markers that produced an untenable pattern or
alow signal-to-noise ratio were excluded from the ensuing analysis.
Uploadedimages were visualized in ImageJ (https://imagej.nih.gov/ij/).

Cell type analysis

B0OO1 and B0O04 cell type identification was performed according
to methods developed previously”. In brief, nucleated cells were
selected by gating DRAQ5, Hoechst double-positive cells, followed
by z-normalization of protein markers used for clustering (some phe-
notypic markers were not used in the unsupervised clustering). Cells
positive (z>1) for greater than 35 fluorescent markers were removed
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from the data. Then the data were overclustered with X-shift (https://
github.com/nolanlab/vortex) or Leiden-based clustering with the
scanpy Python package (v.1.9.1). These processing steps were per-
formed based on an in-depth analysis of normalization techniques
and unsupervised clustering algorithms used for CODEX multiplexed
imaging data of the intestine™. These are not new approaches and many
packages have emerged for integrating these clustering algorithms
into libraries such as Squidpy?”. Clusters were assigned a cell type on
thebasis of average cluster protein expression and the location within
image. Impure clusters were split or reclustered after mapping back to
the original fluorescence images.

Cell type annotation using STELLAR

CODEX cell type labels were transferred to other donors using the
STELLAR framework for annotating spatially resolved single-cell data,
as we described previously™. In brief, STELLAR is a geometric deep
learning method that uses the spatial and molecular cell information
to transfer cell type labels across different datasets. While SpaGCN"®
and Spage2vec”’ can leverage spatial and molecular data to annotate
cells, these methods are unsupervised clustering methods. As such,
they require manual effort to assign cell clusters to corresponding cell
types, and canalsorequire additional manual effort for multipleitera-
tive cluster refinements. On the other hand, STELLAR automatically
identifies existing cell types and discovers cell types without requiring
manual effort, sowe used STELLAR as the preferred method. To apply
STELLAR, we used BOO4 donor data as the labelled training dataset as
defined in STELLAR. This dataset was curated and annotated by clus-
tering, merging, reclustering, subclustering and assigning cells to cell
types based on average marker expression. Each cluster’s purity and
accuracy were confirmed by location of the cell within CODEX images
with corresponding fluorescence images and also H&E staining. We
used BO04, BO05 and BOO6 donor dataset to train STELLAR and transfer
annotations to all other donor datasets that were treated as unanno-
tated test datasetsinthe STELLAR framework. We did not expect to find
any new cell types across different donors sowe used STELLAR toiden-
tify existing cell types across donors. All datasets were z-normalized
assuggested previously”. We then manually confirmed the quality of
STELLAR’s cell type assignmentsin all donor datasets by looking at aver-
age marker expression profiles of predicted cell types. We found that
protein marker distributions match expert hand-annotated profiles'2.

CODEX cell type percentage normalization

We normalized the cell type percentage to the overall cell category
for threereasons. First, we captured a cross-section of eachindividual
intestinal piece; however, afew of the intestinal pieces (4 out of 64) were
notrepresentative cross-sections. Second, with afixed CODEX imaging
window, we attempted to capture the fullmucosal area, as this contains
the majority of cell types identified by antibodies in our panel, which
led to variable amounts of the muscularis externa captured. Third, it
is useful to normalize by overall cell type to understand how cell type
compositions change across the three compartments.

CODEX same-cell density analysis

CODEX same-cell density was analysed by taking the average distance
ofthefive nearest neighbours of the same cell type for each individual
cell in each imaged region. This average distance was divided by the
most diffuse distance for same cell types. The most diffuse same cell
distance was calculated by taking the total number of cells of a given
cell type divided by the total area of the region. Thus, numbers that
areclosertolareleast dense and numbers closer to O are more dense
with cells of the same cell type.

Neighbourhood identification analysis
Neighbourhood analysis was performed as described previously®?.In
brief, this analysis involved (1) taking windows of cells across the entire

cell type map of a tissue with each cell as the centre of a window; (2)
calculating the number of each cell type within this window; (3) clus-
tering these vectors; and (4) assigning overall structure on the basis of
the average composition of the cluster (Extended DataFig. 2a). In brief,
determining window size cut-offs for cellular neighbourhood analysisis
animportant metric to be chosen. Ingeneral, smaller window sizes will
identify morelocal or microstructures, whereas larger window sizes will
lead to theidentification of similarly composed structures that require
alarger window size. For our neighbourhood analysis here, we chose
to have window size cut-offs by selecting the ten nearest neighbours
around agiven cell. This number has worked well toidentify conserved
compositions representing a cell’simmediate microenvironment or
local neighbours in other tissues'®'>?5787° We chose this strategically
to look at the microstructures at the neighbourhood level because
we also were curious to understand how these microstructures work
together and come together to form macrostructures of theintestine
atamultihierarchical scale. In general, the size of the structure does
not directly relate to the window size choice, but instead relates to
how compartmentalized the conserved cell types are within a given
structure. Neighbourhoods were overclustered to 30 clusters. These
clusters were mapped back to the tissue and evaluated for cell type
enrichments to determine overall structure and merged down into
20 unique structures.

Neighbourhood conservation analysis

To determine neighbourhood compositional (cell type) conservation
across the smallbowel and colon, neighbourhood enrichment scores
were found separately for both the small bowel and colon samples
across all donors. This enrichment score is the average cell type per-
centage within the average of the neighbourhood cluster divided by
the average cell type percentage for all cells in the tissue. The colon
enrichment scores for each cell type were subtracted from the small
bowelscoresto provide the heat map that was ordered bothin terms of
the greatest absolute sum of differences for both neighbourhood and
celltypein conservation. Thus, differencesin cell type enrichment fora
givenneighbourhoodindicate that this cell type is not compositionally
conserved across the small and large intestines for this neighbourhood
structure.

Community and tissue unit identification analysis

Communities were determined similarly to how multicellular neigh-
bourhoods were determined with some small differences. In brief,
the cells in the neighbourhood tissue maps were taken with a larger
window size of 100 nearest neighbours. These windows were taken
across the entirety of the tissue and the vectors then clustered with
k-means clustering and overclustering with 20 total clusters. These
clusters were mapped back to the tissue and evaluated for neighbour-
hood composition and enrichment to determine overall community
type. This same approach was applied to communities with a window
size of 300 nearest neighbours.

Hierarchical intestine structural graphs

Each hierarchical level was connected to the next by either what it con-
tributed to the largest in the next level, or what made up at least 15%
of this next hierarchy. The percentage of each feature in the level was
represented by size of the shape. The shape and colour combination
correspond to the level and feature respectively. The size of the con-
necting line represents the amount that a feature contributes to the
next feature.

Spatial context maps

Spatial context maps were created as previously described®. In brief,
the spatial context analysis of neighbourhood-neighbourhood or
community-community associations has some similarities with our
method to identify multicellular neighbourhoods but also contains a
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few key differences. First, windows of neighbourhoods or communities
were calculated with either 100 or 300 nearest neighbours respectively.
For the neighbourhood spatial context maps, only the cells classified
in the mucosa tissue unit were included in the analysis, whereas the
community spatial context maps included all cells from all tissues.
Once windows were calculated (number of each cell type within the
window), then the combinations representing more than 85% of the
neighbourhoods within that window were selected as acombination.
This combinationinforms about prominent associations of neighbour-
hoods or communitiesin the window, afeature that we termed spatial
context. Combinations were then counted and represented in size
by the size of the black circle underneath the square neighbourhood
combinationand only combinations that had agreater frequency than
0.1% of all combinations were plotted for visualization purposes. Each
combination was then connected to each combination containing it
with another combination in sublayers of the graph. For example, if
the Secretory Epithelial community was found to represent 85% of a
window, then this would be its own combination (purple triangle). If it
is found as a combination with the Adaptive-Immune-Enriched com-
munity, thenitis connected with thisina combination (purple triangle
and orange triangle). Similarly, if it is found as a combination with the
Plasma-Cell-Enriched community, then it is connected with thisina
combination (purple triangle and yellow triangle). The single combina-
tion is therefore connected (through black edges) to these combina-
tions (nodes) in the spatial context graph. Similarly, combinations of
the Secretory Epithelial and Adaptive-Immune-Enriched communi-
ties (purple triangle and orange triangle) derive from this combination
(for example, Secretory Epithelial, Adaptive-Immune-Enriched and
Follicle (purple, orange and blue triangles)).

Tissue motifidentification

We used a previously developed method to identify significantly
associated cellular neighbourhood-neighbourhood motifs?.
In brief, motif identification uses segmented areas of the tissue
where multiple cells of the same community are co-located, instead
of individual cells (Extended Data Fig. 5a). The tissue network graphs
therefore represent shared edges between instances of communi-
ties. To create a tissue graph for each treatment group, we took the
union of the tissue graphs of each unique imaging region. We then
created a null-set as the graph of the set of cell neighbourhood or
community assignments by a sequence of valid transpositions of cell
neighbourhood or community assignments. Permuting neighbour-
hood or community assignments and fixing the number of vertices
created the maximum entropy null distribution. Only two chains
with at least five instances were considered. To identify significant
chains, P values were Bonferroni corrected by multiplying by twice
the number of tests conducted in each comparison group (small bowel
and CL).

Tissue dissociation and nucleus isolation for single-nucleus
experiments

Nuclei wereisolated using the OmniATAC protocol®. Isolation of nuclei
was carried out on wet ice. A total of 40-60 mg of flash-frozen tissue
was gently triturated and thawed in 1 ml HB (lysis) buffer (1.0341x HB
stable solution,1 M DTT, 500 mM spermidine, 150 mM spermine, 10%
NP40, cOmplete Protease Inhibitor, Ribolock) for 5 min. Tissue was
then dounced 10 times with pestle A and 20 times with pestle B, or
until there was no resistance from either pestle. The samples were
then filtered through a 40 pm cell strainer (Falcon, 352340) and the
resulting homogenate was transferred to a prechilled 2 ml LoBind
tube. The samples were centrifuged in a 4 °C fixed-angle centrifuge
for 5 min at 350 rcfto pellet the nuclei. After centrifugation, all but
50 pl of supernatant was removed. Then, 350 pl HB was added to the
nucleus pellet for a total volume of 400 pl and the nuclei were gently
resuspended using a wide bore pipet. One volume of 50% iodixanol

(60% OptiPrep (Sigma Aldrich; D1556), diluent buffer 2 MKCI, 1M
MgCl,, 0.75 M Tricine-KOH pH 7.8), water) was added and the resulting
solution was gently triturated. Next, 600 pl of 30% iodixanol was care-
fully layered under the 25% mixture. Finally, 600 pl of 40% iodixanol
was layered under the 30% mixture. The sample was then centrifuged
for 20 min at 3,000 rcfin a 4 °C swinging-bucket centrifuge, result-
inginavisible band of nuclei. The supernatant was aspirated down to
within 200-300 pl of the nucleus band. The nucleus band was then
collected at 200 pl and transferred to a fresh 1.5 ml tube. The sample
was diluted with one volume (200 pl) of resuspension buffer (1x PBS, 1%
BSA, 0.2 U pl'Ribolock). The nucleus concentration was determined
using the Countess Il FL Automated Cell Counter (Thermo Fisher Sci-
entific, AMQAF1000).

snATAC-seq

snATAC-seq targeting 9,000 nuclei per sample was performed using
the Chromium Next GEM Single Cell ATAC Library & Gel Bead Kit
v1.1 (10x Genomics, 1000175) and the Chromium Next GEM Chip H
(10xGenomics,1000161) or ChromiumSingle Cell ATACLibrary &GelBead
Kit (10x Genomics,1000110). Libraries were sequenced on the Illumina
NovaSeq 6000 system (1.4 pM loading concentration, 50 x 8 x 16 x 49
bp read configuration) targeting an average of 25,000 reads per
nucleus.

Single-nucleus transcriptome sequencing using snRNA-seq
snRNA-seq targeting 9,000 nuclei per sample was performed using
Chromium Next GEM Single Cell 3’ Reagent Kits v3.1 (10x Genomics,
1000121) and the Chromium Next GEM Chip G Single Cell Kit (10x
Genomics, 1000120). Libraries were pooled and sequenced on the
Illumina NovaSeq 6000 system (read 1=28 bp, i7 index=8 bp, i5
index =0 bp, read 2 =91 bp read configuration) targeting an average
0f 20,000 reads per nucleus.

Single-nucleus multiome experiments

snMultiome experiments targeting 9,000 nuclei per sample were per-
formed using Chromium Chromium Next GEM Single Cell Multiome
ATAC +Gene Expression (10x Genomics,1000283). ATAC (read 1= 50 bp,
i7Zindex =8 bp,i5index = 24 bp, read 2 =49 bpread configuration) and
RNA (read1=28bp, i7 index =10 bp, i5index =10 bp, read 2=90 bp
read configuration) libraries were sequenced separately on the lllumina
NovaSeq 6000 system.

Initial processing of single-nucleus data

Initial processing of scATAC-seq data was performed using the Cell
Ranger ATAC Pipeline (https://support.10xgenomics.com/single-cell-
atac/software/pipelines/latest/what-is-cell-ranger-atac) by first
running cellranger-atac mkfastq to demultiplex the bcl files and
then running cellranger-atac count to generate scATAC fragments
files. Initial processing of snRNA-seq data was performed using the
Cell Ranger Pipeline (https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/latest/what-is-cell-ranger) by
first running cellranger mkfastq to demultiplex the bcl files and then
running cellranger count. As nuclear RNA was sequenced, data were
aligned to a pre-mRNA reference. Initial processing of the mutiome
data, including alignment and generation of fragments files and expres-
sion matrices, was performed using the Cell Ranger ARC Pipeline.

Colocalization analyses

The CODEX datawere used to compute and compare the CLQ between
all cell-type pairsin the small bowel versus the colon. The colocalization
quotient between cell type A and cell type B was calculated using the
expressionCLQ, = ,5;‘7(',3\,/7*}) (ref.81), where C,.; is the number of cells
of cell type A among the defined nearest neighbours of cell type B.
Nisthe total number of cells and N, and N are the numbers of cells for

cell type A and cell type B. Student’s t-tests, adjusted for multiple-
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hypothesis testing, were used identity statistically significant different
CLQs between the small bowel and colon.

Ligand and receptor analyses

The FANTOMS database®” and 12 more literature-supported experimen-
tally validated ligand and receptor pairs were used to obtain the final list
of validated ligand receptor pairs®. Non-parametric Wilcoxon rank-sum
tests were used to identify differentially expressed ligands and receptors
inthe small bowel versus the colon (adjusted P-value cut-off = 0.05).

Quality control, dimensionality reduction and clustering of
snATAC-seqdata

The snATAC fragments files were loaded into R (v.4.1.2) using the cre-
ateArrowFiles function in ArchR*2. Quality-control metrics were com-
puted for each cell and any cells with TSS enrichments less than 5 were
removed. Cells were also filtered on the basis of the number of unique
fragments sequenced using a unique fragment cut-off that was defined
for each individual sample. The sample-specific cut-offs enabled us
to account for differences in sequencing depth between samples and
ranged from 1,000 to 10,000, with the most common cut-off being
3,000 fragments per cell. After quality control and filtering, doublet
scores for all multiome cells and all non-multiome snATAC cells were
computed using the ArchR function addDoubletScores with k=10,
knnMethod = “UMAP” and LSIMethod =1. An ArchR project was then
created and doublets were filtered with filterDoublets with afilter ratio
of1.2. Asmall number of snATAC samples did not separate into distinct
clusters of expected cell types and were removed from downstream
analysis. For the non-multiome scATAC cells, an IterativeLSI dimension-
alityreduction was generated using addlIterativeLSI, withiterations =3,
sampleCellsPre =25000, dimsToUse =1:25 and varFeatures = 15000.
Next, clusters were added with addClusters with resolution = 1.5, nOut-
lier =20, seed =1, sampleCells =40000 and maxClusters =40, and the
resulting clusters were divided into groups on the basis of whether the
cells exhibited high gene activity scores®, a measure of accessibility
withinand around agene body, for knownimmune, stromal or epithelial
marker genes.

Quality control, dimensionality reduction and clustering of
snRNA-seq data

After running Cell Ranger, the raw_feature_bc_matrix produced by Cell
Ranger was read into R with the Seurat® function Read10X. The data
were filtered to remove nuclei with fewer than 400 unique genes per
nucleus, greater thanorequal to 10,000 genes per nucleus, greater than
or equal to 20,000 counts per nucleus, or greater than or equal to 5%
mitochondrial RNA per nuclei. To limit the contributions of ambient
RNA, we also filtered out nuclei that did not have at least three times
as many counts as the median number of countsin all droplets, which
shouldreflect the median number of countsinanempty droplet, as the
large majority of droplets are empty. This limits the fraction of RNA that
cancomefromambientRNAindropletsthatareincludedinthe dataset.
DoubletFinder®s was run for each non-multiome snRNA sample using
principal components1-20. nExp was set to 0.076 x nCells*/10,000, pN
to 0.25 and pK was determined using paramSweep_v3, and cells that
were classified as doublets were removed before downstream analysis.
snRNA data for both multiome and non-multiome cells was corrected
for possible ambient RNA correction using DecontX®¢,

The remaining cells from all samples were merged into a single
seurat object. The data was then processed using Seurat’s standard
pipeline®. First, NormalizeData was run using the method LogNormal-
ize and scale.factor of 10,000. Variable features were identified with
Seurat’s findVariableFeatures using the vst method and 2,000 features.
ScaleData was then run on all genes and principal components were
computed with RunPCA. To account for batch effects between differ-
entdonorsin clustering, the RunHarmony® function was run with the
data being grouped by donor. RunUMAP was then used to generate a

UMAP dimensionality reduction from the harmony reduction and the
cellswere clustered by first using FindNeighbors with reduction = “har-
mony” and dims =1:20 and then FindClusters with a resolution of 1.
Expression of marker genes in the resulting clusters was then used to
label clusters as epithelial, stromal orimmune for downstream analysis.

Annotation of single-nucleus data

The snATAC and snRNA data were annotated in the following groups:
epithelial duodenum, epithelial jejunum, epithelial ileum, epithelial
colon, stromaland immune. The snATAC data were further divided into
separate projects for multiome and nonmultiome cells and the RNA
annotations were used for the multiome cells while the snATAC-only
cells were annotated separately. For the ATAC data, the cellsin each of
these compartments were subset into anew ArchR project. addlItera-
tiveLSIwas then run for each compartment.addHarmony was thenrun
using the LSI dimensions as input. After computation of the harmony
dimensions, the cells were clustered using addClusters and aUMAP was
computed on the basis of the harmony coordinates using addUMAP.
Clusters were annotated by examining gene activity scores of known
marker genes. Marker genes were used for initial annotation of cell types
including BEST4" enterocytes (BEST4, OTOP2), goblet cells (MUC2,
TFF1,SYTL2),immature goblet cells (KLK1, RETNLB, CLCA1), stemcells
(RGMB, SMOC2, LGR5,ASCL2), tuft cells (SH2D6, TRPM5, BMX, LRMP,
HCK), enteroendocrine cells (SCGN, FEV, CHGA, PYY, GCG), cycling
transit-amplifying cells (TICRR, CDC25C) and Paneth cells (LYZ, DEFAS).

Within the immune compartment, we identified clusters of CD4"
and CD8" T cells (CD2, CD3E, IL7R, CD4, CD8), B cells (PAX5, MS4A1,
CD19), plasma cells (IGLL5, AMPD1), natural killer cells (SH2D1B), mac-
rophages/monocytes (CD14) and mast cells (HDC, GATA2, TPSABI1)
(Fig.4cand Extended DataFig. 6d). Naturalkiller cellsand T cells from
onedonor clustered separately from the other T cellsin the snRNA data
(Extended DataFig. 6€), possibly because this donor was much younger
(24 years) thanthe othersinthis study (Supplementary Table 1). Smooth
muscle/myofibroblast clusters exhibited high expression of ACTA2,
MTHI11 and TAGLN. Villus fibroblasts exhibited high expression of
WNTS5B and some crypt fibroblasts exhibited high expression of RSPO3.

Forthe snRNA cells, cellswere divided into six Seurat objects fromthe
compartmentslisted above. Cells fromtheimmune and stromal compart-
mentswererunthrough a pipeline analogous to the pipeline listed above
for initial clustering (NormalizeData, ScaleData, RunHarmony, Find-
Neighbors and FindClusters). For cells in the four epithelial groups, we
integrated the datausingadifferentapproach, first running SCTransform
on the epithelial cells from each sample with assay = “decontXcounts”,
method =“glmGamPoi”, and vars.to.regress = c(“percent.mt”, “percent.
ribo”). We then ran the Seurat functions SelectIntegrationFeatures with
features =3000, PrepSCTIntegration, FindIntegrationAnchors using
reference-based integration and dims 1-30, and finally IntegrateData.
WethenranRunPCA ontheintegrated datafollowed by FindNeighbors
and FindClusters to cluster the resulting integrated data.

Inaddition to removing probable doublets based onsimulating dou-
blets as described above, we also identified clusters with expression
of markers from multiple lineages (for example, stromal and immune)
during downstream clustering and annotation. For example, some
cells thatinitially clustered withimmune cells expressed higher levels
of stromal genes than would be expected. For these cases, we took the
following approach: we first clustered all of the cells initially classified as
immune cells and identified marker genes for each cluster. We next com-
pared the marker genes to a previously published list of colon marker
genes? to nominate clusters that may not contain singletimmune
cells. Next, we moved these cells to the stromal or epithelial compart-
ments, inwhichwe clustered them with all of the cells that wereinitially
classified as epithelial or stromal cells. In this case, if the cells had high
expression ofimmune marker genes when compared to stromal cells,
wereasoned that they were most likelyimmune/stromal doublets and
removed the cluster of cells before downstream analysis. After initial



annotation of epithelial cells, enteroendocrine cellsin the snRNA data
fromall samples were integrated according to the SCTransform-based
integration approach by running SCTranform on all epithelial cells from
all samples and integrating all epithelial cells using reference-based
integration as described above. After integration of all cells, we subset
only the enteroendocrine cells and then computed the principal com-
ponents using RunPCA and identifyied clusters using FindNeighbors
and FindClusters. Known subtypes of enteroendocrine cells were then
annotated based on expression of marker genes (Fig. 4 and Extended
Data Fig. 6h). To annotate the MUC6*, MUCS5B" and exocrine cells, we
subset theintegrated duodenum data and computed the principal com-
ponents using RunPCA and identified clusters using FindNeighbors and
FindClusters. Exocrine cells were annotated on the basis of expression
of CELA3B and CPB1, and MUC5B" and MUC6' cells were annotated on
the basis of expression of MUC5B and MUC6 (Fig. 4h). Comparisonsin
cell-type abundance between regions of the intestine were done using
the packages scCoda®’ and Milo™.

Peak calling for single-nucleus data

Peak calling was performed with MACS2 using ArchR>2. Peak sets were
defined independently for epithelial cells, stromal cells and immune
cells. For epithelial cells, we wanted to generate a union peak set that
captured both cell-type-specific and location-specific peaks in the
epithelial compartment. To accomplish this, we divided the cells into
groups, generated pseudobulk replicates for each group, called peaks
on the pseudobulk replicates, generated a reproducible peak set for
each group using the peaks called for the pseduobulk replicates, and
theniteratively merged the peak sets for each group into a union peak
setusingthe approachimplementedin ArchR. Groups used for epithe-
lial peak calling were the cells from each epithelial cell type—with all
enteroendocrine subtypes combined, and MUC5B*, MUC6", exocrine
and unknown cells combined—inthe four mainregions of theintestine.
Tuft cells from the small intestine were merged into a single group
owing to the low number of tuft cells in the dataset. For defining the
immune and stromal peak sets, cells were divided by cell type, but
notlocation, as there were fewer cells in these compartments. Finally,
an additional peak set for all cell types in the immune, stromal and
epithelial cell types was defined for determining marker peaks for
linkage-disequilibrium score regression.

Integration of snRNA and snATAC data

To assign snRNA profiles to the non-multiome snATAC samples, the
snRNA and snATAC datasets from the four primary regions of the intes-
tine (duodenum, jejunum, ileum and colon) were integrated separately
using the ArchR function addGenelntegrationMatrix with reduced-
Dims = “Harmony” and useMatrix = “GeneScoreMatrix”.

Nomination of regulatory TFsin single-nucleus data

We next identified TF regulators according to the ArchR manual for
identifying TF regulators for each region, with a correlation cut-off of
0.5. TFs that met the criteria for regulators in any of the four primary
regions of the intestine are plotted in Fig. 5b. This process was per-
formed separately for the multiome datasets and the integrated sin-
gleome datasets. Cell types with few cellsin each region of the intestine
(forexample, L cells) were combined into asingle group regardless of
location of origin, leading to the final cell type groupings on the x-axis
of Fig. 5b. Regulators were identified separately for cellsin theimmune
and stromal compartment with the final cell type groupingsindicated
onthex-axis of Extended Data Fig.10g,h. TF footprints were computed
using the ArchR functions getFootprints and plotFootprints.

Analysis of absorptive differentiation trajectories in single-
nucleus data

Absorptive differentiation trajectories for each main section of the
colon (duodenum, jejunum, ileum and colon) were inferred by running

the ArchR function addTrajectory with the trajectory set as harmony
clusters moving from Stem to TA2 to TAl to immature enterocytes
to enterocytes and reducedDims set to the harmony dimensions. To
identify variable peaks along the trajectory, a matrix of accessibility
in all peaks along the trajectory was first generated with getTrajec-
tory withuseMatrix = “PeakMatrix” and log2Norm = TRUE. Peaks with
variance > 0.9 in any of the four regions were then identified with the
function plotTrajectoryHeatmap with varCutOff = 0.9, returnMa-
trix = TRUE, scaleRows = FALSE and maxFeatures =100000. The four
matrices returned by getTrajectory were then concatenated into a
single matrix and the matrix was subset toinclude only peaks that met
thevariance criteriaof 0.9 in at least one of the four regions and had an
absolute difference in magnitude of at least 0.2. Row z-scores for the
resulting matrix were computed using the ArchR function.rowZscore.
Theresulting row z-scores were k-means clustered using the function
kmeans with the number of clusters set to 7 and iter.max = 500. Two
clusters of peaks did not show a characteristic pattern and were not
included in Fig. 6. Hypergeometric enrichment of motifs in marker
peaks was computed with peakAnnoEnrichment and the resulting P
values are plotted in Extended Data Fig. 10k. Variable genes along the
trajectory were identified with an analogous method, using GeneEx-
pressionMatrix for the multiome data or GenelntegrationMatrix (for
the separate snATAC and snRNA data) instead of PeakMatrix when run-
ning getTrajectory and plotTrajectoryHeatmap. For gene expression,
log2Normwas set to TRUE when running getTrajectory and genes were
filtered toinclude only those with an absolute difference in magnitude
ofatleast 0.5.Row z-scores of the resulting matrices were again k-means
clustered using the function kmeans with the number of clusters set to
7 and iter.max = 500. Enrichment of KEGG pathways in these clusters
of genes was determined using the limma function kegga®®, and the
resulting unadjusted Pvalues are plotted in Extended Data Fig. 101. Plots
of gene expression versus pseudotime were generated using the ArchR
function plotTrajectory with the default parameters, including using
imputeWeights added by addimputeWeights. TFs with correlated motif
activity and RNA expression were identified with correlateTrajectories
as outlined in the ArchR manual. The row z-scores of the smoothed
expression of TFs along the pseudotime trajectoriesis plotted in Fig. 6d.
TFsthat were correlated with expressioninany of the four trajectories
were included in the heat map in Fig. 6d. Peaks correlated with gene
expressionwere identified with addPeak2GenelLinks. InFig. 6e, the set
of peaksthat were correlated with ETV6 expressionwith a correlation
ofatleast 0.4 inone of the four main intestinal regions was determined.
For TMPRSSI5, acorrelation cut-off of 0.55 was used to show the most
correlated peaksin thefigure. The smoothed trajectory peak accessibil-
ity for each of these peaks was then plotted along the differentiation
trajectory. This process was performed separately for the multiome
datasets and the integrated singleome datasets.

Cell-type-specific linkage-disequilibrium score regression

Linkage-disequilibrium score regression is a method that aims to
distinguish heritability from confounding factors such as popula-
tion stratification and cryptic relatedness. To run cell-type-specific
linkage-disequilibrium score regression, we first computed marker
peaks for coarse cell types in our dataset. To do this, we added cell
type annotations to the full ArchR project with all cells and then
defined a peak set for this object by running addGroupCoverages
with groupBy =“CellType” followed by addReproduciblePeakSet and
addPeakMatrix. We next defined less granular cell types by merging all
myofibroblast clusters and pericytes into a single group, all non-villus
fibroblast clusters into a single group, all non-stem absorptive epi-
thelial cells into a single group, cycling TA cells into a single group,
all enteroendocrine cells except for EnteroendocrineUn into a single
group, and lymphatic endothelial and endothelial cells into a single
group. We determined marker peaks for the resulting groups of cells
with getMarkerFeatures and ten selected peaks with getMarkers with
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cutOff=“FDR<=0.1& Log2FC>=0.5".Marker peaks from cell types with
very few cells were notincluded (T cells, unknown, exocrine, secretory
specialized MUC5B*, DC, ILC, adipocytes, neurons, Enteroendocri-
neUn) The resulting peaks were then lifted over to hgl19 from hg38.
We then followed the linkage-disequilibrium score regression tutorial
(https://github.com/bulik/Idsc/wiki) for cell-type-specific analysis® ',
We used summary statistics from a number of UKBB traits (https://
nealelab.github.io/UKBB_ldsc/downloads.html) related to the intes-
tine, including non-cancer illness code;self-reported: crohns disease,
non-cancer illness code;self-reported: ulcerative colitis, non-cancer
iliness code;self-reported: malabsorption/coeliac disease, BMI as well
astraitsless clearly related to the intestine including non-cancerillness
code;self-reported: hypertension and diagnoses—main ICD10: KO2
dental caries. Coefficient Pvalues fromIdsc are plottedin the heat map
in Fig. 6. Significance was determined by correcting the coefficient
Pvalues for the number of cell types tested with Bonferroni correction
with the R function p.adjust.

Processing of single-nucleus data for ligand-receptor analysis
and snRNA-CODEX integration

The ligand-receptor analysis and scRNA-seq CODEX integration
were performed with an initial dataset consisting of samples from
donors BOO1, B0O04, BOOS and BOO6 before collection of the remain-
ing data. This dataset was annotated similarly to the full dataset with
the following differences. First, all analysis was carried outinRv.4.0.2.
Second, the quality-control cut-offs used were slightly different, with
the requirement to have three times as many RNA counts as an empty
droplet not implemented in the initial dataset. Third, when running
doubletFinder, pK was set as 0.09 instead of running paramSweep_v3.
Fourth, scTransform was not used in the subclustering analysis for
the epithelial compartments. Instead, Seurat’s standard normalize
and scale pipeline followed by Harmony was run to compute an inte-
grated dimensionality reduction that was then clustered using Seurat’s
findNeighbors and FindClusters for the immune and stromal cells as
well as the epithelial cells from the four main regions of the intestine.
As the ligand-receptor analysis involved making predictions that we
later attempted to validate using Molecular Cartography, this analysis
could not be redone with the remaining dataset.

Molecular Cartography validation of ligand-receptor pairs

Small intestine (duodenum) and colon (sigmoid/descending) sam-
ples from donors BOO4, BOO8 and BO0O9 were analysed for spatial
transcriptomics. The cryosections (thickness, 10 pm) from the same
OCT-embedded tissue arrays were placed onto the glass slides provided
by Resolve Biosciences for Molecular Cartography assay. The Molec-
ular Cartography assay was performed by the Resolve Biosciences
team with their optimized protocol ‘human colon v1.3’ and targeting
apanel of total 100 transcripts of interest, including 63 genes from our
ligand-receptor predictions (Supplementary Table 3) and 37 genes
for cell type annotation (Supplementary Table 9). Segmentation was
performed using DAPI signal with cellPose (https://github.com/Mou-
seLand/cellpose;v.2.0.5) and followed by Baysor (https://github.com/
kharchenkolab/Baysor; v.0.5.1). Gene counts were quantified per cell
and cells were removed by area (<50 or >8,000 pixels) and total gene
counts (<2). Manual cell type annotation was performed on the basis
ofthe marker gene expression after Leiden clustering (Scanpy). Asonly
37 genes were used as cell type markers and the sample number (n = 6)
islimited, only 20 cell types were identified in this dataset. To validate
the ligand-receptor repair (Supplementary Table 3), we first match the
celltype with snRNA-seqannotation. Only 58 out of 152 predictions have
matching cell types. We compared ligand and receptor expression (log
transformed) between the colon and smallintestine in their predicated
celltypes (one sided Wilcoxon rank-sum test). Pvalues were corrected
for multiple testing using the Benjamin-Hochberg procedure. In total,
15 pairs have consistent higher expressioninthe colon compared with

inthe smallintestine (both adjusted P < 0.05; Supplementary Table 6).
Permutation tests were used to assess whether the success rate (15.5%,
9 out of 58) of our validation is higher than random. Gene labels were
swapped and the same DEG procedure was repeated 10,000 times.

snRNA-seq/CODEX single-cell matching and integrational
analysis using MaxFuse

snRNA-seq cells and CODEX cells were matched and downstreaminte-
grative analysis was performed using MaxFuse, of which the meth-
odology details were described previously*. In brief, MaxFuse is an
algorithm that matches cells across different single-cell modalities by
linear assignment, using both shared (when available) and unshared
features, and implements signal boosting steps (for example, graph
smoothing and meta cell construction) to enable matching cells across
weakly correlated modalities (for example, RNA to protein). Although
various methods are available for integration tasks on modalities with
robust sharing information (such as sScRNA/scATAC)3*°*%, when such
tasks involve integration between protein and sequencing modali-
ties, with much weaker shared features available (<60 versus thou-
sands), aspecialized method is needed®. We applied MaxFuse to match
snRNA-seq cells to CODEX cells. Cells that were previously annotated
as B, T, monocyte, macrophage, plasma, goblet, endothelial, enter-
oendocrine, smooth muscle and stromal cells were used during this
integration process, whereas other cell types were not used owing to
limited sharing information across modalities. Subsequently, ashared
co-space was calculated to embed both modalities, with visualiza-
tion of the embedding (first 20 MaxFuse-components) using UMAP.
To evaluate single-cell matching performance across RNA to protein
modality, we used cell type annotation accuracy (forexample, asingle
CODEX plasma cell matched to asnRNA-seq plasma cell) as a proxy, and
both CL and small bowel matching achieved >90% accuracy. Using the
single-cell-level pairing information, we transferred the transcriptome
expression profile to each individual CODEX cell, and subsequently
performed analysis of the DEGs across various CODEX cellular neigh-
bourhoods. The DEGs were selected with the function FindAlIMarkers
inthe R package Seurat, with the parameters only.pos =TRUE, min.pct =
0.3, logfc.threshold=0.25. The genes with adjusted P < 0.05 and shared
across the CL and small bowel datasets were shown on the heat map.
Gene Ontology enrichment analysis was performed for individual CNs
with the DEGs, by using the PANTHER database. We have uploaded the
code that we used to perform the MaxFuse matching for the snRNA-seq
and CODEX datasets within the paper here (https://github.com/shuxi-
aoc/maxfuse/tree/main/Archive/hubmap_nature). Thisincludes both
the dataset preparation and analysis features of the code.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allof the datasets (snRNA-seq, snATAC-seq and CODEX) can be visual-
ized and accessed through a website portal (https://portal.hubmap-
consortium.org/). Our landing page links all of the raw dataset IDs
and the HuBMAP ID for this Collection is HBM692.JRZB.356 and the
DOl s https://doi.org/10.35079/HBM692.JRZB.356. Supplementary
Table10alsolists all of the dataset IDs within the HuBMAP portal where
allraw datasets are stored that canbe downloaded and also viewedina
processed state. We provide the processed fluorescence CODEX mul-
tiplexed image stacks (https://doi.org/10.5061/dryad.76hdr7t1p and
https://doi.org/10.5061/dryad.gmsbcc2sq). We also provide processed,
quantified and annotated single-cell CODEX datasets with labelled
cell types, neighbourhoods, communities, tissue units and also pro-
teinexpression at Dryad (https://doi.org/10.5061/dryad.pkOp2ngrf).
Processed snRNA-seq and snATAC-seq datasets are available at https://
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doi.org/10.5061/dryad.8pkOp2ns8 and https://doi.org/10.5061/
dryad.0zpc8672f. Unprocessed snRNA-seq and snATAC-seq datasets
are available at dbGaP (phs002272.v1.p1). Source data are provided
with this paper.

Code availability

Code for analysis of the snATAC and snRNA datais available at GitHub
(https://github.com/winstonbecker/scColonHuBMAP/), and code for
processing CODEX multiplexed imaging data (https://github.com/
nolanlab/CODEX)3, for clustering (https://github.com/nolanlab/vor-
tex), for transferring cell type labels with STELLAR (https://github.com/
snap-stanford/stellar), for neighbourhood analysis (https://github.
com/nolanlab/NeighborhoodCoordination), for tissue schematics
(https://github.com/nolanlab/TissueSchematics) and for MaxFuse
(https://github.com/shuxiaoc/maxfuse) is available at GitHub.
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Extended DataFig.1| CODEX mulitplexed imaging across the healthy
humanintestine reveals changesin cell compositionand organization.

A) Schematic for how CODEX multiplexed imaging was performed on arrays of
4 differentsections of either colon and smallintestine from the same donor
simultaneously. Image processing steps done to extract single-cell spatial data.
B) An example CODEX fluorescentimage of one region of the small bowel (SB)
(1of 64 tissue sections) for CODEX with 6/54 markers shown for one donor
(scalebar =1mm and magnified insert =100 pm) with C) accompanying cell
type map following cell segmentation and unsupervised clustering. D-E) Stromal
celltype percentages either asa percent of D) All stromal cells, or E) all cells
restricted to the Muscularis Externatissue unit. F) Immune cell type or G)
epithelial cell type percentages either as a percent of all cells restricted to

the Mucosatissue unit. H) Percentage of CD57+ Enterocyte cells of all cell
typesacross differentareas samples from smallintestine to colon. (for D-H:

*pvalue<0.05,** pvalue<0.01,***pvalue <0.001 by two-sided T test,
n=8donors). (Allboxplotsin figures are plotted as minimum, 25 percentile,
median, 75 percentile, maximum, and outliers as points outside 1.5 the
interquartile range). 1) Cellmap of arepresentative section (one of 8 donors)
ofthe Duodenum that shows CD57+ Enterocyte presencein glandsin the
Submucosawhere Enterocytes and TA cells are shownindark grey and Smooth
muscle cellsinlightgrey (other cell types not shown) (scale bar=500 pm).
J-K) Quantification of the same-cell density that ismeasured as an average
distance of its 5 nearest same-cell neighbours normalized by the maximal
possible same-cell distance within the tissue (n = 64 tissue sections) for )
stromal and K) epithelial cell types. L) Arepresentative cell type map (one of
64 tissue sections from 8 donors) with only plasma cells, CD8+ T cells, and
M2 Macrophages shown (scalebar=500 pum).
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(x axis) (n=32tissuesections). G-H) Cell type maps for aregion of the small
intestine (one of 64 tissue sectionsimaged from 8 donors) with G) all cell types
plotted for the whole tissue (scale bar =500 pum), H) cells contained within

the plasmacell neighbourhood (scale bar=500 um), and amagnified area of
denoted by rectangle showing subset of cell types (scale bar =50 pm).
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thesametissue as G (Hoechst=Blue, CD4=Green, CD68=magenta, CD38=yellow,
CD206=cyan, CD138=grey), (scale bar =500 pm with magnified insert
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Extended DataFig.4 | Multi-neighbourhood community analysis of neighbourhood typesin the samples. B) Quantification of neighbourhood
theintestine. A) Community analysis was done by taking awindow across typesacross eachsection of theintestine (colour legend within panel A).
neighbourhood maps and vectorizing the number of each neighbourhood C) Community percentages as a percent of allcommunities for smallintestine
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(f) Dotplot representation of expression of stromal marker genes by stromal cell
types.g) Sub-clustering of enteroendocrine cells fromall regions of the intestine.

Extended DataFig. 6 | Quality control and clustering of single-nucleus data.
(a,b) Violin plots of TSS enrichment (a) and RNA counts/cell (b) for different

h) Dotplot representation of the expression of subtype specific enteroendocrine
and enterochromaffin marker genesin different enteroendocrine cell typesin

samplesincludedinthe study. Samples are coloured by the location from which

.(c) UMAP projection of allsnRNA cells coloured by location.

(d) Dotplot representation of expression ofimmune marker genes by immune
celltypes. (e) UMAP projection of sScRNAimmune cells coloured by donor.

they were obtained

ourdatasets. ) Sub-clustering of specialized secretory cells coloured by sample.
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Extended DataFig.7 | Differential celltype abundance. a-c) Beeswarm comparingthe fraction of all cellsin each sample composed of each cell type
plotshowingthelog-fold change between the three main regions of the small forsamples from the colon, ileum, jejunum, and duodenum. e) Log2FCin
intestine and colon for groups of nearest neighbour cells from different cell abundance ofeach celltype between the regionslisted on the y-axis as
type clustersinthe stromal (a),immune (b), and epithelial (c) compartments estimated with scCODA. Only significant resultsatan FDR of 0.05 are shown,

computed with Milo. Significant changes areindicated in colour. d) Boxplots withall nonsignificant differences plotted as white.
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Extended DataFig. 8| Pairing of CODEX multiplexedimaging and snRNA-seq
for cell-cell colocalization analysis. a) Expression of B3GAT1and four CEACAM
transcripts plotted on the UMAP manifold of epithelial cells from the duodenum,
jejunum, ileum, and colon.b) Dotplot representation of the expression of B3GAT1
and four CEACAM transcripts by different epithelial cell typesindifferentregions
oftheintestine. c) Large colon (CL) and small bowel (SB) show differencesin cell-
cell co-localization patterns; annotated cell-pairs are more colocalized in the

colon compared to the smallbowel (Student’s T test, two-sided, corrected

for multiple hypothesis testing with the Benjamini Hochberg procedure).

d) SEMA4D ligand expressionin plasma cellsand MET receptor gene expression
inTA2 cells, showing higher expressionin colon than smallbowel (one-sided
Wilcoxon Rank-Sum Test). e) Differences in pairwise cell-type colocalization
patternsacrosstissue locations (n =3 samples for each location).


https://www.uniprot.org/uniprot/B3GAT1
https://www.uniprot.org/uniprot/B3GAT1

Article

Immu

4

a Per Donor Averaged TA Cell Per Donor Averaged Plasma Cell
MET Expression SEMA4D Exp ion
0.3 1o
c o
i<l S
g g
§ 0.2 § 0.5
[} w
0.1 00
Colon Small Colon Small
Bowel Bowel
b PLXNA2 5 RASA1 5 MAP2K5
p<2.22e-16 p<2.22e-16 p<2.22e-16
c e 4] T 4
S 4
é 3 3
53 2 2
X 2
2 1 1
©
© o 0 0
Colon  Small Colon  Small Colon  Small
Bowel Bowel Bowel
e Follicle Community Interactions
g 20
-t
o
(9]
j=
o
o
2

(o
Transverse Colon FN1 Myofibroblast PLAUR Enterocyte
@ Plasma = 2 |
2
@A 2 1
o
Other Cells z 7
< 17 .
z
4 4
=3
>
kel
T T T T
Colon  Small Colon  Small
— (n=8,239) Bowel (n=3,493) Bowel
(n=6,208) (n=8,804)
f ) ) CODEX Neighborhood Enriched Genes
Adaptive Immune Enriched
CD8+ T Enriched IEL
Small Bowel

Innate Immune Enriched
Inner Follicle

Innervated Smooth Muscle
Innervated Stroma
Macrovasculature <

Mature Epithelial
Microvasculature —

Outer Follicle —

Paneth Enriched

Plasma Cell Enriched
Secretory Epithelial
Smooth Muscle

Smooth Muscle & Innate Immune
Stroma

Stroma & Innate Immune
Transit Amplifying Zone

Differentially Expressed Genes

"

kl

TR

Normalized RNA

5 6 7

Extended DataFig.9|Integration of snRNA-seq and CODEX datasets.

a) Average MET expression for all TA cells from a given donor and average
SEMA4D expression for all plasmacells fromagiven donor.b) PLXNA2, RASA1L,
and MAP2KS5 expressionin TA2 cellsinlarge colon (CL) and small bowel (SB)
(one-sided Wilcoxon Rank-Sum Test). c) Representative image of adonor’s
transverse colon with plasma cells (red), TA cells (blue), and other cell types
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ligands expressed at higher levelsin the colon than the smallintestine (SI) for
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Extended DataFig.10|Regulatory TFsin theintestine. a) Hypergeometric
p-values of selected TF motifs in differential peaks between colon stemcells
and stem cells from other regions of the intestine. Colour represents the log10
adjusted p-value computed with ArchR. b) Violin plots of motif deviation scores
for FOXA3 for goblet cells,immature goblet cells, stem cells, and enterocytesin
differentregions of the intestine. c) Dotplot representation of expression of
different transcription factorsin goblet cells,immature goblet cells, stemcells,
and enterocytesindifferent regions of the intestine. d) TF motif footprints for
POU2F3in proximaljejunum tuft cellsand enterocytes. e) TF motif footprints
for ATOH1in duodenum goblet cellsand enterocytes. Errorbandsindand e
represent the standard deviation. f) Overlap of epithelial regulators identified
with the multiome dataand separate snRNA and snATAC datasets.(g, h) Heatmap
representation of transcription factors whose integrated gene expression was
correlated with their motif activity in one region of the intestine forimmune

(g) and stromal (h) cell types. Row z-scores of ChromVar deviation scores are
shownontheleftand rowz-scores of integrated TF expression are shownon
theright.i,j) Overlap ofimmune (i) and stromal (j) regulators identified with
the multiome dataand separate snRNA and snATAC datasets. k) Hypergeometric
p-values of TF motifs enrichedin the clusters of peaksidentified inb.l) Enrichment
of KEGG pathways inthe clusters of genesidentified in c. Uncorrected p-values
asdetermined by kegga are plotted. (m-o) Integrated gene expression of
MTTP (m) and SCNNI1B (n) and LGRS5 (o) along the differentiation trajectory.

(p) Accessibility at peaks correlated with the expression of TMPRSS15 along the
differentiation trajectoryineachregionis plotted ontheleft. Each peakis
normalized to the maximum accessibility along any of the trajectories. Integrated
gene expression of TMPRSS15 along the differentiation trajectoryineach
regionis plotted on theright.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X’ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X’ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O O OX O OOS

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Code for generating fragments files for scATAC and counts matricies for single cell RNA was obtained from 10x genomics
(go.10xgenomics.com/scATAC/cell-ranger-ATAC and https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/
what-is-cell-ranger). Versions for processing of the singleome datasets were cellranger-3.1.0 and cellranger-atac-1.2.0. cellranger-arc-1.0.1
was used to process the multiome samples.

And code for processing CODEX multiplexed imaging data (https://github.com/nolanlab/CODEX)

Data analysis macs2 2.1.1.20160309 — Software for peak calling
R version 4.1.2 — R environment for analysis of single cell data
ArchR - 1.0.1 - Software for analysis of snATAC-seq data.
Seurat_4.1.0 - Software for analysis of snRNA-seq data.
DoubletFinder_2.0.3 — Software for doublet removal for scRNA-seq
BSgenome.Hsapiens.UCSC.hg38 1.4.3 — Package containing genomic DNA sequences
harmony_0.1.0 - R package used for integration of single-cell data.
ggplot2_3.3.5 - R package used for plotting of single cell data.
miloR_1.2.0 - R package for analysis of differential abundance.

Python 3.9.0 - Python version for scCODA analysis

sccoda version 0.1.8 - Python package for analysis of differential abundance.
scanpy Python package (version 1.9.1) - analyzing single cell CODEX data

R version 4.2.0 — R version for GO enrichment analysis

limma_3.52.2 — Software used for GO enrichments

Lcoz Yooy

R version 4.0.2 — R environment for initial analysis of single-cell data
Seurat_4.0.1 — Software for initial analysis of snRNA-seq data.




Custom code for analyzing the snATAC and snRNA data is available on GitHub (https://github.com/winstonbecker/scColonHUBMAP).

Code for clustering (https://github.com/nolanlab/vortex), the code for transferring cell type labels with STELLAR (https://github.com/snap-
stanford/stellar), code for neighborhood analysis (https://github.com/nolanlab/NeighborhoodCoordination), and code for tissue schematics
(https://github.com/nolanlab/TissueSchematics) is available on github.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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All of the published datasets in this study can be visualized and assessed through a website portal (https://portal.hubmapconsortium.org/). We have created a
landing page with links to all the raw dataset IDs and the HUBMAP ID for this Collection is HBM692.JRZB.356 and the DOI is:10.35079/HBM692.JRZB.356.
Supplemental Table 10 also lists all the dataset IDs within the HuBMAP portal where all raw datasets are stored that can be downloaded and also viewed in a
processed state. We also provide the processed and annotated single-cell CODEX datasets with labeled cell types, neighborhoods, communities, tissue units, and
also protein expression via Dryad doi https://doi.org/10.5061/dryad.pkOp2ngrf.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were set to maximize diversity across 8 regions of the intestine while also capturing sufficient depth in single-cell techniques that
are able to capture differences in composition between cell types at resolution using multiome and CODEX multiplexed imaging modalities.

Data exclusions  All datasets generated that did not fail experimentally (e.g. overloaded sample) were included in the study.

Replication Experimental assays were not replicated in this study, but the same measurements were made for all 9 donors at all 8 regions of the intestine.
For CODEX multiplexed imaging 8 of the 9 donors included the full panel and were used for generating main figure analysis. snRNAseq and
snATACseq were completed on 3/9 samples and multiome analysis was completed on 6/9 samples.

Randomization  Randomization was not relevant for this study as there were not multiple groups requiring randomization.

Blinding No blinding was performed in this study because there were no experimental groups.
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Antibodies

Antibodies used

We provide a detailed antibody information and metadata for all the antibodies used for CODEX (>60) within Supplementary Table 7
of the submission. Here is it below:

antibody_name rr_id uniprot_accession_number lot_number dilution conjugated_cat_number conjugated_tag Validation
Anti-MUC-2 antibody AB_791261 Q02817 7/5/19 1/200 custom 63-Alexa 488 validated for IHC/IF by manufacturer
Anti-MUC-1/EMA antibody AB_2864392 P15941 10/7/20 1/100 custom 15-Alexa 488 validated for IHC/IF by manufacturer
Anti-Synaptophysin antibody AB_10010435 P08247 1/22/20 1/100 custom 69-Alexa 488 validated for IHC/IF by manufacturer
Anti-CD15 antibody AB_395800 P22083 11/2/20 1/200 custom 70-Alexa 488 validated on fresh frozen human lymphoid tissue; Eur.
J. Immunol. 2021

Anti-ITLN1 antibody AB_2129678 Q8WWAOQ 1/22/20 1/200 custom 72-Alexa 488 validated for IHC/IF by manufacturer
Anti-Vimentin antibody AB_393716 P08670 3/20/18 1/200 custom 7-Alexa 488 validated on fresh frozen human lymphoid tissue;
Eur.J. Immunol. 2021

Anti-CD11c antibody AB_395792 P20702 1/22/18 1/200 custom 44-Alexa 488 validated in lab with fresh frozen human intestine
tissue with negative and positive controls

Anti-BCL-2 antibody AB_2864404 P10415 7/30/19 1/200 custom 41-Alexa 488 validated for IHC/IF by manufacturer

Anti-CD38 antibody AB_2561794 P28907 4/13/18 1/500 custom 66-Alexa 488 validated on fresh frozen human lymphoid tissue; Eur.
J. Immunol. 2021

Anti-a-SMA antibody AB_2572996 P62736 9/10/19 1/200 custom 8-Alexa 488 validated for IHC/IF by manufacturer

Anti-CD66 antibody AB_394166 P13688 3/20/18 1/200 custom 5-Alexa 488 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD68 antibody AB_1089058 P34810 8/12/19 1/100 custom 48-Alexa 488 validated for IHC/IF by manufacturer

Anti-CD7 antibody AB_1659214 P09564 3/23/18 1/200 custom 58-Alexa 488 validated on fresh frozen human lymphoid tissue; Eur.
J. Immunol. 2021

Anti-CD45R0 antibody AB_314418 P08575 8/12/19 1/100 custom 36-Alexa 488 validated for IHC/IF by manufacturer
Anti-Collagen IV antibody AB_305584 P02462 4/13/18 1/100 custom 33-Alexa 488 validated on fresh frozen human lymphoid tissue;
Eur.J. Immunol. 2021

Anti-SOX9 antibody AB_2665492 P48436 7/5/19 1/100 custom 26-Cy3 validated for IHC/IF by manufacturer

Anti-GATA-3 antibody AB_2108590 P23771 3/23/18 1/100 custom 55-Cy3 validated for IHC/IF by manufacturer

Anti-Lefty antibody AB_2797977 000292 2/26/20 1/100 custom 71-Cy3 validated in lab with fresh frozen human intestine tissue
with negative and positive controls

Anti-CHGA antibody AB_2864388 P10645 7/25/19 1/100 custom 2-Cy3 validated for IHC/IF by manufacturer

Anti-CD4 antibody AB_2561907 P01730 1/22/18 1/200 custom 28-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-HLA-DR antibody AB_2562826 P04233 7/24/18 1/200 custom 11-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD44 antibody AB_312953 P16070 1/22/20 1/200 custom 14-Cy3 validated for IHC/IF by manufacturer

Anti-CD3 antibody AB_314056 P0O7766 3/23/18 1/200 custom 20-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD90 antibody AB_940393 P04216 3/23/18 1/200 custom 68-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD21 antibody AB_11219188 P20023 1/22/18 1/500 custom 21-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD57 antibody AB_535988 Q9P2W?7 2/22/18 1/100 custom 30-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD34 antibody AB_1732014 P28906 12/8/19 1/100 custom 80-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD36 antibody AB_395846 P16671 2/13/18 1/200 custom 49-Cy3 validated in lab with fresh frozen human intestine tissue with
negative and positive controls

Anti-Cytokeratin antibody AB_2616960 Q04695 2/22/18 1/200 custom 67-Cy3 validated on fresh frozen human lymphoid tissue;
Eur. J. Immunol. 2021

Anti-CD117 antibody AB_2131466 P10721 2/9/18 1/200 custom 74-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD19 antibody AB_395810 P15391 3/13/20 1/200 custom 75-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD45 antibody AB_314390 P08575 5/21/18 1/500 custom 56-Cy3 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD69 antibody AB_314837 Q07108 4/13/18 1/500 custom 24-Cy3 validated for IHC/IF by manufacturer

Anti-Somatostatin antibody AB_2890053 P61278 2/3/20 1/100 custom 57-Cy3 validated for IHC/IF by manufacturer

Anti-CD49a antibody AB_1236385 P56199 2/17/20 1/50 custom 46-Cy3 validated for IHC/IF by manufacturer

Anti-CD161 antibody AB_1501090 Q12918 1/22/20 1/200 custom 53-Cy3 validated for IHC/IF by manufacturer

Anti-MUC6 antibody AB_2864391 Q6W4X9 8/23/19 1/100 custom 81-Cy5 validated in lab with fresh frozen human intestine tissue
with negative and positive controls

Anti-CD31 antibody AB_395837 P16284 2/22/18 1/200 custom 42-Cy5 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD49f antibody AB_2296273 P23229 3/23/18 1/50 custom 51-Cy5 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CDX2 antibody AB_2864406 Q99626 11/22/19 1/200 custom 62-Cy5 validated for IHC/IF by manufacturer

Anti-CD127 antibody AB_10718513 P16871 2/13/18 1/100 custom 61-Cy5 validated for IHC/IF by manufacturer

Anti-CD8 antibody AB_1877104 P01732 10/7/20 1/200 custom 43-Cy5 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD16 antibody AB_395804 P08637 2/22/18 1/25 custom 52-Cy5 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD123 antibody AB_395455 P26951 2/13/18 1/25 custom 59-Cy5 validated on fresh frozen human lymphoid tissue; Eur. J.
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Validation

Immunol. 2021

Anti-CD279 (PD-L1) antibody AB_2864409 Q15116 2/22/18 1/50 custom 79-Cy5 validated for IHC/IF by manufacturer
Anti-NKG2D (CD314) antibody AB_492956 P26718 8/29/19 1/100 custom 77-Cy5 validated for IHC/IF by manufacturer
Anti-CD206 antibody AB_571923 P22897 3/29/19 1/200 custom 25-Cy5 validated for IHC/IF by manufacturer
Anti-aDefensin 5 antibody AB_2864387 Q01523 8/30/19 1/200 custom 60-Cy5 validated for IHC/IF by manufacturer
Anti-CD138 antibody AB_2561790 P18827 3/29/19 1/100 custom 76-Cy5 validated for IHC/IF by manufacturer
Anti-CK7 antibody AB_2864389 P08729 7/25/19 1/200 custom 3-Cy5 validated for IHC/IF by manufacturer
Anti-PGP9.5 antibody AB_2830054 P09936 1/22/20 1/200 custom 23-Cy5 validated for IHC/IF by manufacturer

Anti-Podoplanin antibody AB_1595511 Q86YL7 4/13/18 1/100 custom 32-Cy5 validated on fresh frozen human lymphoid tissue; Eur.

J. Immunol. 2021

Anti-CD56 antibody AB_395904 P13591 2/22/18 1/100 custom 29-Cy5 validated for IHC/IF by manufacturer

Anti-CD154 antibody AB_314825 P29965 8/22/18 1/200 custom 38-Cy5 validated for IHC/IF by manufacturer

Anti-Ki67 antibody AB_396287 P46013 4/13/18 1/25 custom 6-Cy5 validated on fresh frozen human lymphoid tissue; Eur. J.
Immunol. 2021

Anti-CD163 antibody AB_1088991 Q86VB7 3/29/19 1/100 custom 45-Cy5 validated for IHC/IF by manufacturer

Anti-CD294 antibody AB_10639863 Q9Y5Y4 3/23/18 1/100 custom 65-Cy5 validated for IHC/IF by manufacturer

Anti-CD25 antibody AB_1107617 P01589 7/18/18 1/100 custom 57-Cy3 validated for IHC/IF by manufacturer

Anti-OLFM4 antibody AB_2785318 Q6UX06 10/7/20 1/100 custom 65-Cy3 validated for IHC/IF by manufacturer
Anti-Lysozyme antibody AB_776115 P61626 7/16/20 1/25 custom 81-Cy3 validated in lab with fresh frozen human intestine tissue
with negative and positive controls

Anti-CD33 antibody AB_314342 P20138 10/7/20 1/100 custom 23-Cy3 validated for IHC/IF by manufacturer

Anti-FAP antibody AB_2532994 Q12884 2/22/20 1/25 custom 79-Cy5 validated for IHC/IF by manufacturer

Anti-CD98 antibody AB_2302070 P08195 7/16/20 1/25 custom 55-Cy5 validated for IHC/IF by manufacturer

Anti-CD147 antibody AB_314586 P35613 7/16/20 1/100 custom 71-Cy5 validated for IHC/IF by manufacturer

We provide a detailed antibody information and metadata for all the antibodies used for CODEX (>60) within Supplementary Table 7
and methods of validation from source vendor, prior publications, and within our primary data and in the above box.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Individuals at Washington University in St. Louis were identified to participate in this study. We analyzed eight sections from
nine individuals: seven European-ancestry (five males and two females), one African American male, and one African
American female. Age ranges were from 24 to 78 years.

Patients without known intestinal diseases were recruited for this study. Participants were recruited for research after next-
of-kin consented for organ donation. Given that presentation for organ donation after death is random, we do not expect
biases to be present. Our experience is that the demographic composition of recruited participants largely reflects the
composition of the local population (St. Louis, MO).

This study complies with all relevant ethical regulations and was approved by the Washington University Institutional Review
Board and the Stanford University Institutional Review Board. Human bowel tissues were procured from deceased organ
donors. Written informed consent was obtained from next-of-kin for all donor subjects.Participants were recruited for
research after next-of-kin consented for organ donation. Given that presentation for organ donation after death is random,
we do not expect biases to be present. Our experience is that the demographic composition of recruited participants largely
reflects the composition of the local population (St. Louis, MO).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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