Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermal-expansion offset for high-performance fuel cell cathodes

Subjects

Abstract

One challenge for the commercial development of solid oxide fuel cells as efficient energy-conversion devices is thermo-mechanical instability. Large internal-strain gradients caused by the mismatch in thermal expansion behaviour between different fuel cell components are the main cause of this instability, which can lead to cell degradation, delamination or fracture1,2,3,4. Here we demonstrate an approach to realizing full thermo-mechanical compatibility between the cathode and other cell components by introducing a thermal-expansion offset. We use reactive sintering to combine a cobalt-based perovskite with high electrochemical activity and large thermal-expansion coefficient with a negative-thermal-expansion material, thus forming a composite electrode with a thermal-expansion behaviour that is well matched to that of the electrolyte. A new interphase is formed because of the limited reaction between the two materials in the composite during the calcination process, which also creates A-site deficiencies in the perovskite. As a result, the composite shows both high activity and excellent stability. The introduction of reactive negative-thermal-expansion components may provide a general strategy for the development of fully compatible and highly active electrodes for solid oxide fuel cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties and formation mechanism of c-SYNC.
Fig. 2: Thermal-expansion behaviour of c-SYNC and electrochemical performance.
Fig. 3: Thermal cycling and mechanism schematic.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Shao, Z. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Gao, Z., Mogni, L. V., Miller, E. C., Railsback, J. G. & Barnett, S. A. A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016).

    Article  CAS  Google Scholar 

  4. Duan, C. et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019); author correction 5, 729 (2020).

    Article  ADS  CAS  Google Scholar 

  5. Zhang, Y. et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C. Adv. Mater. 29, 1700132 (2017).

    Article  Google Scholar 

  6. Wei, B. et al. Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1−xCo0.8Fe0.2O3−δ (0.3 ≤ x ≤ 0.7). J. Eur. Ceram. Soc. 26, 2827–2832 (2006).

    Article  CAS  Google Scholar 

  7. Xia, C., Rauch, W., Chen, F. & Liu, M. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ion. 149, 11–19 (2002).

    Article  CAS  Google Scholar 

  8. Esquirol, A., Brandon, N. P., Kilner, J. A. & Mogensen, M. Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs. J. Electrochem. Soc. 151, A1847–A1855 (2004).

    Article  CAS  Google Scholar 

  9. Wang, W. G. & Mogensen, M. High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ion. 176, 457–462 (2005).

    Article  CAS  Google Scholar 

  10. Zhou, W., Ran, R. & Shao, Z. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: a review. J. Power Sources 192, 231–246 (2009).

    Article  ADS  CAS  Google Scholar 

  11. Zhou, W., Shao, Z., Ran, R., Jin, W. & Xu, N. A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600 °C. Chem. Commun. 44, 5791–5793 (2008).

    Article  Google Scholar 

  12. Chen, D. et al. Evaluation of pulsed laser deposited SrNb0.1Co0.9O3-δ thin films as promising cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 295, 117–124 (2015).

    Article  ADS  CAS  Google Scholar 

  13. Zhou, W., Ran, R., Shao, Z., Jin, W. & Xu, N. Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ (x>0) perovskite as a solid-oxide fuel cell cathode. J. Power Sources 182, 24–31 (2008).

    Article  ADS  CAS  Google Scholar 

  14. Liu, J., Co, A. C., Paulson, S. & Birss, V. I. Oxygen reduction at sol–gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes. Solid State Ion. 177, 377–387 (2006).

    Article  CAS  Google Scholar 

  15. Chen, Y., Shen, J., Yang, G., Zhou, W. & Shao, Z. A single-/double-perovskite composite with an overwhelming single-perovskite phase for the oxygen reduction reaction at intermediate temperatures. J. Mater. Chem. A 5, 24842–24849 (2017).

    Article  CAS  Google Scholar 

  16. Baek, S. W., Kim, J. H. & Bae, J. Characteristics of ABO3 and A2BO4 (A=Sm, Sr; B=Co, Fe, Ni) samarium oxide system as cathode materials for intermediate temperature-operating solid oxide fuel cell. Solid State Ion. 179, 1570–1574 (2008).

    Article  CAS  Google Scholar 

  17. Wang, F., Zhou, Q., He, T., Li, G. & Ding, H. Novel SrCo1−yNbyO3−δ cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 195, 3772–3778 (2010).

    Article  ADS  CAS  Google Scholar 

  18. Hrovat, M., Holc, J. & Kolar, D. Thick film ruthenium oxide/yttria-stabilized zirconia-based cathode material for solid oxide fuel cells. Solid State Ion. 68, 99–103 (1994).

    Article  CAS  Google Scholar 

  19. Zhou, Q., Wang, F., Shen, Y. & He, T. Performances of LnBaCo2O5+x–Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells. J. Power Sources 195, 2174–2181 (2010).

    Article  ADS  CAS  Google Scholar 

  20. Zhou, W., Shao, Z., Ran, R. & Cai, R. Novel SrSc0.2Co0.8O3-δ as a cathode material for low temperature solid-oxide fuel cell. Electrochem. Commun. 10, 1647–1651 (2008).

    Article  CAS  Google Scholar 

  21. Ding, X., Cui, C. & Guo, L. Thermal expansion and electrochemical performance of La0.7Sr0.3CuO3−δ–Sm0.2Ce0.8O2−δ composite cathode for IT-SOFCs. J. Alloys Compd. 481, 845–850 (2009).

    Article  CAS  Google Scholar 

  22. Song, Y. et al. A cobalt-free multi-phase nanocomposite as near-ideal cathode of intermediate-temperature solid oxide fuel cells developed by smart self-assembly. Adv. Mater. 32, 1906979 (2020).

    Article  CAS  Google Scholar 

  23. Mary, T. A., Evans, J. S., Vogt, T. & Sleight, A. W. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272, 90–92 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Chen, J. et al. Zero thermal expansion in PbTiO3-based perovskites. J. Am. Chem. Soc. 130, 1144–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Goodwin, A. L. & Kepert, C. J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys. Rev. B 71, 140301 (2005).

    Article  ADS  Google Scholar 

  26. Forster, P. M. & Sleight, A. W. Negative thermal expansion in Y2W3O12. Int. J. Inorg. Mater. 1, 123–127 (1999).

    Article  CAS  Google Scholar 

  27. Sumithra, S., Waghmare, U. V. & Umarji, A. M. Anomalous dynamical charges, phonons, and the origin of negative thermal expansion in Y2W3O12. Phys. Rev. B 76, 024307 (2007).

    Article  ADS  Google Scholar 

  28. Khaliullin, S. M., Khaliullina, A. S. & Neiman, A. Y. High-temperature conductivity and structure of Y2(WO4)3 ceramics. Russ. J. Phys. Chem. B 10, 62–68 (2016).

    Article  CAS  Google Scholar 

  29. Zhou, W., Jin, W., Zhu, Z. & Shao, Z. Structural, electrical and electrochemical characterizations of SrNb0.1Co0.9O3−δ as a cathode of solid oxide fuel cells operating below 600 °C. Int. J. Hydrogen Energy 35, 1356–1366 (2010).

    Article  CAS  Google Scholar 

  30. Rosen, B. A. Progress and opportunities for exsolution in electrochemistry. Electrochem 1, 32–43 (2020).

    Article  Google Scholar 

  31. Han, H. et al. Lattice strain-enhanced exsolution of nanoparticles in thin films. Nat. Commun. 10, 1471 (2019); author correction 10, 2083 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Zhu, Y. et al. An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells. ChemSusChem 6, 2249–2254 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Y. et al. Influence of crystal structure on the electrochemical performance of A-site-deficient Sr1-sNb0.1Co0.9O3-δ perovskite cathodes. RSC Advances 4, 40865–40872 (2014).

    Article  ADS  CAS  Google Scholar 

  34. Duan, C., Hook, D., Chen, Y., Tong, J. & O’Hayre, R. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 °C. Energy Environ. Sci. 10, 176–182 (2017).

    Article  CAS  Google Scholar 

  35. Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011).

    Article  ADS  CAS  Google Scholar 

  36. Lu, Q., Chen, Y., Bluhm, H. & Yildiz, B. Electronic structure evolution of SrCoOx during electrochemically driven phase transition probed by in situ X-ray spectroscopy. J. Phys. Chem. C 120, 24148–24157 (2016).

    Article  CAS  Google Scholar 

  37. Li, M., Zhou, W., Peterson, V. K., Zhao, M. & Zhu, Z. A comparative study of SrCo0.8Nb0.2O3−δ and SrCo0.8Ta0.2O3−δ as low-temperature solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction. J. Mater. Chem. A 3, 24064–24070 (2015).

    Article  CAS  Google Scholar 

  38. Koo, B. et al. Sr segregation in perovskite oxides: why it happens and how it exists. Joule 2, 1476–1499 (2018).

    Article  CAS  Google Scholar 

  39. Lee, K. T. & Manthiram, A. Comparison of Ln0.6Sr0.4CoO3−δ (Ln=La, Pr, Nd, Sm, and Gd) as cathode materials for intermediate temperature solid oxide fuel cells. J. Electrochem. Soc. 153, A794–A798 (2006).

    Article  CAS  Google Scholar 

  40. Das, S., Das, S. & Das, K. Synthesis and thermal behavior of Cu/Y2W3O12 composite. Ceram. Int. G. 40, 6465–6472 (2014).

    Article  CAS  Google Scholar 

  41. Ganesh, V. V. & Gupta, M. Effect of the extent of reinforcement interconnectivity on the properties of an aluminum alloy. Scr. Mater. 44, 305–310 (2001).

    Article  CAS  Google Scholar 

  42. Uju, W. A. & Oguocha, I. N. A. A study of thermal expansion of Al–Mg alloy composites containing fly ash. Mater. Des. 33, 503–509 (2012).

    Article  CAS  Google Scholar 

  43. Barbucci, A. et al. Influence of electrode thickness on the performance of composite electrodes for SOFC. J. Appl. Electrochem. 38, 939–945 (2008).

    Article  CAS  Google Scholar 

  44. Liu, L., Kim, G. Y. & Chandra, A. Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions. J. Power Sources 195, 2310–2318 (2010).

    Article  ADS  CAS  Google Scholar 

  45. Zhang, Y. et al. Significantly improving the durability of single-chamber solid oxide fuel cells: a highly active CO2 -resistant perovskite cathode. ACS Appl. Energy Mater. 1, 1337–1343 (2018).

    Article  CAS  Google Scholar 

  46. Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRT tools. Electrochim. Acta 184, 483–499 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21576135, 21878158, 21828801 and 52006150), Jiangsu Natural Science Foundation for Distinguished Young Scholars (BK20170043), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and State Key Laboratory of Materials-Oriented Chemical Engineering. R.O. acknowledges support from the Fulbright Foundation Global Scholars Program and the US Army Research Office under grant number W911NF-17-540 1-0051. M.N. acknowledges a Research Grant Council University Grants Committee Hong Kong SAR Grant, reference number PolyU 152064/18E. The authors also acknowledge the assistance on HRTEM observation received from the Electron Microscope Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Contributions

W.Z., R.O. and Z.S. conceived and designed the project. Y.Z. and B.C. performed the characterizations and experiments. Y.Z., B.C. and D.G. analysed the data. M.X., R.R. and M.N. contributed the laboratory apparatus and experiment sites. Y.Z., B.C., W.Z., R.O. and Z.S. drafted the article and revised it critically. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Wei Zhou or Zongping Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Yanhai Du, Anke Hagen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains the source images for Figs 1 and 3.

Supplementary Information

This file contains Supplementary Sections 1–4, including Supplementary Tables 1–8, Supplementary Figures 1–19 and Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Chen, B., Guan, D. et al. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 591, 246–251 (2021). https://doi.org/10.1038/s41586-021-03264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-021-03264-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing