Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The quantum twisting microscope

Abstract

The invention of scanning probe microscopy revolutionized the way electronic phenomena are visualized1. Whereas present-day probes can access a variety of electronic properties at a single location in space2, a scanning microscope that can directly probe the quantum mechanical existence of an electron at several locations would provide direct access to key quantum properties of electronic systems, so far unreachable. Here, we demonstrate a conceptually new type of scanning probe microscope—the quantum twisting microscope (QTM)—capable of performing local interference experiments at its tip. The QTM is based on a unique van der Waals tip, allowing the creation of pristine two-dimensional junctions, which provide a multitude of coherently interfering paths for an electron to tunnel into a sample. With the addition of a continuously scanned twist angle between the tip and sample, this microscope probes electrons along a line in momentum space similar to how a scanning tunnelling microscope probes electrons along a line in real space. Through a series of experiments, we demonstrate room-temperature quantum coherence at the tip, study the twist angle evolution of twisted bilayer graphene, directly image the energy bands of monolayer and twisted bilayer graphene and, finally, apply large local pressures while visualizing the gradual flattening of the low-energy band of twisted bilayer graphene. The QTM opens the way for new classes of experiments on quantum materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The QTM setup and in situ twistronics experiments.
Fig. 2: Momentum-resolved tunnelling between two twisted graphene monolayers.
Fig. 3: QTM imaging of the energy bands of TBG.
Fig. 4: Imaging the effects of applied pressure on the TBG energy bands.

Similar content being viewed by others

Data availability

The data shown in this paper are provided with this paper. Additional data that support the plots and other analysis in this work are available from the corresponding author upon request.

References

  1. Binnig, G. & Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 152–153, 17–26 (1985).

    Article  ADS  Google Scholar 

  2. Bian, K. et al. Scanning probe microscopy. Nat. Rev. Methods Primers 1, 36 (2021).

    Article  CAS  Google Scholar 

  3. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Eisenstein, J. P., Gramila, T. J., Pfeiffer, L. N. & West, K. W. Probing a two-dimensional Fermi surface by tunneling. Phys. Rev. B 44, 6511–6514 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Murphy, S. Q., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Lifetime of two-dimensional electrons measured by tunneling spectroscopy. Phys. Rev. B 52, 14825–14828 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Auslaender, O. M. et al. Tunneling spectroscopy of the elementary excitations in a one-dimensional wire. Science 295, 825–828 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Britnell, L. et al. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Fallahazad, B. et al. Gate-tunable resonant tunneling in double bilayer graphene heterostructures. Nano Lett. 15, 428–433 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wallbank, J. R. et al. Tuning the valley and chiral quantum state of Dirac electrons in van der Waals heterostructures. Science 353, 575–579 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Jang, J. et al. Full momentum- and energy-resolved spectral function of a 2D electronic system. Science 358, 901–906 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Prasad, N. et al. Quantum lifetime spectroscopy and magnetotunneling in double bilayer graphene heterostructures. Phys. Rev. Lett. 127, 117701 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Lin, K. et al. Emergence of interlayer coherence in twist-controlled graphene double layers. Phys. Rev. Lett. 129, 187701 (2022).

  16. Seo, Y. et al. Subband-resolved momentum-conserved resonant tunneling in monolayer graphene/h-BN/ABA-trilayer graphene small-twist-angle tunneling device. Appl. Phys. Lett. 120, 083102 (2022).

    Article  ADS  CAS  Google Scholar 

  17. Koren, E. et al. Coherent commensurate electronic states at the interface between misoriented graphene layers. Nat. Nanotechnol. 11, 752–757 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Chari, T., Ribeiro-Palau, R., Dean, C. R. & Shepard, K. Resistivity of rotated graphite–graphene contacts. Nano Lett. 16, 4477–4482 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  ADS  CAS  Google Scholar 

  20. Yang, Y. et al. In situ manipulation of van der Waals heterostructures for twistronics. Sci. Adv. 6, eabd3655 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, C. et al. In-situ twistable bilayer graphene. Sci. Rep. 12, 204 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Frisenda, R. et al. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 47, 53–68 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Bistritzer, R. & MacDonald, A. H. Transport between twisted graphene layers. Phys. Rev. B 81, 245412 (2010).

    Article  ADS  Google Scholar 

  24. Mele, E. J. Commensuration and interlayer coherence in twisted bilayer graphene. Phys. Rev. B 81, 161405 (2010).

    Article  ADS  Google Scholar 

  25. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    Article  ADS  CAS  Google Scholar 

  26. Zhang, H. et al. Angle-resolved photoemission spectroscopy. Nat. Rev. Methods Primers 2, 54 (2022).

    Article  CAS  Google Scholar 

  27. Feenstra, R. M., Jena, D. & Gu, G. Single-particle tunneling in doped graphene-insulator-graphene junctions. J. Appl. Phys. 111, 043711 (2012).

    Article  ADS  Google Scholar 

  28. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    Article  CAS  Google Scholar 

  29. Lopes dos Santos, J. M. B., Peres, N. M. R. & Castro Neto, A. H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 86, 155449 (2012).

    Article  ADS  Google Scholar 

  30. Carr, S., Fang, S., Jarillo-Herrero, P. & Kaxiras, E. Pressure dependence of the magic twist angle in graphene superlattices. Phys. Rev. B 98, 085144 (2018).

    Article  ADS  CAS  Google Scholar 

  31. Yankowitz, M. et al. Dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Chittari, B. L., Leconte, N., Javvaji, S. & Jung, J. Pressure induced compression of flatbands in twisted bilayer graphene. Electron. Struct. 1, 015001 (2018).

    Article  Google Scholar 

  34. Chebrolu, N. R., Chittari, B. L. & Jung, J. Flat bands in twisted double bilayer graphene. Phys. Rev. B 99, 235417 (2019).

    Article  ADS  CAS  Google Scholar 

  35. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Ares, P. et al. Tunable graphene electronics with local ultrahigh pressure. Adv. Funct. Mater. 29, 1806715 (2019).

    Article  Google Scholar 

  37. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  CAS  Google Scholar 

  38. Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Shi, Y. et al. Electronic phase separation in multilayer rhombohedral graphite. Nature 584, 210–214 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  42. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Yabuki, N. et al. Supercurrent in van der Waals Josephson junction. Nat. Commun. 7, 10616 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Farrar, L. S. et al. Superconducting quantum interference in twisted van der Waals heterostructures. Nano Lett. 21, 6725–6731 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, S. Y. F. et al. Emergent interfacial superconductivity between twisted cuprate superconductors. Preprint at https://arxiv.org/abs/2108.13455 (2021).

Download references

Acknowledgements

We thank P. Jarillo-Herrero, A. Kanigel, Y. Ronen, H. Steinberg and U. Zondiner for useful discussions and comments to the manuscript. Work was supported by the Leona M. and Harry B. Helmsley Charitable Trust grant, the Rosa and Emilio Segre Research Award, the ERC-Cog grant (See-1D-Qmatter, no. 647413) and the BSF grant (no. 2020260).

Author information

Authors and Affiliations

Authors

Contributions

A.I., J.B., J.X. and S.I. designed the experiment. A.I., J.B. and J.X. built the setup, fabricated the devices and performed the experiments. A.I., J.B., J.X. and S.I. analysed the data. J.X., B.Y., Y.O., A.S. and E.B. wrote the theoretical models. K.W. and T.T. supplied the hBN crystals. A.I., J.B., J.X., A.S., E.B. and S.I. wrote the manuscript with input from other authors.

Corresponding author

Correspondence to J. Birkbeck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Raymond Ashoori and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–14, Figs. 1–24 and additional references.

Supplementary Video 1

Imaging TBG bands under pressure.

Supplementary Video 2

Tracing the TBG flat bands with the Dirac point of MLG.

Supplementary Video 3

Tracing the MLG probe bands using the TBG Dirac point.

Supplementary Video 4

Energy-momentum-conserving states in MLG–MLG junction versus twist angle.

Supplementary Video 5

Energy-momentum-conserving states in MLG–TBG junction versus bias.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inbar, A., Birkbeck, J., Xiao, J. et al. The quantum twisting microscope. Nature 614, 682–687 (2023). https://doi.org/10.1038/s41586-022-05685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05685-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing