Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deuterium-enriched water ties planet-forming disks to comets and protostars

Abstract

Water is a fundamental molecule in the star and planet formation process, essential for catalysing the growth of solid material and the formation of planetesimals within disks1,2. However, the water snowline and the HDO:H2O ratio within proto-planetary disks have not been well characterized because water only sublimates at roughly 160 K (ref. 3), meaning that most water is frozen out onto dust grains and that the water snowline radii are less than 10 AU (astronomical units)4,5. The sun-like protostar V883 Ori (M* = 1.3 M)6 is undergoing an accretion burst7, increasing its luminosity to roughly 200 L (ref. 8), and previous observations suggested that its water snowline is 40–120 AU in radius6,9,10. Here we report the direct detection of gas phase water (HDO and \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\)) from the disk of V883 Ori. We measure a midplane water snowline radius of approximately 80 AU, comparable to the scale of the Kuiper Belt, and detect water out to a radius of roughly 160 AU. We then measure the HDO:H2O ratio of the disk to be (2.26 ± 0.63) × 10−3. This ratio is comparable to those of protostellar envelopes and comets, and exceeds that of Earth’s oceans by 3.1σ. We conclude that disks directly inherit water from the star-forming cloud and this water becomes incorporated into large icy bodies, such as comets, without substantial chemical alteration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustrations comparing a typical proto-planetary disk and the disk surrounding the outbursting protostar V883 Ori.
Fig. 2: Integrated intensity images of water and other molecular lines in the disk of V883 Ori.
Fig. 3: Radial column density measurements of water and the HDO:H2O ratio along with their disk-averaged measurements.
Fig. 4: HDO:H2O ratio for Class 0 protostars, V883 Ori, Jupiter Family comets (JFC, with 67P labelled), Oort Cloud comets (OCC), Earth’s oceans, the Sun and the local ISM.

Similar content being viewed by others

Data availability

The images used for analysis in the paper are available in the Harvard Dataverse repository (https://doi.org/10.7910/DVN/MDQJEU), along with the reduction scripts used to process the ALMA visibility data and create images. Owing to their size, the raw (and ALMA-pipeline-calibrated) visibility data are only available from the ALMA science archive (https://almascience.nrao.edu/aq/).

Code availability

Codes used for analysis are available in the Harvard Dataverse repository (https://doi.org/10.7910/DVN/MDQJEU), along with the ALMA images used for analysis. Documentation and requirements for various parts of the code are documented.

References

  1. Blum, J. & Wurm, G. The growth mechanisms of macroscopic bodies in protoplanetary disks. Annu. Rev. Astron. Astrophys. 46, 21–56 (2008).

    Article  ADS  CAS  Google Scholar 

  2. Okuzumi, S., Tanaka, H., Kobayashi, H. & Wada, K. Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752, 106 (2012).

    Article  ADS  Google Scholar 

  3. Penteado, E. M., Walsh, C. & Cuppen, H. M. Sensitivity analysis of grain surface chemistry to binding energies of ice species. Astrophys. J. 844, 71 (2017).

    Article  ADS  Google Scholar 

  4. Lecar, M., Podolak, M., Sasselov, D. & Chiang, E. On the location of the snow line in a protoplanetary disk. Astrophys. J. 640, 1115–1118 (2006).

    Article  ADS  Google Scholar 

  5. Carr, J. S., Najita, J. R. & Salyk, C. Measuring the water snow line in a protoplanetary disk. Res. Notes. Am. Astron. Soc. 2, 169 (2018).

    ADS  Google Scholar 

  6. Cieza, L. A. et al. Imaging the water snow-line during a protostellar outburst. Nature 535, 258–261 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Strom, K. M. & Strom, S. E. The discovery of two FU orionis objects in L1641. Astrophys. J. L. 412, L63 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Furlan, E. et al. The Herschel Orion protostar survey: spectral energy distributions and fits using a grid of protostellar models. Astrophys. J. Supp. 224, 5 (2016).

    Article  ADS  Google Scholar 

  9. van ’t Hoff, M. L. R. et al. Methanol and its relation to the water snowline in the disk around the young outbursting star V883 Ori. Astrophys. J. L. 864, L23 (2018).

    Article  ADS  Google Scholar 

  10. Leemker, M. et al. Chemically tracing the water snowline in protoplanetary disks with HCO+. Astron. Astrophys. 646, A3 (2021).

    Article  CAS  Google Scholar 

  11. Kounkel, M. et al. The APOGEE-2 survey of the Orion star-forming complex. II. Six-dimensional structure. Astron. J. 156, 84 (2018).

    Article  ADS  Google Scholar 

  12. ALMA Partnership. The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. L. 808, L3 (2015).

    Article  ADS  Google Scholar 

  13. Sheehan, P. D., Tobin, J. J., Looney, L. L. & Megeath S. T. The VLA/ALMA nascent disk and multiplicity (VANDAM) survey of Orion protostars VI. Insights from radiative transfer modeling. Astrophys. J. 929, 76S (2022).

  14. Pickering, E. C. Detection of new nebulae by photography. Ann. Harvard College Observ. 18, 113–117 (1890).

    ADS  Google Scholar 

  15. Lee, J.-E. et al. The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nat. Astron. 3, 314–319 (2019).

    Article  ADS  Google Scholar 

  16. Collings, M. P. et al. A laboratory survey of the thermal desorption of astrophysically relevant molecules. Mon. Not. R. Astron. Soc. 354, 1133–1140 (2004).

    Article  ADS  Google Scholar 

  17. Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C. & Dullemond, C. P. Protoplanetary disk structures in Ophiuchus. II. Extension to fainter sources. Astrophys. J. 723, 1241–1254 (2010).

    Article  ADS  CAS  Google Scholar 

  18. van Dishoeck, E. F. et al. Water in star-forming regions: physics and chemistry from clouds to disks as probed by Herschel spectroscopy. Astron. Astrophys. 648, A24 (2021).

    Article  Google Scholar 

  19. Tielens, A. G. G. M. Surface chemistry of deuterated molecules. Astron. Astrophys. 119, 177–184 (1983).

    ADS  CAS  Google Scholar 

  20. Parise, B. et al. Search for solid HDO in low-mass protostars. Astron. Astrophys. 410, 897–904 (2003).

    Article  ADS  CAS  Google Scholar 

  21. Persson, M. V., Jørgensen, J. K., van Dishoeck, E. F. & Harsono, D. The deuterium fractionation of water on solar-system scales in deeply-embedded low-mass protostars. Astron. Astrophys. 563, A74 (2014).

    Article  Google Scholar 

  22. Jensen, S. S. et al. ALMA observations of water deuteration: a physical diagnostic of the formation of protostars. Astron. Astrophys. 631, A25 (2019).

    Article  CAS  Google Scholar 

  23. Jensen, S. S. et al. ALMA observations of doubly deuterated water: inheritance of water from the prestellar environment. Astron. Astrophys. 650, A172 (2021).

    Article  CAS  Google Scholar 

  24. Altwegg, K. et al. 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Altwegg, K., Balsiger, H. & Fuselier, S. A. Cometary chemistry and the origin of icy solar system bodies: the view after Rosetta. Annu. Rev. Astron. Astrophys. 57, 113–155 (2019).

    Article  ADS  CAS  Google Scholar 

  26. Altwegg, K. et al. D2O and HDS in the coma of 67P/Churyumov-Gerasimenko. Philos. Trans. R. Soc. London Ser. A. 375, 20160253 (2017).

    ADS  Google Scholar 

  27. Owen, J. E. & Jacquet, E. Astro- and cosmochemical consequences of accretion bursts - I. The D/H ratio of water. Mon. Not. R. Astron. Soc. 446, 3285–3296 (2015).

    Article  ADS  Google Scholar 

  28. Lécluse, C. & Robert, François Hydrogen isotope exchange reaction rates: origin of water in the inner solar system. Geochim. Cosmochim. Acta 58, 2927–2939 (1994).

    Article  ADS  Google Scholar 

  29. Cleeves, L. I. et al. The ancient heritage of water ice in the solar system. Science 345, 1590–1593 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Furuya, K., van Dishoeck, E. F. & Aikawa, Y. Reconstructing the history of water ice formation from HDO/H2O and D2O/HDO ratios in protostellar cores. Astron. Astrophys. 586, A127 (2016).

    Article  Google Scholar 

  31. Furuya, K. et al. Water delivery from cores to disks: deuteration as a probe of the prestellar inheritance of H2O. Astron. Astrophys. 599, A40 (2017).

    Article  Google Scholar 

  32. Sakai, N. et al. Change in the chemical composition of infalling gas forming a disk around a protostar. Nature 507, 78–80 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Visser, R., van Dishoeck, E. F., Doty, S. D. & Dullemond, C. P. The chemical history of molecules in circumstellar disks. I. Ices. Astron. Astrophys. 495, 881–897 (2009).

    Article  ADS  CAS  Google Scholar 

  34. Drozdovskaya, M. N., Walsh, C., Visser, R., Harsono, D. & van Dishoeck, E. F. Methanol along the path from envelope to protoplanetary disc. Mon. Not. R. Astron. Soc. 445, 913–929 (2014).

    Article  ADS  CAS  Google Scholar 

  35. O’Brien, D. P., Izidoro, A., Jacobson, S. A., Raymond, S. N. & Rubie, D. C. The delivery of water during terrestrial planet formation. Space Sci. Rev. 214, 47 (2018).

    Article  ADS  Google Scholar 

  36. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI Vol. 376, Proc. Astronomical Society of the Pacific Conference Series (eds Shaw, R. A. et al.) 127 (Astron. Soc. Pacific, 2007).

  37. Teague, R. richteague/keplerian_mask: initial release. Zenodo https://doi.org/10.5281/zenodo.4321137 (2020).

  38. Teague, R. & Foreman-Mackey, D. A robust method to measure centroids of spectral lines. Rese. Notes Am. Astron. Soc. 2, 173 (2018).

    ADS  Google Scholar 

  39. Teague, R. Statistical uncertainties in moment maps of line emission. Res. Notes Am. Astron. Soc. 3, 74 (2019).

    ADS  Google Scholar 

  40. Yen, H.-W. et al. Stacking spectra in protoplanetary disks: detecting intensity profiles from hidden molecular lines in HD 163296. Astrophys. J. 832, 204 (2016).

    Article  ADS  Google Scholar 

  41. Ginsburg, A., Bally, J., Goddi, C., Plambeck, R. & Wright, M. A Keplerian disk around Orion SrCI, a ~15 M YSO. Astrophys. J. 860, 119 (2018).

    Article  ADS  Google Scholar 

  42. Brinch, C. & Hogerheijde, M. R. LIME - a flexible, non-LTE line excitation and radiation transfer method for millimeter and far-infrared wavelengths. Astron. Astrophys. 523, A25 (2010).

    Article  ADS  Google Scholar 

  43. Möller, T., Endres, C. & Schilke, P. eXtended CASA line analysis software suite (XCLASS). Astron. Astrophys. 598, A7 (2017).

    Article  ADS  Google Scholar 

  44. Goldsmith, P. F. & Langer, W. D. Population diagram analysis of molecular line emission. Astrophys. J. 517, 209–225 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Pickett, H. M. et al. Submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiat. Transf. 60, 883–890 (1998).

    Article  ADS  CAS  Google Scholar 

  46. Cheng, Y. C. et al. Water ortho-to-para ratio in the coma of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 663, A43 (2022).

    Article  CAS  Google Scholar 

  47. Hama, T., Kouchi, A. & Watanabe, N. Statistical ortho-to-para ratio of water desorbed from ice at 10 Kelvin. Science 351, 65–67 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Wilson, T. L. & Rood, R. Abundances in the interstellar medium. Annu. Rev. Astron. Astrophys. 32, 191–226 (1994).

    Article  ADS  CAS  Google Scholar 

  49. Altwegg, K. et al. Molecule-dependent oxygen isotopic ratios in the coma of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 498, 5855–5862 (2020).

    Article  ADS  CAS  Google Scholar 

  50. Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F. & Black, J. H. An atomic and molecular database for analysis of submillimetre line observations. Astron. Astrophys. 432, 369–379 (2005).

    Article  ADS  Google Scholar 

  51. Faure, A., Wiesenfeld, L., Scribano, Y. & Ceccarelli, C. Rotational excitation of mono- and doubly-deuterated water by hydrogen molecules. Mon. Not. R. Astron. Soc. 420, 699–704 (2012).

    Article  ADS  CAS  Google Scholar 

  52. Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011).

    Article  ADS  Google Scholar 

  53. Adams, F. C. The birth environment of the Solar System. Annu. Rev. Astron. Astrophys. 48, 47–85 (2010).

    Article  ADS  CAS  Google Scholar 

  54. Desch, S. J., Young, E. D., Dunham, E. T., Fujimoto, Y. & Dunlap, D. R. Short-lived radionuclides in meteorites and the Sun’s birth environment. Preprint at https://arxiv.org/abs/2203.11169 (2022).

  55. Pfalzner, S. & Vincke, K. Cradle(s) of the Sun. Astrophys. J. 897, 60 (2020).

    Article  ADS  CAS  Google Scholar 

  56. Robitaille, T. & Bressert, E. APLpy: astronomical plotting library in Python. Astrophysics Source Code Library, record ascl:1208.017 (ASCL, 2012).

  57. Astropy Collaboration et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

  58. Greenfield, P. et al. Astropy: community Python library for astronomy (ASCL, 2013).

  59. Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography: guidelines for effective and accurate colormap selection. Oceanography 29, 9–13 (2016).

    Article  Google Scholar 

  60. Hagemann, R., Nief, G. & Roth, E. Absolute isotopic scale for deuterium analysis of natural waters. absolute D/H ratio for smow. Tellus 22, 712–715 (1970).

    ADS  CAS  Google Scholar 

  61. de Laeter, J. R. et al. Atomic weights of the elements. Review 2000 (IUPAC technical report). Pure Appl. Chem. 75, 683–800 (2003).

    Article  Google Scholar 

  62. Brown, R. H., Lauretta, D. S., Schmidt, B. & Moores, J. Experimental and theoretical simulations of ice sublimation with implications for the chemical, isotopic, and physical evolution of icy objects. Planetary Space Sci. 60, 166–180 (2012).

    Article  ADS  CAS  Google Scholar 

  63. Bockelée-Morvan, D. et al. Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus 133, 147–162 (1998).

    Article  ADS  Google Scholar 

  64. Meier, R. et al. A determination of the HDO/H2O ratio in comet C/1995 O1 (Hale-Bopp). Science 279, 842 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Gibb, E. L. et al. Chemical composition of comet C/2007 N3 (Lulin): another ‘atypical’ comet. Astrophys. J. 750, 102 (2012).

    Article  ADS  Google Scholar 

  66. Villanueva, G. L. et al. A sensitive search for deuterated water in comet 8p/Tuttle. Astrophys. J. L. 690, L5–L9 (2009).

    Article  ADS  CAS  Google Scholar 

  67. Bockelée-Morvan, D. et al. Herschel measurements of the D/H and 16O/18O ratios in water in the Oort-cloud comet C/2009 P1 (Garradd). Astron. Astrophys. 544, L15 (2012).

    Article  ADS  Google Scholar 

  68. Hutsemékers, D., Manfroid, J., Jehin, E., Zucconi, J. M. & Arpigny, C. The 16OH/18OH and OD/OH isotope ratios in comet C/2002 T7 (LINEAR). Astron. Astrophys. 490, L31–L34 (2008).

    Article  ADS  Google Scholar 

  69. Biver, N. et al. Radio wavelength molecular observations of comets C/1999 T1 (McNaught-Hartley), C/2001 A2 (LINEAR), C/2000 WM1 (LINEAR) and 153P/Ikeya-Zhang. Astron. Astrophys. 449, 1255–1270 (2006).

    Article  ADS  CAS  Google Scholar 

  70. Biver, N. et al. Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy). Astron. Astrophys. 589, A78 (2016).

    Article  Google Scholar 

  71. Lis, D. C. et al. A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková and prospects for D/H measurements with CCAT. Astrophys. J. L. 774, L3 (2013).

    Article  ADS  Google Scholar 

  72. Hartogh, P. et al. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Lis, D. C. et al. Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets. Astron. Astrophys. 625, L5 (2019).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This paper makes use of the following ALMA data: ADS/JAO.ALMA#2021.1.00186.S. ALMA is a partnership of ESO (representing its member states), National Science Federation (NSF) (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This research made use of APLpy, an open-source plotting package for Python56, Astropy (http://www.astropy.org), a community-developed core Python package for Astronomy57,58, the Python package spectral-cube (https://github.com/radio-astro-tools/spectral-cube) and matplotlib colour maps from the Python package cmocean59. J.J.T. acknowledges support from the National Radio Astronomy Observatory and NASA XRP 80NSSC22K1159. M.L.R.v.H. acknowledges support from the University of Michigan Society of Fellows. M.L. acknowledges support from the Dutch Research Council (NWO) grant no. 618.000.001. E.F.v.D. acknowledges support the NWO, EU A-ERC grant no. 101019751 MOLDISK and the Danish National Research Foundation ‘InterCat’ grant (no. DNRF150). T.P.-C. acknowledges support from the European Southern Observatory. P.D.S. acknowledges support from NSF grant no. AST-2001830. D.H. is supported by Centre for Informatics and Computation in Astronomy and grant no. 110J0353I9 from the Ministry of Education of Taiwan. D.H. acknowledges support from the Ministry of Science of Technology of Taiwan through grant no. 111B3005191. L.C. acknowledges support from FONDECYT grant no. 1211656 and the Millennium Nucleus YEMS, NCN2021-080, from ANID, Chile. L.I.C. gratefully acknowledges support from the David and Lucille Packard Foundation and NASA ATP 80NSSC20K0529. K.F. acknowledges support from JSPS KAKENHI grant nos. 20H05847 and 21K13967.

Author information

Authors and Affiliations

Authors

Contributions

J.J.T. wrote the main text and led the data analysis. M.L.R.v.H. assisted with the analysis and writing. M.L. assisted with the snowline analysis and writing T.P.-C. assisted with the snowline analysis and writing. E.F.v.D. and K.F. contributed to the interpretation of results. M.V.P. created two of the figures and contributed to the interpretation of results. L.I.C., D.H., P.D.S. and L.C. contributed to the interpretation of the results and the proofing of the manuscript. All authors contributed to obtaining the observations.

Corresponding author

Correspondence to John J. Tobin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Channel maps of HDO 225 and 241 GHz emission.

The data are shown by the colour scale, the Keplerian mask is drawn as a heavy white line, and the mask corresponding to the blueshifted CH3OCHO line (Extended Data Fig. 4) is drawn as a heavy blue line for HDO 225 GHz and CH3CHO for HDO 241 GHz. The continuum peak/protostar position is marked by the white cross. The channels nearest the velocity of V883 Ori (4.25 km s−1) are marked with a star in the upper right corner. The synthesized beam is also drawn in the lower left corner of each panel.

Extended Data Fig. 2 Channel maps of \({{{\bf{H}}}_{{\bf{2}}}}^{{\bf{18}}}{\bf{O}}\) 203 GHz emission.

The data are shown by the colour scale, the Keplerian mask for \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) is drawn as a heavy white line, and the masks corresponding to the two blueshifted and one redshifted CH3OCH3 lines (Extended Data Fig. 4) are drawn as heavy blue and red lines, respectively. The continuum peak/protostar position is marked by the white cross and the channels nearest the velocity of V883 Ori (4.25 km s−1) are marked with a star in the upper right corner. Despite the faintness of the \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) line and its location between nearby COM lines, the detection of \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) is unambiguous given that its emission is detected in the expected channels for the given protostar mass. The channels with >3σ detections within the Keplerian masks are marked with asterisks in the lower right corner. The synthesized beam is drawn in the lower left corner of each panel.

Extended Data Fig. 3 Integrated intensity images of HDO and \({{{\bf{H}}}_{{\bf{2}}}}^{{\bf{18}}}{\bf{O}}\).

The HDO 241 GHz integrated intensity map created using a Keplerian mask identical to the HDO 225 GHz and \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) lines is shown in a, the HDO 241 GHz integrated intensity image between 5.05 and 7.05 km s−1 is shown in b, the HDO 225 GHz integrated intensity image using the same velocity range is shown in c, and the \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) integrated intensity image from the same velocity range is shown in d. The contours shown in bd are from the \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) image and show the intensity levels 3 and 5 times the noise (s.d.), where 1 s.d. is 0.00158 Jy beam−1 km s−1, and the integrated intensity images in these panels were computed without the use of masks or any other clipping. The 5.05 to 7.05 km s−1 velocity range had minimal contamination from other lines for HDO and \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) and effectively demonstrates the significance of the \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) detection. The extent of the continuum emission from the disk is denoted by the white contour and the position of the protostar is marked with the white cross. The HDO 241 GHz line shows very similar structure to the HDO 225 GHz line that is shown in Fig. 2 in the main text, and the dotted line in a shows the region over which the integrated intensity image was computed using the Keplerian mask. The depression in the centre of the line emission in a is the result of optically thick continuum absorbing the line emission in the inner ~ 0.1 (40 au). The extent of this optically thick region is denoted with the thick grey line in the centre of each image. The ellipses in the lower right corner denote the resolution of the line observation (orange, ~ 0.1) and the continuum data (white, ~ 0.08).

Extended Data Fig. 4 Integrated spectra of V883 Ori centered on the HDO 225 GHz, HDO 241 GHz, and \({{{\bf{H}}}_{{\bf{2}}}}^{{\bf{18}}}{\bf{O}}\) 203 GHz lines.

Panels a, c, e show the spectra as observed (disk rotation causes all spectral lines to have a double-peaked line profile), while panels b, d, f show the stacked spectra40,41 with the Keplerian rotation profile removed. The root mean squared (RMS) noise of the HDO 225 GHz, HDO 241 GHz, and \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) are 0.016, 0.017, and 0.011 Jy, respectively. The HDO lines are the brightest features around their centre frequencies, but both have contaminating emission from COM species nearby. The \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) line is faint relative to its surrounding features but is still clearly detected. We are able to model the spectral profiles for HDO, \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\), and the contaminating lines to measure their line fluxes using an optically-thin synthetic spectral model for a disk (Extended Data Fig. 5). In a, c, e, the observed spectrum is drawn as the black line, the model of the contaminating lines is drawn as an orange line, the model HDO and \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) lines are drawn as blue lines, and the total model of contaminating lines with HDO and \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) is drawn as a green line. The rise seen toward higher frequencies on the \({{{\rm{H}}}_{2}}^{18}{\rm{O}}\) spectrum (e) is another CH3OCH3 line that peaks outside the shown region. The spectra are plotted at their observed frequencies and are not corrected for the system local standard of rest (LSR) velocity of ~ 4.25 km s−1.

Extended Data Fig. 5 Plot of template spectra derived from the LIME radiative transfer model and from the observed isolated methanol lines.

The main difference between the templates is at the centre of the line profile where the methanol line has a much more shallow dip owing to line optical depth, while the optically thin LIME model has a much deeper dip at the centre and sharper peaks.

Extended Data Table 1 Spectral setup
Extended Data Table 2 Keplerian mask parameters
Extended Data Table 3 Spectral lines blended with HDO and \({{{\bf{H}}}_{{\bf{2}}}}^{{\bf{18}}}{\bf{O}}\)
Extended Data Table 4 Impact of different spectral models on line flux
Extended Data Table 5 D/H measurements

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobin, J.J., van ’t Hoff, M.L.R., Leemker, M. et al. Deuterium-enriched water ties planet-forming disks to comets and protostars. Nature 615, 227–230 (2023). https://doi.org/10.1038/s41586-022-05676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-05676-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing