Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bright γ-ray flare interpreted as a giant magnetar flare in NGC 253

Abstract

Soft γ-ray repeaters exhibit bursting emission in hard X-rays and soft γ-rays. During the active phase, they emit random short (milliseconds to several seconds long), hard-X-ray bursts, with peak luminosities1 of 1036 to 1043 erg per second. Occasionally, a giant flare with an energy of around 1044 to 1046 erg is emitted2. These phenomena are thought to arise from neutron stars with extremely high magnetic fields (1014 to 1015 gauss), called magnetars1,3,4. A portion of the second-long initial pulse of a giant flare in some respects mimics short γ-ray bursts5,6, which have recently been identified as resulting from the merger of two neutron stars accompanied by gravitational-wave emission7. Two γ-ray bursts, GRB 051103 and GRB 070201, have been associated with giant flares2,8,9,10,11. Here we report observations of the γ-ray burst GRB 200415A, which we localized to a 20-square-arcmin region of the starburst galaxy NGC 253, located about 3.5 million parsecs away. The burst had a sharp, millisecond-scale hard spectrum in the initial pulse, which was followed by steady fading and softening over 0.2 seconds. The energy released (roughly 1.3 × 1046 erg) is similar to that of the superflare5,12,13 from the Galactic soft γ-ray repeater SGR 1806−20 (roughly 2.3 × 1046 erg). We argue that GRB 200415A is a giant flare from a magnetar in NGC 253.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The final IPN localization of GRB 200415A.
Fig. 2: Time histories of GRB 051103 (open symbols) and GRB 200415A (filled symbols) and evolution of their spectral parameters.

Similar content being viewed by others

Data availability

The Fermi (https://heasarc.gsfc.nasa.gov/FTP/fermi/data/gbm/triggers/2020/bn200415367/current/), Swift (https://www.swift.psu.edu/guano/) and INTEGRAL (http://isdc.unige.ch/~savchenk/spiacs-online/spiacs.pl) data are freely available online. The HEND data used for the triangulation and Konus–Wind lightcurve and spectral data are available at http://www.ioffe.ru/LEA/papers/SvinkinNat2020/data/. Links to the Wind ephemeris and clock accuracy data are provided in Methods. Source data are provided with this paper.

Code availability

XSPEC is freely available online (https://heasarc.gsfc.nasa.gov/xanadu/xspec/).

References

  1. Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    ADS  CAS  Google Scholar 

  2. Mazets, E. P. et al. A giant flare from a soft gamma repeater in the Andromeda galaxy (M31). Astrophys. J. 680, 545–549 (2008).

    ADS  Google Scholar 

  3. Duncan, R. C. & Thompson, C. Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. Astrophys. J. 392, L9–L13 (1992).

    ADS  CAS  Google Scholar 

  4. Mereghetti, S. et al. Magnetars: properties, origin and evolution. Space Sci. Rev. 191, 315–338 (2015).

    ADS  Google Scholar 

  5. Hurley, K. et al. An exceptionally bright flare from SGR 1806−20 and the origins of short-duration γ-ray bursts. Nature 434, 1098–1103 (2005).

    ADS  CAS  PubMed  Google Scholar 

  6. Popov, S. B. & Stern, B. E. Soft gamma repeaters outside the Local Group. Mon. Not. R. Astron. Soc. 365, 885–890 (2006).

    ADS  Google Scholar 

  7. Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).

    ADS  Google Scholar 

  8. Ofek, E. O. et al. The short-hard GRB 051103: observations and implications for its nature. Astrophys. J. 652, 507–511 (2006).

    ADS  CAS  Google Scholar 

  9. Frederiks, D. D. et al. On the possibility of identifying the short hard burst GRB 051103 with a giant flare from a soft gamma repeater in the M81 group of galaxies. Astron. Lett. 33, 19–24 (2007).

    ADS  CAS  Google Scholar 

  10. Hurley, K. et al. A new analysis of the short-duration, hard-spectrum GRB 051103, a possible extragalactic soft gamma repeater giant flare. Mon. Not. R. Astron. Soc. 403, 342–352 (2010).

    ADS  CAS  Google Scholar 

  11. Ofek, E. O. et al. GRB 070201: a possible soft gamma-ray repeater in M31. Astrophys. J. 681, 1464–1469 (2008).

    ADS  CAS  Google Scholar 

  12. Palmer, D. M. et al. A giant γ-ray flare from the magnetar SGR 1806−20. Nature 434, 1107–1109 (2005).

    ADS  CAS  PubMed  Google Scholar 

  13. Frederiks, D. D. et al. Giant flare in SGR 1806−20 and its Compton reflection from the Moon. Astron. Lett. 33, 1–18 (2007).

    ADS  CAS  Google Scholar 

  14. Rekola, R. et al. Distance to NGC 253 based on the planetary nebula luminosity function. Mon. Not. R. Astron. Soc. 361, 330–336 (2005).

    ADS  CAS  Google Scholar 

  15. Burns, E. et al. Identification of a local sample of gamma-ray bursts consistent with a magnetar giant flare origin. Astrophys. J. (in the press).

  16. Frederiks, D. et al. Konus-Wind observation of GRB 200415A (a magnetar giant flare in Sculptor galaxy?). GRB Coordinates Network 27596 (2020).

  17. Karachentsev, I. D. & Kashibadze, O. G. Masses of the local group and of the M81 group estimated from distortions in the local velocity field. Astrophysics 49, 3–18 (2006).

    ADS  Google Scholar 

  18. Svinkin, D. S. et al. The second Konus-Wind catalog of short gamma-ray bursts. Astrophys. J. Suppl. Ser. 224, 10 (2016).

    ADS  Google Scholar 

  19. Aptekar, R. L. et al. Konus Catalog of soft gamma repeater activity: 1978 to 2000. Astrophys. J. Suppl. Ser. 137, 227–277 (2001).

    ADS  CAS  Google Scholar 

  20. Tanaka, Y. T. et al. Comparative study of the initial spikes of soft gamma-ray repeater giant flares in 1998 and 2004 observed with geotail: do magnetospheric instabilities trigger large-scale fracturing of a magnetar’s crust? Astrophys. J. 665, L55–L58 (2007).

    ADS  Google Scholar 

  21. Terasawa, T. et al. Repeated injections of energy in the first 600 ms of the giant flare of SGR 1806−20. Nature 434, 1110–1111 (2005).

    ADS  CAS  PubMed  Google Scholar 

  22. Roberts, O. J. et al. Rapid spectral variability of a giant flare from a magnetar in NGC 253. Nature https://doi.org/10.1038/s41586-020-03077-8 (2021).

  23. Abadie, J. et al. Implications for the origin of GRB 051103 from LIGO observations. Astrophys. J. 755, 2 (2012).

    ADS  Google Scholar 

  24. Olausen, S. A. & Kaspi, V. M. The McGill magnetar catalog. Astrophys. J. Suppl. Ser. 212, 6 (2014).

    ADS  Google Scholar 

  25. Tsvetkova, A. et al. The Konus-Wind catalog of gamma-ray bursts with known redshifts. I. Bursts detected in the triggered mode. Astrophys. J. 850, 161 (2017).

    ADS  Google Scholar 

  26. Pozanenko, A. et al. GRB 200415A (possible magnetar giant flare in Sculptor galaxy): INTEGRAL observations. GRB Coordinates Network 27627 (2020).

  27. Rodríguez, M. J. et al. Identification and analysis of the young population in the starburst galaxy NGC 253. Mon. Not. R. Astron. Soc. 479, 961–972 (2018).

    ADS  Google Scholar 

  28. Heintz, K. E. et al. Host galaxy properties and offset distributions of fast radio bursts: implications for their progenitors. Astrophys. J. 903, 152 (2020).

    ADS  CAS  Google Scholar 

  29. Meegan, C. et al. The Fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009).

    Article  ADS  CAS  Google Scholar 

  30. Barthelmy, S. D. et al. The burst alert telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 120, 143–164 (2005).

    ADS  Google Scholar 

  31. Rau, A. et al. The 1st INTEGRAL SPI-ACS gamma-ray burst catalogue. Astron. Astrophys. 438, 1175–1183 (2005).

    ADS  Google Scholar 

  32. Ubertini, P. et al. IBIS: the imager on-board INTEGRAL. Astron. Astrophys. 411, L131–L139 (2003).

    ADS  CAS  Google Scholar 

  33. Labanti, C. et al. The IBIS-PICsIT detector onboard INTEGRAL. Astron. Astrophys. 411, L149–L152 (2003).

    ADS  Google Scholar 

  34. Boynton, W. V. et al. The Mars Odyssey gamma-ray spectrometer instrument suite. Space Sci. Rev. 110, 37–83 (2004).

    ADS  CAS  Google Scholar 

  35. Hurley, K. et al. Mars Odyssey ioins the third Interplanetary Network. Astrophys. J. Suppl. Ser. 164, 124–129 (2006).

    ADS  CAS  Google Scholar 

  36. Aptekar, R. L. et al. Konus-W gamma-ray burst experiment for the GGS Wind spacecraft. Space Sci. Rev. 71, 265–272 (1995).

    ADS  Google Scholar 

  37. Harten, R. & Clark, K. The design features of the GGS Wind and Polar spacecraft. Space Sci. Rev. 71, 23–40 (1995).

    ADS  Google Scholar 

  38. Neubert, T. The Atmosphere-Space Interactions Monitor (ASIM) for the International Space Station. AGU Fall Meeting Abstracts AE42A-03 (2006).

  39. The Fermi GBM Team. GRB 200415A: Fermi GBM final real-time localization. GRB Coordinates Network 27579 (2020).

  40. Kunzweiler, F. et al. GRB 200415A: BALROG localization (Fermi Trigger 608633290 / GRB 200415367). GRB Coordinates Network 27580 (2020).

  41. Goldstein, A. et al. Evaluation of automated Fermi GBM localizations of gamma-ray bursts. Astrophys. J. 895, 40 (2020).

    ADS  Google Scholar 

  42. Burgess, J. M. et al. Awakening the BALROG: Bayesian location reconstruction of GRBs. Mon. Not. R. Astron. Soc. 476, 1427–1444 (2018).

    ADS  CAS  Google Scholar 

  43. Berlato, F. et al. Improved Fermi-GBM GRB localizations using BALROG. Astrophys. J. 873, 60 (2019).

    ADS  CAS  Google Scholar 

  44. Svinkin, D. et al. IPN triangulation of GRB 200415A (possible magnetar giant flare in Sculptor galaxy?). GRB Coordinates Network 27585 (2020).

  45. Omodei, N. et al. GRB 200415A: Fermi-LAT detection. GRB Coordinates Network 27586 (2020).

  46. Svinkin, D. et al. Improved IPN error box for GRB 200415A (consistent with the Sculptor galaxy). GRB Coordinates Network 27595 (2020).

  47. Omodei, N. et al. GRB 200415A: Fermi-LAT localization update. GRB Coordinates Network 27597 (2020).

  48. Lipunov, V. et al. GRB 200415A: MASTER inspection and possible localisation. GRB Coordinates Network 27599 (2020).

  49. Hurley, K. et al. The Interplanetary Network. EAS Publ. Ser. 61, 459–464 (2013).

    Google Scholar 

  50. Hurley, K. et al. The Interplanetary Network supplement to the Fermi GBM catalog of cosmic gamma-ray bursts. Astrophys. J. Suppl. Ser. 207, 39 (2013).

    ADS  Google Scholar 

  51. Pal’shin, V. D. et al. Interplanetary Network localizations of Konus short gamma-ray bursts. Astrophys. J. Suppl. Ser. 207, 38 (2013).

    ADS  Google Scholar 

  52. Tohuvavohu, A. et al. Gamma-ray urgent archiver for novel opportunities (GUANO): Swift/BAT event data dumps on demand to enable sensitive subthreshold GRB searches. Astrophys. J. 900, 35 (2020).

    ADS  CAS  Google Scholar 

  53. Hurley, K. et al. Precise Interplanetary Network localization of the bursting pulsar GRO J1744-28. Astrophys. J. 537, 953–957 (2000).

    ADS  Google Scholar 

  54. Martin, D. C. et al. The Galaxy Evolution Explorer: a space ultraviolet survey mission. Astrophys. J. 619, L1–L6 (2005).

    ADS  CAS  Google Scholar 

  55. Gil de Paz, A. et al. The GALEX ultraviolet atlas of nearby galaxies. Astrophys. J. Suppl. Ser. 173, 185–255 (2007).

    ADS  CAS  Google Scholar 

  56. Kouveliotou, C. et al. Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993).

    ADS  CAS  Google Scholar 

  57. Koshut, T. M. et al. Systematic effects on duration measurements of gamma-ray bursts. Astrophys. J. 463, 570–592 (1996).

    ADS  CAS  Google Scholar 

  58. Arnaud, K. A. XSPEC: the first ten years. Astron. Soc. Pac. Conf. Ser. 101, 17 (1996).

    ADS  Google Scholar 

  59. Band, D. et al. BATSE observations of gamma-ray burst spectra. I. Spectral diversity. Astrophys. J. 413, 281–292 (1993).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Burns for discussions, O. Roberts for reading the manuscript and providing comments, and V. Pal’shin for contributing to the Konus–Wind and IPN data analysis tools. A.B., P.U. and J.C.R. acknowledge the continuous support from the Italian Space Agency ASI via different agreements including the latest one, 2019-35-HH.0. The Konus–Wind experiment is supported by the Russian State Space Corporation ROSCOSMOS. The HEND experiment is supported by ROSCOSMOS and implemented as part of Gamma-Ray Spectrometer suite on NASA Mars Odyssey. HEND data processing is funded by Ministry of Science and Higher Education of the Russian Federation, grant AAAA-A18-118012290370-6.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and K.H. performed the IPN localization, with contributions from the Konus–Wind team (R.A., D.F., S.G., A.V.R. and T.L.C.), the Mars Odyssey (HEND and GRS) teams (I.M., D.G., A.K., M.L., A.S., W.B., C.W.F., K.P.H., H.E. and R.S.), the Fermi–GBM team (A.G., M.S.B. and C.W.-H.), the INTEGRAL (SPI-ACS and IBIS-PICsIT) teams (A.v.K., X.-L.Z., A.R., V.S., E.B., C.F., P.U., A.B. and J.C.R.), and the Swift–BAT team (S.B., J.C., H.K. and D.M.P.). D.F. and D.S. performed the Konus–Wind temporal and spectral data analysis, with contributions from A.L., A.V.R., A.T. and M.U. D.S. and D.F. wrote, and K.H. refined, the manuscript. All authors provided comments on the paper.

Corresponding author

Correspondence to D. Svinkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 GRB 051103 (red stars) and GRB 200415A (blue stars) as possible cosmological GRBs at various redshifts (0.01 < z < 1).

The Konus–Wind samples of short–hard GRBs and long GRBs with known redshifts25 are shown by green triangles and grey circles, respectively. The recent update25 for the hardness–intensity relation in the cosmological rest frame (Ep,z − Eiso, ‘Amati’ relation) is plotted as a solid line, together with its 68% and 90% prediction intervals (dashed black lines). Considering only its spectrum and energy fluence, GRB 200415A is consistent with the Konus–Wind sample of short GRBs if at redshift z ≈ 0.05−1. In the case of GRB 051103, the implied short-GRB redshift is z ≈ 1, with intrinsic Ep ≈ 5 MeV.

Extended Data Table 1 Summary of GRB 200415A and GRB 051103 properties
Extended Data Table 2 Triangulation annuli
Extended Data Table 3 The 3σ IPN box
Extended Data Table 4 Konus–Wind calibrations for GRB 200415A and GRB 051103
Extended Data Table 5 GRB 200415A spectral fits
Extended Data Table 6 GRB 051103 spectral fits

Supplementary information

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svinkin, D., Frederiks, D., Hurley, K. et al. A bright γ-ray flare interpreted as a giant magnetar flare in NGC 253. Nature 589, 211–213 (2021). https://doi.org/10.1038/s41586-020-03076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-020-03076-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing