Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determining the gluonic gravitational form factors of the proton

Abstract

The proton is one of the main building blocks of all visible matter in the Universe1. Among its intrinsic properties are its electric charge, mass and spin2. These properties emerge from the complex dynamics of its fundamental constituents—quarks and gluons—described by the theory of quantum chromodynamics3,4,5. The electric charge and spin of protons, which are shared among the quarks, have been investigated previously using electron scattering2. An example is the highly precise measurement of the electric charge radius of the proton6. By contrast, little is known about the inner mass density of the proton, which is dominated by the energy carried by gluons. Gluons are hard to access using electron scattering because they do not carry an electromagnetic charge. Here we investigated the gravitational density of gluons using a small colour dipole, through the threshold photoproduction of the J/ψ particle. We determined the gluonic gravitational form factors of the proton7,8 from our measurement. We used a variety of models9,10,11 and determined, in all cases, a mass radius that is notably smaller than the electric charge radius. In some, but not all cases, depending on the model, the determined radius agrees well with first-principle predictions from lattice quantum chromodynamics12. This work paves the way for a deeper understanding of the salient role of gluons in providing gravitational mass to visible matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Using a bremsstrahlung photon beam and the decay of the J/ψ to an e+e pair to measure the production.
Fig. 2: The differential cross-sections versus t.
Fig. 3: The gluonic gravitational form factors.

Similar content being viewed by others

Data availability

The raw data from the experiment are archived in the Jefferson Lab mass storage silo and at the Argonne National Laboratory. The analysed data are archived at the Argonne National Laboratory. The data are available in the Supplementary Information and a CSV file of the cross-section data is available in the Supplementary Data.

References

  1. National Academies of Sciences, Engineering, and Medicine. An Assessment of U.S.-Based Electron-Ion Collider Science (The National Academies Press, 2018).

  2. Particle Data Group. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

    Article  Google Scholar 

  3. Shifman, M. A., Vainshtein, A. I. & Zakharov, V. I. QCD and resonance physics. Theoretical foundations. Nucl. Phys. B 147, 385–447 (1979).

    Article  ADS  Google Scholar 

  4. Shifman, M. A., Vainshtein, A. I. & Zakharov, V. I. QCD and resonance physics. Applications. Nucl. Phys. B 147, 448–518 (1979).

    Article  ADS  Google Scholar 

  5. Shifman, M. A., Vainshtein, A. I. & Zakharov, V. I. Remarks on Higgs-boson interactions with nucleons. Phys. Lett. B 78, 443–446 (1978).

    Article  ADS  Google Scholar 

  6. Xiong, W. et al. A small proton charge radius from an electron–proton scattering experiment. Nature 575, 147–150 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Pagels, H. Energy-momentum structure form factors of particles. Phys. Rev. 144, 1250–1260 (1966).

    Article  ADS  CAS  Google Scholar 

  8. Teryaev, O. V. Gravitational form factors and nucleon spin structure. Front. Phys. 11, 111207 (2016).

    Article  ADS  Google Scholar 

  9. Kharzeev, D. E. Mass radius of the proton. Phys. Rev. D 104, 054015 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Guo, Y., Ji, X. & Liu, Y. QCD analysis of near-threshold photon-proton production of heavy quarkonium. Phys. Rev. D 103, 096010 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Mamo, K. A. & Zahed, I. Diffractive photoproduction of J/ψ and ϒ using holographic QCD: gravitational form factors and GPD of gluons in the proton. Phys. Rev. D 101, 086003 (2020).

    Article  ADS  CAS  Google Scholar 

  12. Pefkou, D. A., Hackett, D. C. & Shanahan, P. E. Gluon gravitational structure of hadrons of different spin. Phys. Rev. D 105, 054509 (2022).

    Article  ADS  CAS  Google Scholar 

  13. Wilson, K. G. Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Dürr, S. et al. Ab initio determination of light hadron masses. Science 322, 1224–1227 (2008).

    Article  ADS  PubMed  Google Scholar 

  15. Borsanyi, S. et al. Ab initio calculation of the neutron-proton mass difference. Science 347, 1452–1455 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Hatta, Y. & Yang, D.-L. Holographic J/ψ production near threshold and the proton mass problem. Phys. Rev. D 98, 074003 (2018).

    Article  ADS  CAS  Google Scholar 

  17. Hatta, Y., Rajan, A. & Tanaka, K. Quark and gluon contributions to the QCD trace anomaly. J. High Energy Phys. 12, 8 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hatta, Y., Rajan, A. & Yang, D.-L. Near threshold J/ψ and ϒ photoproduction at JLab and RHIC. Phys. Rev. D 100, 014032 (2019).

    Article  ADS  CAS  Google Scholar 

  19. Mamo, K. A. & Zahed, I. J/ψ near threshold in holographic QCD: A and D gravitational form factors. Phys. Rev. D 106, 086004 (2022).

    Article  ADS  CAS  Google Scholar 

  20. Ji, X., Liu, Y. & Zahed, I. Mass structure of hadrons and light-front sum rules in the ’t Hooft model. Phys. Rev. D 103, 074002 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Sun, P., Tong, X.-B. & Yuan, F. Perturbative QCD analysis of near threshold heavy quarkonium photoproduction at large momentum transfer. Phys. Lett. B 822, 136655 (2021).

    Article  MathSciNet  CAS  Google Scholar 

  22. Ji, X. Proton mass decomposition: naturalness and interpretations. Front. Phys. 16, 64601 (2021).

    Article  ADS  Google Scholar 

  23. Ji, X. & Liu, Y. Quantum anomalous energy effects on the nucleon mass. Sci. China Phys. Mech. Astron. 64, 281012 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Lorcé, C., Metz, A., Pasquini, B. & Rodini, S. Energy-momentum tensor in QCD: nucleon mass decomposition and mechanical equilibrium. J. High Energy Phys. 2021, 121 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Duran, B. The J/ψ-007 Experiment: A Search for the LHCb Charm Pentaquarks in Hall C at Jefferson Lab. PhD thesis, Temple Univ. (2021).

  26. Ali, A. et al. First measurement of near-threshold J/ψ exclusive photoproduction off the proton. Phys. Rev. Lett. 123, 072001 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Mamo, K. A. & Zahed, I. Nucleon mass radii and distribution: holographic QCD, lattice QCD and GlueX data. Phys. Rev. D 103, 094010 (2021).

    Article  ADS  CAS  Google Scholar 

  28. Hou, T.-J. et al. New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC. Phys. Rev. D 103, 014013 (2021).

    Article  ADS  CAS  Google Scholar 

  29. Alexandrou, C. et al. Complete flavor decomposition of the spin and momentum fraction of the proton using lattice QCD simulations at physical pion mass. Phys. Rev. D 101, 094513 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Yang, Y.-B. et al. Proton mass decomposition from the QCD energy momentum tensor. Phys. Rev. Lett. 121, 212001 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Shanahan, P. E. & Detmold, W. Gluon gravitational form factors of the nucleon and the pion from lattice QCD. Phys. Rev. D 99, 014511 (2019).

    Article  ADS  CAS  Google Scholar 

  32. Wang, R., Chen, X. & Evslin, J. The origin of proton mass from J/Ψ photo-production data. Eur. Phys. J. C 80, 507 (2020).

    Article  ADS  CAS  Google Scholar 

  33. Kharzeev, D. Quarkonium interactions in QCD. Proc. Int. Sch. Phys. Fermi 130, 105–131 (1996).

    Google Scholar 

  34. Kharzeev, D., Satz, H., Syamtomov, A. & Zinovjev, G. J/ψ photo-production and the gluon structure of the nucleon. Eur. Phys. J. C 9, 459–462 (1999).

    Article  ADS  CAS  Google Scholar 

  35. Bosted, P. E. & Christy, M. E. Empirical fit to inelastic electron-deuteron and electron-neutron resonance region transverse cross sections. Phys. Rev. C 77, 065206 (2008).

    Article  ADS  Google Scholar 

  36. Gryniuk, O., Joosten, S., Meziani, Z.-E. & Vanderhaeghen, M. ϒ photoproduction on the proton at the electron-ion collider. Phys. Rev. D 102, 014016 (2020).

    Article  ADS  CAS  Google Scholar 

  37. D’Agostini, G. A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. A 362, 487–498 (1995).

    Article  ADS  Google Scholar 

  38. Pauk, V. & Vanderhaeghen, M. Lepton universality test in the photoproduction of ee+ versus μμ+ pairs on a proton target. Phys. Rev. Lett. 115, 221804 (2015).

    Article  ADS  PubMed  Google Scholar 

  39. Mathieu, V. et al. Vector meson photoproduction with a linearly polarized beam. Phys. Rev. D 97, 094003 (2018).

    Article  ADS  CAS  Google Scholar 

  40. Ji, X. QCD analysis of the mass structure of the nucleon. Phys. Rev. Lett. 74, 1071–1074 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. He, F., Sun, P. & Yang, Y.-B. Demonstration of the hadron mass origin from the QCD trace anomaly. Phys. Rev. D 104, 074507 (2021).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract numbers DE-AC02-06CH11357 and DE-FG02-94ER40844, and contract number DE-AC05-06OR23177, under which Jefferson Science Associates operates the Thomas Jefferson National Accelerator Facility.

Author information

Authors and Affiliations

Authors

Contributions

S. Joosten, M.K.J., Z.-E.M., M.P. and E.C. are joint spokespersons for the experiment. The data analysis was carried out by B.D., S.J., M.K.J., S.P., C.P. and Z.-E.M. All authors reviewed the manuscript. The entire J/ψ-007 collaboration participated in the data collection and in the online analysis of the experiment.

Corresponding author

Correspondence to Z.-E. Meziani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Fit to differential cross-sections versus t.

The Differential cross-sections data are similar to Fig. 2 but the black solid curve is a dipole fit to the data according to ref. 9 while the grey band shows its uncertainty. The parameters are listed in Extended Data Table 2.

Extended Data Fig. 2 Mass radius and trace anomaly.

Left panel: The extracted radius as a function of the photon energy according to ref. 9 together with the GlueX result. Both our and the GlueX extractions used a dipole fit of the form factor. The charge radius from CODATA and the latest electron scattering6 (labeled PRad) are plotted as lines with error bands. The lattice result12 is plotted as a grey line with grey error band. Right panel: The extracted Ma/M according to Ji’s mass decomposition40 following32 along with a recent direct lattice calculation of the same quantity41.

Extended Data Table 1 Spectrometers Settings
Extended Data Table 2 Fitting parameters, mass radius, and trace anomaly

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–12, Supplementary Tables 1–8 and references.

Supplementary Data

CSV file and legend with the two-dimensional cross-section results.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duran, B., Meziani, ZE., Joosten, S. et al. Determining the gluonic gravitational form factors of the proton. Nature 615, 813–816 (2023). https://doi.org/10.1038/s41586-023-05730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05730-4

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing