Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reverse and forward engineering of Drosophila corneal nanocoatings

Abstract

Insect eyes have an anti-reflective coating, owing to nanostructures on the corneal surface creating a gradient of refractive index between that of air and that of the lens material1,2. These nanocoatings have also been shown to provide anti-adhesive functionality3. The morphology of corneal nanocoatings are very diverse in arthropods, with nipple-like structures that can be organized into arrays or fused into ridge-like structures4. This diversity can be attributed to a reaction–diffusion mechanism4 and patterning principles developed by Alan Turing5, which have applications in numerous biological settings6. The nanocoatings on insect corneas are one example of such Turing patterns, and the first known example of nanoscale Turing patterns4. Here we demonstrate a clear link between the morphology and function of the nanocoatings on Drosophila corneas. We find that nanocoatings that consist of individual protrusions have better anti-reflective properties, whereas partially merged structures have better anti-adhesion properties. We use biochemical analysis and genetic modification techniques to reverse engineer the protein Retinin and corneal waxes as the building blocks of the nanostructures. In the context of Turing patterns, these building blocks fulfil the roles of activator and inhibitor, respectively. We then establish low-cost production of Retinin, and mix this synthetic protein with waxes to forward engineer various artificial nanocoatings with insect-like morphology and anti-adhesive or anti-reflective function. Our combined reverse- and forward-engineering approach thus provides a way to economically produce functional nanostructured coatings from biodegradable materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure, function and composition of corneal nanocoatings across the genus Drosophila.
Fig. 2: Structure and function of the Drosophila nanocoatings resulting from genetic manipulations of the Turing activator and inhibitor.
Fig. 3: Induced folding of Retinin on direct binding to waxes.
Fig. 4: In vitro production of insect-like nanocoatings.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper.

Code availability

The Supplementary Information contains the Matlab script used.

References

  1. Nalwa, H. S. Handbook of Nanostructured Biomaterials and their Applications in Nanobiotechnology (American Scientific, 2005).

  2. Kryuchkov, M., Blagodatski, A., Cherepanov, V. & Katanaev, V. L. in Functional Surfaces in Biology III: Diversity of the Physical Phenomena (eds Gorb, S. N. & Gorb, E. V.) 29–52 (Springer, 2017).

  3. Peisker, H. & Gorb, S. N. Always on the bright side of life: anti-adhesive properties of insect ommatidia grating. J. Exp. Biol. 213, 3457–3462 (2010).

    Article  Google Scholar 

  4. Blagodatski, A., Sergeev, A., Kryuchkov, M., Lopatina, Y. & Katanaev, V. L. Diverse set of Turing nanopatterns coat corneae across insect lineages. Proc. Natl Acad. Sci. USA 112, 10750–10755 (2015).

    Article  ADS  CAS  Google Scholar 

  5. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952).

    Article  ADS  MathSciNet  Google Scholar 

  6. Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Bhushan, B. Springer Handbook of Nanotechnology 4th edn (Springer, 2017).

  8. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  9. Drosophila 12 Genomes Consortium. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450, 203–218 (2007).

    Article  Google Scholar 

  10. BĂĽscher, T. H., Kryuchkov, M., Katanaev, V. L. & Gorb, S. N. Versatility of Turing patterns potentiates rapid evolution in tarsal attachment microstructures of stick and leaf insects (Phasmatodea). J. R. Soc. Interface 15, 20180281 (2018).

    Article  Google Scholar 

  11. Gemne, G. ontogenesis of corneal surface ultrastructure in nocturnal Lepidoptera. Philos. Trans. R. Soc. Lond. B 262, 343–363 (1971).

    Article  ADS  Google Scholar 

  12. Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications (Springer, 2001).

  13. Markow, T. A. & O’Grady, P. M. Drosophila biology in the genomic age. Genetics 177, 1269–1276 (2007).

    Article  CAS  Google Scholar 

  14. Bernhard, C. G. & Miller, W. H. A corneal nipple pattern in insect compound eyes. Acta Physiol. Scand. 56, 385–386 (1962).

    Article  CAS  Google Scholar 

  15. Kryuchkov, M. et al. analysis of micro- and nano-structures of the corneal surface of Drosophila and its mutants by atomic force microscopy and optical diffraction. PLoS One 6, e22237 (2011).

    Article  ADS  CAS  Google Scholar 

  16. Kryuchkov, M., Lehmann, J., Schaab, J., Fiebig, M. & Katanaev, V. L. Antireflective nanocoatings for UV-sensation: the case of predatory owlfly insects. J. Nanobiotechnology 15, 52 (2017).

    Article  Google Scholar 

  17. Stark, W. S. & Wasserman, G. S. Transient and receptor potentials in the electroretinogram of Drosophila. Vision Res. 12, 1771–1775 (1972).

    Article  CAS  Google Scholar 

  18. Anderson, M. S. & Gaimari, S. D. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes. J. Struct. Biol. 142, 364–368 (2003).

    Article  Google Scholar 

  19. Chandran, R., Williams, L., Hung, A., Nowlin, K. & LaJeunesse, D. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron 82, 74–85 (2016).

    Article  CAS  Google Scholar 

  20. Kaya, M., Sargin, I., Al-Jaf, I., Erdogan, S. & Arslan, G. Characteristics of corneal lens chitin in dragonfly compound eyes. Int. J. Biol. Macromol. 89, 54–61 (2016).

    Article  CAS  Google Scholar 

  21. Locke, M. The Wigglesworth lecture: insects for studying fundamental problems in biology. J. Insect Physiol. 47, 495–507 (2001).

    Article  CAS  Google Scholar 

  22. Nickerl, J., Tsurkan, M., Hensel, R., Neinhuis, C. & Werner, C. The multi-layered protective cuticle of Collembola: a chemical analysis. J. R. Soc. Interface 11, 20140619 (2014).

    Article  Google Scholar 

  23. Kryuchkov, M. et al. Alternative moth-eye nanostructures: antireflective properties and composition of dimpled corneal nanocoatings in silk-moth ancestors. J. Nanobiotechnology 15, 61 (2017).

    Article  Google Scholar 

  24. Kim, E. et al. Characterization of the Drosophila melanogaster retinin gene encoding a cornea-specific protein. Insect Mol. Biol. 17, 537–543 (2008).

    Article  CAS  Google Scholar 

  25. Komori, N., Usukura, J. & Matsumoto, H. Drosocrystallin, a major 52 kDa glycoprotein of the Drosophila melanogaster corneal lens. Purification, biochemical characterization, and subcellular localization. J. Cell Sci. 102, 191–201 (1992).

    CAS  PubMed  Google Scholar 

  26. Karouzou, M. V. et al. Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem. Mol. Biol. 37, 754–760 (2007).

    Article  CAS  Google Scholar 

  27. Stahl, A. L., Charlton-Perkins, M., Buschbeck, E. K. & Cook, T. A. The cuticular nature of corneal lenses in Drosophila melanogaster. Dev. Genes Evol. 227, 271–278 (2017).

    Article  CAS  Google Scholar 

  28. Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. I. Identification of two fatty acyl-coenzyme A reductases with different substrate specificities and tissue distributions. J. Biol. Chem. 279, 37789–37797 (2004).

    Article  CAS  Google Scholar 

  29. Cheng, J. B. & Russell, D. W. Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J. Biol. Chem. 279, 37798–37807 (2004).

    Article  CAS  Google Scholar 

  30. Kunst, L. & Samuels, A. L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51–80 (2003).

    Article  CAS  Google Scholar 

  31. Lin, C. et al. Double suppression of the Gα protein activity by RGS proteins. Mol. Cell 53, 663–671 (2014).

    Article  CAS  Google Scholar 

  32. Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochim. Biophys. Acta Proteins Proteom. 1751, 119–139 (2005).

    Article  CAS  Google Scholar 

  33. Clarke, D. T. in Protein Folding, Misfolding, and Disease: Methods and Protocols (eds Hill, A. F. et al.) 59–72 (Humana, 2011).

  34. Biancalana, M. & Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta Proteins Proteom. 1804, 1405–1412 (2010).

    Article  CAS  Google Scholar 

  35. Chandra, S., Chen, X., Rizo, J., Jahn, R. & Sudhof, T. C. A broken α-helix in folded α-synuclein. J. Biol. Chem. 278, 15313–15318 (2003).

    Article  CAS  Google Scholar 

  36. van der Werf, K. O., Putman, C. A. J., Degrooth, B. G. & Greve, J. Adhesion force imaging in air and liquid by adhesion mode atomic-force microscopy. Appl. Phys. Lett. 65, 1195–1197 (1994).

    Article  ADS  Google Scholar 

  37. Global Industry Analysts Nanocoatings — Global Market Trajectory and Analysis https://researchandmarkets.com/reports/4721438/nanocoatings-global-market-trajectory-and (2020).

  38. Katanaev, V. L. & Kryuchkov, M. V. The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. Biochemistry (Mosc.) 76, 1556–1581 (2011).

    CAS  PubMed  Google Scholar 

  39. Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific ϕC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).

    Article  ADS  CAS  Google Scholar 

  40. Roberts, D. B. Drosophila: A Practical Approach (Oxford Univ. Press, 1998).

  41. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank A. Koval for MATLAB programming and members of the Katanaev lab for reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.K. performed most experiments; O.B. performed a set of genetics experiments; J.L. participated in, and M.F. supervised, the physical measurements (AFM, reflectance, and so on); V.L.K. designed the work and guided the experiments. All authors participated in writing the paper.

Corresponding author

Correspondence to Vladimir L. Katanaev.

Ethics declarations

Competing interests

M.K. and V.L.K. are inventors (University of Lausanne) on a patent application (EP18175103.3) for artificial insect-like nanocoatings. Other authors do not have any competing interests.

Additional information

Peer review information Nature thanks Shigeru Kondo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This Supplementary Information consists of Supplementary Notes 1-6 (including Supplementary Figures 1-17 and Supplementary Tables 1-3), Supplemental Methods and Supplementary References, altogether providing exhaustive description of details of the technical aspects of our work.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryuchkov, M., Bilousov, O., Lehmann, J. et al. Reverse and forward engineering of Drosophila corneal nanocoatings. Nature 585, 383–389 (2020). https://doi.org/10.1038/s41586-020-2707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-2707-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research