Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric pore windows in MOF membranes for natural gas valorization

Abstract

To use natural gas as a feedstock alternative to coal and oil, its main constituent, methane, needs to be isolated with high purity1. In particular, nitrogen dilutes the heating value of natural gas and is, therefore, of prime importance for removal2. However, the inertness of nitrogen and its similarities to methane in terms of kinetic size, polarizability and boiling point pose particular challenges for the development of energy-efficient nitrogen-removing processes3. Here we report a mixed-linker metal–organic framework (MOF) membrane based on fumarate (fum) and mesaconate (mes) linkers, Zr-fum67-mes33-fcu-MOF, with a pore aperture shape specific for effective nitrogen removal from natural gas. The deliberate introduction of asymmetry in the parent trefoil-shaped pore aperture induces a shape irregularity, blocking the transport of tetrahedral methane while allowing linear nitrogen to permeate. Zr-fum67-mes33-fcu-MOF membranes exhibit record-high nitrogen/methane selectivity and nitrogen permeance under practical pressures up to 50 bar, removing both carbon dioxide and nitrogen from natural gas. Techno-economic analysis shows that our membranes offer the potential to reduce methane purification costs by about 66% for nitrogen rejection and about 73% for simultaneous removal of carbon dioxide and nitrogen, relative to cryogenic distillation and amine-based carbon dioxide capture.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of pore-aperture editing and shape-mismatch-induced separation based on shape difference.
Fig. 2: Synthetic guide and characterization of pore-aperture-edited Zr-fum(100−x)-mesx-fcu-MOF membranes.
Fig. 3: Separation performances of Zr-fum(100−x)-mesx-fcu-MOF membranes and diffusion energy barriers.
Fig. 4: Comprehensive evaluations of N2/CH4 separation performance of Zr-fum67-mes33-fcu-MOF membranes under practical conditions and techno-economic comparison of distillation system with membrane or hybrid membrane–distillation system.

Similar content being viewed by others

Data availability

The datasets analysed and generated during the current study are included in the paper and its Supplementary InformationSource data are provided with this paper.

References

  1. U.S. Energy Information Administration. International Energy Outlook 2021 (Narrative) (U.S. Energy Information Administration, 2021).

  2. Rufford, T. E. et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies. J. Pet. Sci. Eng. 94, 123–154 (2012).

    Article  Google Scholar 

  3. Wu, Y. & Weckhuysen, B. M. Separation and purification of hydrocarbons with porous materials. Angew. Chem. Int. Edn 60, 18930–18949 (2021).

    Article  CAS  Google Scholar 

  4. Siegelman, R. L., Kim, E. J. & Long, J. R. Porous materials for carbon dioxide separations. Nat. Mater. 20, 1060–1072 (2021).

    Article  ADS  CAS  Google Scholar 

  5. Bhatt, P. M. et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J. Am. Chem. Soc. 138, 9301–9307 (2016).

    Article  CAS  Google Scholar 

  6. Kim, E. J. et al. Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks. Science 369, 392–396 (2020).

    Article  ADS  CAS  Google Scholar 

  7. Hou, Q. et al. Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation. Angew. Chem. Int. Edn 58, 327–331 (2019).

    Article  CAS  Google Scholar 

  8. Carreon, M. A. Molecular sieve membranes for N2/CH4 separation. J. Mater. Res. 33, 32–43 (2018).

    Article  ADS  CAS  Google Scholar 

  9. Li, Y. et al. A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations. J. Membr. Sci. 632, 119349 (2021).

    Article  CAS  Google Scholar 

  10. Huang, Y., Wang, L., Song, Z., Li, S. & Yu, M. Growth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high-aspect-ratio seeds.Angew. Chem. Int. Edn 54, 10843–10847 (2015).

    Article  CAS  Google Scholar 

  11. Zong, Z., Elsaidi, S. K., Thallapally, P. K. & Carreon, M. A. Highly permeable AlPO-18 membranes for N2/CH4 separation. Ind. Eng. Chem. Res. 56, 4113–4118 (2017).

    Article  CAS  Google Scholar 

  12. Kuznicki, S. M. et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 412, 720–724 (2001).

    Article  ADS  CAS  Google Scholar 

  13. Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466–487 (2021).

    Article  ADS  CAS  Google Scholar 

  14. Zhou, S. et al. Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nat. Energy 6, 882–891 (2021).

    Article  ADS  CAS  Google Scholar 

  15. Zhou, S. et al. Paralyzed membrane: current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 4, eaau1393 (2018).

    Article  ADS  CAS  Google Scholar 

  16. Hou, Q., Zhou, S., Wei, Y., Caro, J. & Wang, H. Balancing the grain boundary structure and the framework flexibility through bimetallic metal–organic framework (MOF) membranes for gas separation. J. Am. Chem. Soc. 142, 9582–9586 (2020).

    CAS  PubMed  Google Scholar 

  17. Çağlayan, M. et al. Initial carbon–carbon bond formation during the early stages of methane dehydroaromatization. Angew. Chem. 132, 16884–16889 (2020).

    Google Scholar 

  18. Chowdhury, A. D. et al. Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons process. Angew. Chem. Int. Edn 57, 8095–8099 (2018).

    Article  CAS  Google Scholar 

  19. Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    Article  ADS  CAS  Google Scholar 

  20. Caro, J. Diffusion coefficients in nanoporous solids derived from membrane permeation measurements. Adsorption 27, 283–293 (2021).

    Article  CAS  Google Scholar 

  21. Kuo, J., Wang, K. & Chen, C. Pros and cons of different Nitrogen Removal Unit (NRU) technology. J. Nat. Gas Sci. Eng. 7, 52–59 (2012).

    Article  CAS  Google Scholar 

  22. Spatolisano, E. & Pellegrini, L. A. CO2-tolerant cryogenic nitrogen rejection schemes: analysis of their performances. Ind. Eng. Chem. Res. 60, 4420–4429 (2021).

    Article  CAS  Google Scholar 

  23. Kidnay, A. J. & Parrish, W. Fundamentals of Natural Gas Processing (CRC, 2006).

  24. Yu, C., Huang, C. & Tan, C. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 5, 745–749 (2012).

    Article  Google Scholar 

  25. Rivera-Tinoco, R. & Bouallou, C. Comparison of absorption rates and absorption capacity of ammonia solvents with MEA and MDEA aqueous blends for CO2 capture. J. Clean. Prod. 18, 875–880 (2010).

    Article  CAS  Google Scholar 

  26. Bae, H. K., Kim, S. Y. & Lee, B. Simulation of CO2 removal in a split-flow gas sweetening process. Korean. J. Chem. Eng. 28, 643–648 (2011).

    Article  CAS  Google Scholar 

  27. Poe, W. A. & Mokhatab, S. Modeling, Control, and Optimization of Natural Gas Processing Plants (Gulf Professional Publishing, 2016).

  28. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  30. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  31. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  33. Henkelman, G. Vasp TST tools. http://theory.cm.utexas.edu/vtsttools/.

Download references

Acknowledgements

We gratefully acknowledge funding from King Abdullah University of Science and Technology and the CCF programme 1972. This work was also granted access to the HPC resources of CINES under the allocation A0100907613 made by GENCI.

Author information

Authors and Affiliations

Authors

Contributions

S.Z. and M.E. conceived the idea and designed the experiments. S.Z. synthesized the materials and carried out most of the characterization. S.Z. and O.S. analysed the results. J.L. performed the gas adsorption experiments. P.M.B. contributed to the high-pressure adsorption experiments and H2S-related measurements. E.A.-H., J.J. and Z.H. contributed to the NMR characterization. H.J. contributed to the structure simulation. T.J. contributed to the element distribution mapping. P.L. and G.M. performed and analysed the molecular simulations. A.R. and J.G. contributed to the techno-economic analysis. S.Z., O.S. and M.E. wrote the manuscript. All the authors contributed to the revision of the manuscript.

Corresponding author

Correspondence to Mohamed Eddaoudi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature thanks Juergen Caro and Alexander Knebel for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file includes: Supplementary Figures 1–31; Supplementary Tables 1–4; and Supplementary Notes 1 and 2.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Shekhah, O., Ramírez, A. et al. Asymmetric pore windows in MOF membranes for natural gas valorization. Nature 606, 706–712 (2022). https://doi.org/10.1038/s41586-022-04763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04763-5

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing