Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Emergent order in hydrodynamic spin lattices

This article has been updated

Abstract

Macroscale analogues1,2,3 of microscopic spin systems offer direct insights into fundamental physical principles, thereby advancing our understanding of synchronization phenomena4 and informing the design of novel classes of chiral metamaterials5,6,7. Here we introduce hydrodynamic spin lattices (HSLs) of ‘walking’ droplets as a class of active spin systems with particle–wave coupling. HSLs reveal various non-equilibrium symmetry-breaking phenomena, including transitions from antiferromagnetic to ferromagnetic order that can be controlled by varying the lattice geometry and system rotation8. Theoretical predictions based on a generalized Kuramoto model4 derived from first principles rationalize our experimental observations, establishing HSLs as a versatile platform for exploring active phase oscillator dynamics. The tunability of HSLs suggests exciting directions for future research, from active spin–wave dynamics to hydrodynamic analogue computation and droplet-based topological insulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spontaneous antiferromagnetic order in a 1D HSL.
Fig. 2: Tuning collective order through the lattice parameters in experiments and theory.
Fig. 3: Inducing global polarization through applied rotation.
Fig. 4: Rotation-induced polarization transition from antiferromagnetic to ferromagnetic order in 2D square lattices.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Change history

  • 05 October 2021

    This Article was amended to include links to the Supplementary Videos.

References

  1. Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).

    Article  CAS  Google Scholar 

  2. Chen, B. G.-g., Upadhyaya, N. & Vitelli, V. Nonlinear conduction via solitons in a topological mechanical insulator. Proc. Natl Acad. Sci. USA 111, 13004–13009 (2014).

    Article  ADS  MathSciNet  PubMed  PubMed Central  MATH  CAS  Google Scholar 

  3. Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Strogatz, S. H. From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Rechtsman, M. C. et al. Optimized structures for photonic quasicrystals. Phys. Rev. Lett. 101, 073902 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. van Zuiden, B. C. et al. Spatiotemporal order and emergent edge currents in active spinner materials. Proc. Natl Acad. Sci. USA 113, 12919–12924 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  7. Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys. 15, 1188–1194 (2019).

    Article  CAS  Google Scholar 

  8. Fort, E. et al. Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. USA 107, 17515–17520 (2010).

    Article  ADS  CAS  PubMed Central  Google Scholar 

  9. Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).

  10. Watson, J. D. & Crick, F. H. C. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18, 123–131 (1953).

    Article  CAS  PubMed  Google Scholar 

  11. Weinberg, S. The Quantum Theory of Fields Vol. 2 (Cambridge Univ. Press, 1996).

  12. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Chumak, A. V. et al. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  14. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Schneider, U. et al. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science 322, 1520–1525 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Cheuk, L. W. et al. Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 193001 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  18. Buluta, I., Asshab, S. & Nori, F. Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011).

    Article  ADS  CAS  Google Scholar 

  19. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  21. Biktashev, V. N., Barkley, D. & Biktasheva, I. V. Orbital motion of spiral waves in excitable media. Phys. Rev. Lett. 104, 058302 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Totz, J. F. et al. Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys. 14, 282–285 (2018).

    Article  CAS  Google Scholar 

  23. Wioland, H. et al. Ferromagnetic and antiferromagnetic order in bacterial vortex lattices. Nat. Phys. 12, 341–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishiguchi, D. et al. Engineering bacterial vortex lattice via direct laser lithography. Nat. Commun. 9, 4486 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  25. Riedel, I. H., Kruse, K. & Howard, J. A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300–303 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Souslov, A. et al. Topological sound in active-liquid metamaterials. Nat. Phys. 13, 1091–1094 (2017).

    Article  CAS  Google Scholar 

  27. Sáenz, P. J. et al. Spin lattices of walking droplets. Phys. Rev. Fluids 3, 100508 (2018).

    Article  ADS  Google Scholar 

  28. Couder, Y. et al. Dynamical phenomena: walking and orbiting droplets. Nature 437, 208 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Bush, J. W. M. Pilot-wave hydrodynamics. Ann. Rev. Fluid Mech. 47, 269–292 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  30. Lindner, B. et al. Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004).

    Article  ADS  Google Scholar 

  31. Cumin, D. & Unsworth, C. P. Generalising the Kuramoto model for the study of neuronal synchronization in the brain. Physica D 226, 181–196 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Matheny, M. H. et al. Exotic states in a simple network of nanoelectromechanical oscillators. Science 363, eaav7932 (2019).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  33. Dörfler, F. & Bullo, F. Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  34. Protière, S., Boudaoud, A. & Couder, Y. Particle-wave association on a fluid interface.J. Fluid Mech. 554, 85–108 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Eddi, A. et al. Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433–463 (2011).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  36. Moláček, J. & Bush, J. W. M. Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612–647 (2013).

    Article  ADS  MATH  Google Scholar 

  37. Sáenz, P. J., Cristea-Platon, T. & Bush, J. W. M. A hydrodynamic analog of Friedel oscillations. Sci. Adv. 6, eaay9234 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  ADS  CAS  Google Scholar 

  39. Ronellenfitsch, H. et al. Inverse design of discrete mechanical metamaterials. Phys. Rev. Mater. 3, 095201 (2019).

    Article  CAS  Google Scholar 

  40. Lagendijk, A., Van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24 (2009).

    Article  CAS  Google Scholar 

  41. Oza, A. U., Rosales, R. R. & Bush, J. W. M. Hydrodynamic spin states. Chaos 28, 096106 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  42. Oza, A. U., Rosales, R. R. & Bush, J. W. M. A trajectory equation for walking droplets: hydrodynamic pilotwave theory. J. Fluid Mech. 737, 552–570 (2013).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  43. Labousse, M. et al. Self-attraction into spinning eigenstates of a mobile wave source by its emission backreaction. Phys. Rev. E 94, 042224 (2016).

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  44. Perrard, S. et al. Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  45. Eddi, A. et al. Level splitting at macroscopic scale. Phys. Rev. Lett. 108, 264503 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Harris, D. M. & Bush, J. W. M. Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444–464 (2014).

    Article  ADS  CAS  Google Scholar 

  47. Oza, A. U. et al. Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404–429 (2014).

    Article  ADS  Google Scholar 

  48. Sáenz, P. J., Cristea-Platon, T. & Bush, J. W. M. Statistical projection effects in a hydrodynamic pilot-wave system. Nat. Phys. 14, 315–319 (2018).

    Article  CAS  Google Scholar 

  49. Eddi, A. et al. Archimedean lattices in the bound states of wave interacting particles. Europhys. Lett. 87, 56002 (2009).

    Article  ADS  CAS  Google Scholar 

  50. Eddi, A., Boudaoud, A. & Couder, Y. Oscillating instability in bouncing droplet crystals. Europhys. Lett. 94, 20004 (2011).

    Article  ADS  CAS  Google Scholar 

  51. Thomson, S. J., Couchman, M. M. P. & Bush, J. W. M. Collective vibrations of confined levitating droplets. Phys. Rev. Fluids 5, 083601 (2020).

    Article  ADS  Google Scholar 

  52. Thomson, S. J., Durey, M. & Rosales, R. R. Collective vibrations of a hydrodynamic active lattice. Proc. R. Soc. A 476, 20200155 (2020).

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  53. Couchman, M. M. P. & Bush, J. W. M. Free rings of bouncing droplets: stability and dynamics. J. Fluid Mech. 903, A49 (2020).

    Article  ADS  CAS  MATH  Google Scholar 

  54. Nachbin, A. Walking droplets correlated at a distance. Chaos 28, 096110 (2018).

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  55. Nachbin, A. Kuramoto-like synchronization mediated through Faraday surface waves. Fluids 5, 226 (2020).

    Article  CAS  Google Scholar 

  56. Whitham, G. B. Linear and Nonlinear Waves (Wiley, 1974).

  57. Douady, S. Experimental study of the Faraday instability. J. Fluid Mech. 221, 383–409 (1990).

    Article  ADS  Google Scholar 

  58. Harris, D. M. & Bush, J. W. M. Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vibrat. 334, 255–269 (2015).

    Article  ADS  Google Scholar 

  59. Faraday, M. On a peculiar class of acoustical figures and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299–340 (1831).

    ADS  Google Scholar 

  60. Harris, D. M., Liu, T. & Bush, J. W. M. A low-cost, precise piezoelectric droplet-on-demand generator. Exp. Fluids 56, 83 (2015).

    Article  Google Scholar 

  61. Bush, J. W. M., Oza, A. U. & Moláček, J. The wave-induced added mass of walking droplets. J. Fluid Mech. 755, R7 (2014).

    Article  ADS  Google Scholar 

  62. Turton, S. E. Theoretical Modeling of Pilot-wave Hydrodynamics. PhD thesis, Massachusetts Institute of Technology (2020).

  63. Labousse, M. & Perrard, S. Non-Hamiltonian features of a classical pilot-wave dynamics. Phys. Rev. E 90, 022913 (2014).

    Article  ADS  CAS  Google Scholar 

  64. Cristea-Platon, T., Sáenz, P. J. & Bush, J. W. M. Walking droplets in a circular corral: quantisation and chaos. Chaos 28, 096116 (2018).

    Article  ADS  PubMed  Google Scholar 

  65. Tadrist, L. et al. Faraday instability and subthreshold Faraday waves: surface waves emitted by walkers. J. Fluid Mech. 848, 906–945 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Galeano-Rios, C. A. et al. Ratcheting droplet pairs. Chaos 28, 096112 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Couchman, M. M. P., Turton, S. E. & Bush, J. W. M. Bouncing phase variations in pilot-wave hydrodynamics and the stability of droplet pairs. J. Fluid Mech. 871, 212–243 (2019).

    Article  ADS  CAS  MATH  Google Scholar 

  68. Faria, L. M. A model for Faraday pilot waves over variable topography. J. Fluid Mech. 811, 51–66 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Filatrella, G., Nielsen, A. H. & Pedersen, N. F. Analysis of a power grid using a Kuramoto-like model. Eur. Phys. J. B 61, 485–491 (2008).

    Article  ADS  CAS  Google Scholar 

  70. Rohden, M. et al. Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  71. Chen, P. & Wu, K.-A. Subcritical bifurcations and nonlinear balloons in Faraday waves. Phys. Rev. Lett. 85, 3813–3816 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Périnet, N., Juric, D. & Tuckerman, L. S. Alternating hexagonal and striped patterns in Faraday surface waves. Phys. Rev. Lett. 109, 164501 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  73. Pucci, G. et al. Non-specular reflection of walking droplets. J. Fluid Mech. 804, R3 (2016).

    Article  ADS  Google Scholar 

  74. Pucci, G. et al. Walking droplets interacting with single and double slits. J. Fluid Mech. 835, 1136–1156 (2018).

    Article  ADS  Google Scholar 

  75. Harris, D. M. et al. The interaction of a walking droplet and a submerged pillar: from scattering to the logarithmic spiral. Chaos 28, 096105 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  76. Damiano, A. P. et al. Surface topography measurements of the bouncing droplet experiment. Exp. Fluids 57, 163 (2016).

    Article  CAS  Google Scholar 

  77. Diep, H. T. Frustrated Spin Systems (World Scientific, 2004).

  78. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  CAS  Google Scholar 

  79. Biktasheva, I. V. & Biktashev, V. N. Wave–particle dualism of spiral waves dynamics. Phys. Rev. E 67, 026221 (2003).

    Article  ADS  CAS  Google Scholar 

  80. Biktasheva, I. V. et al. Computation of the drift velocity of spiral waves using response functions. Phys. Rev. E 81, 066202 (2010).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  81. Azhand, A., Totz, J. F. & Engel, H. Three-dimensional autonomous pacemaker in the photosensitive Belousov–Zhabotinsky medium. Europhys. Lett. 108, 10004 (2014).

    Article  ADS  CAS  Google Scholar 

  82. Totz, J. F., Engel, H. & Steinbock, O. Spatial confinement causes lifetime enhancement and expansion of vortex rings with positive filament tension. New J. Phys. 17, 093043 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the NSF through CMMI-1727565 (J.W.M.B. and P.J.S.) and DMS-1719637 (R.R.R.), MIT Solomon Buchsbaum Research Fund (J.D.), and CNRS Momentum programme (G.P.).

Author information

Authors and Affiliations

Authors

Contributions

P.J.S. conceived the study, led the experimental developments and the writing of the paper, and contributed to the theoretical modelling. S.E.T. and R.R.R. contributed to the theoretical modelling. G.P. contributed to the conception and execution of the preliminary experiments. A.G. contributed to the preliminary experiments. J.D. contributed to the theoretical modelling and the writing of the paper. J.W.M.B. contributed to the conception of the experiments and theory, and to writing the paper.

Corresponding authors

Correspondence to Pedro J. Sáenz or John W. M. Bush.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Michael Shats and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematic of the experimental set-up.

The test section was mounted on an optical table and vibrated vertically by an electromagnetic shaker. The shaker was connected to the bath by a thin steel rod coupled with a linear air bearing. The forcing acceleration was monitored by two piezoelectric accelerometers. The bath was enclosed within a transparent acrylic chamber to ensure that ambient air currents did not affect the experiments. A d.c. motor housed inside the hollow air bearing enabled system rotation.

Extended Data Fig. 2 Experimental spin flips.

ae, Snapshots at different times illustrate a typical spin-flip event arising in a 1D spin lattice (Supplementary Video 6). At each time, the panels at left are colour-coded according to the instantaneous spin Si (same colour map as in Fig. 1d), while those on the right depict the recent walker trajectories, colour-coded according to the local speed. Perturbed by the wave fields emitted by its neighbours, the middle walker initially follows an elliptical path. The length of the minor axis decreases until the walker trajectory essentially becomes a straight line across the well centre. Subsequently, the process is reversed, resulting in the walker rotating in the opposite sense. The three walkers shown are part of the 1D antiferromagnetic lattice described in Fig. 1h with γ/γF = 86.0%.

Extended Data Fig. 3 Wave coupling.

a, Experimental visualization of the wave field generated by a single walker in a 1D lattice with the same geometry as in Fig. 1h and γ/γF = 92.0%. The submerged wells can be identified as the regions with a different shade of grey. b, Superposition of the wave field shown in a and the zeros of the drop-centred Bessel function \({J}_{0}({k}_{\text{F}}|{\bf{x}} \mbox{-} {{\bf{x}}}_{{\rm{i}}}|)\). c, Wave field of a bouncer computed with the theoretical model developed previously68 for walkers over variable topography. The bouncer is located at (xy) = (3D/8, 0) in a 2D square lattice with the same well diameter D and centre-to-centre separation L as in a and γ/γF = 88.0%. Solid blue lines denote the submerged wells and dashed lines the zeros of a Bessel function J0 centred at the drop position.

Extended Data Fig. 4 Emergent order for varying lattice spacing.

a, b, The dependence of the average spin correlation, χ (a) and the mean phase difference, Δϕ (b) on the lattice spacing, L, as predicted by the Bessel model (equation (16)) with τ = 0.4 s, ω0 = 3.3 s−1, and \( {\mathcal F} \) = 70 s−2. The average droplet-induced wave field, which is approximated by a Bessel function  J0(kFL), centred in the neighbouring well at L = 0, is provided for comparison in a. c, d, Dominant (c) and subdominant (d) synchronization modes for the corresponding sections (A–D) in ab.

Extended Data Fig. 5 Emergent order for varying bath acceleration.

Comparison of the experimentally observed average spin correlation, χ, with the predictions of the Bessel model (equation (16)) and the generalized Kuramoto model (equation (23)). Solid lines are fits resulting from smoothing the piecewise linear plot given by connecting the points. Bessel model parameters: L = 17.7 mm, r = 1.8 mm, λF = 2π/kF = 5.1 mm. The interaction parameter \( {\mathcal F} \) is varied across the range 70 < \( {\mathcal F} \) < 130 s−2 and transformed back to γ/γF using the relation from Extended Data Table 1. To simplify the simulations, we fix the relaxation time to be τ = 0.1 s and the natural angular frequency to be ω0 = 3.3 s−1, values consistent with experimental observation (Fig. 1c). The effective walker mass is set to mw = 1.65m, in line with prior work61. GK model parameters: α is varied over the range 8.5 < α < 15 s−2, while maintaining β < 0 and a constant ratio |β/α| = 0.3. By dividing the expressions for α and β in equations (25), (26) by a factor of two, in accordance with the mismatch between the GK and Bessel models discussed in Supplementary Fig. 3, the minimum χ predicted by the GK model emerged in the vicinity of γc.

Extended Data Fig. 6 Emergent order in large 2D square lattices.

Simulations of the Bessel model (equation (16)) and the generalized Kuramoto model (equation (23)) for a 50 × 50 square lattice demonstrate the emergence of antiferromagnetic and ferromagnetic order in 2D for various lattice spacings and bath accelerations. a, The lattice spacing determines the emergent antiferromagnetic (ADM+) or ferromagnetic (FM+) order in a manner predicted by our reduced theory (equation (24)). b, c, Specifically, preferred in-phase rotation between neighbouring pairs can be clearly observed in the antiferromagnetic AFM+ (b), and ferromagnetic FM+ (c) regimes. We note that b and c correspond to simulations of the Bessel model with the spacings indicated on a. d, The emergent in-phase antiferromagnetic order (AFM+) as a function of bath acceleration. Bessel model parameters in a: τ = 0.1 s, = 72 s−2, 16.8 ≤ L ≤ 19 mm, ω0 = 3.3 s−1, and λF = 4.95 mm. Bessel model parameters in d are the same as in a, but with L = 17.1 mm and the interaction parameter varies across the range 65 ≤ ≤ 85 s−2, which is transformed back to γ/γF using the relation from Extended Data Table 1. GK model parameters in d: α is varied over the range 9.5 < α < 13 s−2 while maintaining β < 0 and a constant ratio |β/α| = 0.07, τ = 0.2 s and ω0 = 3.3 s−1. In all cases, each data point results from averaging 50 simulations of 600 s each, to ensure statistical significance.

Extended Data Fig. 7 Emergent order for different vertical bouncing synchronizations and lattice geometries.

a, Oblique view of a 2D spin lattice where the walker in the centre is bouncing vertically in-phase and out-of-phase with its left and right neighbours, respectively. b, Average spin correlation for lattices with the same geometry as those described in Fig. 1 when the walkers all bounce in phase (blue, result presented in text), out of phase (green), or have randomly distributed bouncing phases (red). Vertically in-phase pairs promote in-phase orbital antiferromagnetic order (AFM+), whereas vertically out-of-phase pairs promote out-of-phase orbital antiferromagnetic order (AFM). A random distribution of vertical phases thus leads to competing orbital synchronization modes, which has an effect on the emergent spin correlation. Solid lines are fits resulting from smoothing the piecewise linear plot given by connecting the points. c, Triangular HSLs with a lattice spacing tuned to promote antiferromagnetic order can be used to investigate frustration effects.

Extended Data Fig. 8 Emergent collective order in simulations.

Simulations of square HSLs with the theoretical model developed previously68 is used to explore collective order in 2D. a, b, For appropriate lattice spacings, in-phase ferromagnetic order FM+ (a) and in-phase antiferromagnetic order AFM+ (b) are simulated. Left, schematic; middle, wave field and walker’s trajectories; right, time evolution of the orbital phases.

Extended Data Fig. 9 Model tunability.

Proof-of-concept simulations performed with the model developed previously68 illustrate the tunability and potential for future research of HSLs. Left, schematic; middle, wave field and drop trajectories; and right, orbital phase evolution. a, An HSL tuned to promote FM+ along the horizontal direction, but AFM+ across vertical pairs. b, FM+ lattice geometry with a random vertical and horizontal shift ±ε in the position of each well. c, FM+ lattice geometry with two drop sizes (and so, two walker speeds). d, FM+ lattice geometry with coupling strength controlled locally through the thickness of the liquid layer.

Extended Data Table 1 Model parameters and physical variables for HSLs

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4.

Supplementary Video 1 Hydrodynamic spin lattices

Experiments demonstrate that a walking droplet self-propelling on the surface of a vibrating liquid interface may be trapped by a submerged circular well at the bottom of the fluid bath, leading to clockwise or counter-clockwise angular motion centred on the well. When a collection of such wells is arranged in a 1D or 2D lattice geometry, a thin fluid layer between wells enables wave-mediated interactions between neighbouring droplets.

Supplementary Video 2 Anti-ferromagnetic order

Experiments with a periodic 1D lattice with lattice spacing L=17.7 mm demonstrate the emergence of anti-ferromagnetic order in which walkers tend to rotate in the opposite sense relative to their nearest neighbours.

Supplementary Video 3 Ferromagnetic order

Experiments with a periodic 1D lattice with lattice spacing L=13.2 mm result in ferromagnetic order in which droplets tend to rotate in the same sense as their neighbours.

Supplementary Video 4 Inducing global polarization through applied rotation

Rotating the hydrodynamic spin system induces a transition from anti-ferromagnetic to ferromagnetic order.

Supplementary Video 5 Emergent order in 2D square lattices

Experiments with 2D square lattices show the emergence of anti-ferromagnetic order in the absence of applied bath rotation, and a polarization transition as the bath rotation is increased.

Supplementary Video 6 Spin flip

A typical spin flip event as observed in experiments. The three droplets shown are part of the 1D antiferromagnetic lattice detailed in Fig. 1h.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sáenz, P.J., Pucci, G., Turton, S.E. et al. Emergent order in hydrodynamic spin lattices. Nature 596, 58–62 (2021). https://doi.org/10.1038/s41586-021-03682-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03682-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing