Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Axial Higgs mode detected by quantum pathway interference in RTe3

Abstract

The observation of the Higgs boson solidified the standard model of particle physics. However, explanations of anomalies (for example, dark matter) rely on further symmetry breaking, calling for an undiscovered axial Higgs mode1. The Higgs mode was also seen in magnetic, superconducting and charge density wave (CDW) systems2,3. Uncovering the vector properties of a low-energy mode is challenging, and requires going beyond typical spectroscopic or scattering techniques. Here we discover an axial Higgs mode in the CDW system RTe3 using the interference of quantum pathways. In RTe3 (R = La, Gd), the electronic ordering couples bands of equal or different angular momenta4,5,6. As such, the Raman scattering tensor associated with the Higgs mode contains both symmetric and antisymmetric components, which are excited via two distinct but degenerate pathways. This leads to constructive or destructive interference of these pathways, depending on the choice of the incident and Raman-scattered light polarization. The qualitative behaviour of the Raman spectra is well captured by an appropriate tight-binding model, including an axial Higgs mode. Elucidation of the antisymmetric component is direct evidence that the Higgs mode contains an axial vector representation (that is, a pseudo-angular momentum) and hints that the CDW is unconventional. Thus, we provide a means for measuring quantum properties of collective modes without resorting to extreme experimental conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RTe3 structure and representative Raman spectra.
Fig. 2: Interference of quantum pathways.
Fig. 3: Angular-resolved Raman intensities.
Fig. 4: Additional tests of quantum interference in RTe3.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the OSF storage https://osf.io/87bxy/.

References

  1. Franzosi, D. B., Cacciapaglia, G., Cai, H., Deandrea, A. & Frandsen, M. Vector and axial-vector resonances in composite models of the Higgs boson. J. High Energy Phys. 2016, 76 (2016).

    Article  Google Scholar 

  2. Shimano, R. & Tsuji, N. Higgs mode in superconductors. Annu. Rev. Condens. Matter Phys. 11, 103–124 (2020).

    Article  CAS  Google Scholar 

  3. Pekker, D. & Varma, C. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys. 6, 269–297 (2015).

    Article  ADS  CAS  Google Scholar 

  4. Klemenz, S. et al. The role of delocalized chemical bonding in square-net-based topological semimetals. J. Am. Chem. Soc. 142, 6350–6359 (2020).

    Article  CAS  Google Scholar 

  5. Brouet, V. et al. Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe3 (R = Y, La, Ce, Sm, Gd, Tb, and Dy). Phys. Rev. B 77, 235104 (2008).

    Article  ADS  Google Scholar 

  6. Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).

    Article  ADS  CAS  Google Scholar 

  7. Podolsky, D., Auerbach, A. & Arovas, D. P. Visibility of the amplitude (Higgs) mode in condensed matter. Phys. Rev. B 84, 174522 (2011).

    Article  ADS  Google Scholar 

  8. Zeilinger, A., Gähler, R., Shull, C. G., Treimer, W. & Mampe, W. Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067–1073 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  CAS  Google Scholar 

  10. Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J. & Ong, N. P. Quantum oscillations and Hall anomaly of surface states in the topological insulator Bi2Te3. Science 329, 821–824 (2010).

    Article  ADS  CAS  Google Scholar 

  11. Ryu, C., Samson, E. C. & Boshier, M. G. Quantum interference of currents in an atomtronic SQUID. Nat. Commun. 11, 3338 (2020).

    Article  ADS  CAS  Google Scholar 

  12. Cleuziou, J.-P., Wernsdorfer, W., Bouchiat, V., Ondarçuhu, T. & Monthioux, M. Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 1, 53–59 (2006).

    Article  ADS  CAS  Google Scholar 

  13. Giazotto, F., Peltonen, J. T., Meschke, M. & Pekola, J. P. Superconducting quantum interference proximity transistor. Nat. Phys. 6, 254–259 (2010).

    Article  CAS  Google Scholar 

  14. Mittal, S., Orre, V. V., Goldschmidt, E. A. & Hafezi, M. Tunable quantum interference using a topological source of indistinguishable photon pairs. Nat. Photonics 15, 542–548 (2021).

    Article  ADS  CAS  Google Scholar 

  15. Wall, S. et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. Nat. Phys. 7, 114–118 (2011).

    Article  CAS  Google Scholar 

  16. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. Popescu, S. Dynamical quantum non-locality. Nat. Phys. 6, 151–153 (2010).

    Article  CAS  Google Scholar 

  18. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nat. Phys. 8, 871–876 (2012).

    Article  CAS  Google Scholar 

  19. Lavagnini, M. et al. Raman scattering evidence for a cascade evolution of the charge-density-wave collective amplitude mode. Phys. Rev. B 81, 081101 (2010).

    Article  ADS  Google Scholar 

  20. Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2020).

    Article  CAS  Google Scholar 

  21. Yusupov, R. V., Mertelj, T., Chu, J.-H., Fisher, I. R. & Mihailovic, D. Single-particle and collective mode couplings associated with 1- and 2-directional electronic ordering in metallic RTe3 (R = Ho, Dy, Tb). Phys. Rev. Lett. 101, 246402 (2008).

    Article  ADS  CAS  Google Scholar 

  22. Liu, H. Y. et al. Possible observation of parametrically amplified coherent phasons in K0.3MoO3 using time-resolved extreme-ultraviolet angle-resolved photoemission spectroscopy. Phys. Rev. B 88, 045104 (2013).

    Article  ADS  Google Scholar 

  23. Zocco, D. A. et al. Pressure dependence of the charge-density-wave and superconducting states in GdTe3,TbTe3, and DyTe3. Phys. Rev. B 91, 205114 (2015).

    Article  ADS  Google Scholar 

  24. Xi, X. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 10, 765–769 (2015).

    Article  ADS  CAS  Google Scholar 

  25. Yoshikawa, N. et al. Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave. Nat. Phys. 17, 909–914 (2021).

    Article  CAS  Google Scholar 

  26. Mohammadzadeh, A. et al. Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices. Appl. Phys. Lett. 118, 223101 (2021).

    Article  ADS  CAS  Google Scholar 

  27. Klein, M. V. Theory of Raman scattering from charge-density-wave phonons. Phys. Rev. B 25, 7192–7208 (1982).

    Article  ADS  CAS  Google Scholar 

  28. Wang, Y. et al. The range of non-Kitaev terms and fractional particles in α-RuCl3. npj Quantum Mater. 5, 14 (2020).

    Article  ADS  CAS  Google Scholar 

  29. Devereaux, T. P. & Hackl, R. Inelastic light scattering from correlated electrons. Rev. Mod. Phys. 79, 175–233 (2007).

    Article  ADS  CAS  Google Scholar 

  30. Cardona, M. Light Scattering in Solids 1 (Springer, 1975).

  31. Koningstein, J. A. & Mortensen, O. S. Electronic Raman spectra IV: relation between the scattering tensor and the symmetry of the crystal field. J. Opt. Soc. Am. 58, 1208 (1968).

    Article  ADS  CAS  Google Scholar 

  32. Chen, C.-F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471, 617–620 (2011).

    Article  ADS  CAS  Google Scholar 

  33. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article  ADS  CAS  Google Scholar 

  34. Friedman, J. & Hochstrasser, R. M. Interference effects in resonance Raman spectroscopy. Chem. Phys. Lett. 32, 414–419 (1975).

    Article  ADS  CAS  Google Scholar 

  35. Chen, C., Yin, Y.-Y. & Elliott, D. S. Interference between optical transitions. Phys. Rev. Lett. 64, 507–510 (1990).

    Article  ADS  CAS  Google Scholar 

  36. Eiter, H.-M. et al. Alternative route to charge density wave formation in multiband systems. Proc. Natl Acad. Sci. USA 110, 64–69 (2013).

    Article  ADS  CAS  Google Scholar 

  37. Gray, M. J. et al. A cleanroom in a glovebox. Rev. Sci. Instrum. 91, 073909 (2020).

    Article  ADS  CAS  Google Scholar 

  38. Tian, Y. et al. Low vibration high numerical aperture automated variable temperature Raman microscope. Rev. Sci. Instrum. 87, 043105 (2016).

    Article  ADS  Google Scholar 

  39. Maschek, M. et al. Competing soft phonon modes at the charge-density-wave transitions in DyTe3. Phys. Rev. B 98, 094304 (2018).

    Article  ADS  CAS  Google Scholar 

  40. Powell, R. C. Symmetry, Group Theory, and the Physical Properties of Crystals Vol. 824 (Springer, 2010).

Download references

Acknowledgements

We thank L. Benfatto and A. Chubukov for useful discussions about the CDW Raman response. Y.W. is grateful for the support of the Office of Naval Research under award number N00014-20-1-2308. K.S.B. and L.M.S. acknowledge joint support by the Air Force office of Scientific Research under award number FA9550-20-1-0246. The work of G.M. was supported by the National Science Foundation via award DMR-2003343. M.M.H. acknowledges the primary support of the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under award number DE-SC0018675. L.M.S. acknowledges support from the Gordon and Betty Moore Foundation (EPiQS Synthesis Award) through grant GBMF9064, the David and Lucile Packard Foundation and the Sloan Foundation. J.J.C. and J.L.H. gratefully acknowledge support from the Gordon and Betty Moore Foundation (EPiQS Synthesis Award). Y.-C.W. and J.Y. are supported by the National Science Foundation under award number DMR-2004474. Work by D.X. is supported by DOE award number DE-SC0012509. I.P. and P.N. are primarily supported by the Quantum Science Center (QSC), a National Quantum Information Science Research Center of the US DOE. Theory by I.P. and P.N. is supported by the QSC.  I.P. was partially supported by the Swiss National Science Foundation (SNSF) under project ID P2EZP2_199848. P.N. is a Moore Inventor Fellow and gratefully acknowledges partial support through grant GBMF8048 from the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. performed the Raman experiments and analysed the data. G.M. helped with data fitting and plotting. S.L. and L.M.S. grew the crystals. Y.-C.W. and J.Y. helped with 488 nm Raman measurement. J.L.H. and J.J.C. performed TEM measurements. I.P. and P.N. developed the theory with input from H.L. and D.X. Y.W. and M.M.H. wrote the manuscript with the help of K.S.B. K.S.B. conceived and supervised the project.

Corresponding author

Correspondence to Kenneth S. Burch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Marie Aude Measson, Tommaso Cea and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures, tables and equations.

Peer Review File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Petrides, I., McNamara, G. et al. Axial Higgs mode detected by quantum pathway interference in RTe3. Nature 606, 896–901 (2022). https://doi.org/10.1038/s41586-022-04746-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04746-6

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing