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Forecasting the spatial distribution of aftershocks in the aftermath 
of large seismic events is of great importance for improving both our 
understanding of earthquake triggering and post-disaster management. 
Recently, DeVries et al.1 attempted to solve this scientific problem by 
deep learning. Using the area under the curve (AUC) of receiver oper-
ating characteristic curves, the authors showed that a deep neural net-
work (DNN) considerably outperformed classical Coulomb stress. Here 
we first clarify that similar performances had already been obtained (by 
the same authors, in 2017)2 for various scalar stress metrics, suggesting 
that deep learning does not actually improve prediction. Second, we 
reformulate the 2017 results2 using two-parameter logistic regression 
(that is, one neuron) and obtain the same performance as that of the 
13,451-parameter DNN. We further show that a logistic regression 
based on the measured distance and mainshock average slip (instead 
of derived stresses) performs better than the DNN. This demonstrates 

that so far the proposed deep learning strategy does not provide any 
new insight (predictive or inferential) in this domain.

Operational aftershock forecasting has been possible for dec-
ades thanks to well established empirical laws3–5. Spatial patterns 
of aftershocks are often described as a power-law decay5–8. Physical 
models based on the Coulomb stress paradigm only outperform sta-
tistical methods when considered in physical/statistical hybrids with 
high-quality mainshock rupture data9. Coulomb stress models can on 
their own be as performant as statistical methods when additionally 
including receiver fault heterogeneities10,11. Meade et al.2 performed 
a thorough analysis of various scalar stress metrics and showed that 
several of them outperform classic Coulomb failure stress. We are 
here concerned with their follow-up article1, which presented similar 
results, but via deep learning. In this study, we aim to demonstrate that 
while defining larger and deeper DNNs usually does not hurt model 
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Fig. 1 | Prediction of aftershock spatial patterns based on stress 
features. a, Receiver operating characteristic (ROC) curves of test data  
for the DNN of ref. 1. b, DNN topology; plot generated with NN-SVG 
(http://alexlenail.me/NN-SVG/). c, Example of DNN prediction (1999 
ChiChi aftershocks). d, Test-data ROC curves for logistic regression  
with the logarithm of the sum of absolute stress components as input.  

e, Logistic regression fit on training data. f, Example of logistic regression 
prediction. For both DNN and logistic regression models, 58 ROC 
curves are shown, for the 57 mainshocks from the test set (grey) and all 
combined mainshock–aftershock pairs (blue; see legend of Fig. 2 for red 
colour explanation). Dotted, dashed and solid curves in c and f represent 
Pr(y) = 0.3, 0.5 and 0.7, respectively.
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performance, it decreases model interpretability for physical inference. 
Specifically, we show that a single neuron provides similar results as the 
DNN of DeVries et al.1 with AUC = 0.85, and that the primary strain 
inputs of ref. 1 (used for stress computation) yield a better performance 
than their stress-based features with AUC = 0.86.

First, we reproduce the results of DeVries et al.1, as illustrated in 
Fig. 1a–c (see the methods section of ref. 1). Their model contains 
13,451 free parameters (weights and biases) because their DNN is 
made of six layers, each composed of 50 nodes. Their inputs are 12 
engineered stress components: the absolute values of the tensor’s six 
independent components, |σij|, and their six opposites, −|σij|. Their 
output is the probability that a spatial cell is in binary class y (1 if one 
or more aftershocks are present, 0 otherwise). We retrieve AUC = 0.85 
and a precision of 5.4% at a threshold of P = 0.5, as in the original publi-
cation (we note that the slightly different precision is due to the random 
subsampling of the balanced training dataset). However, a similar AUC 
can be obtained when using only one input (scalar stress metric) and 
one node (two free parameters with one weight, β1, and one bias, β0). 
This is illustrated in Fig. 1d–f, where we introduce a logistic regression 
for direct comparison with the DNN of DeVries et al. The classifier is 
defined as Pr(y) = 1/{1 + exp[−(β0 + β1logx]}, where y is the spatial 
cell class and x the chosen scalar stress metric. We obtain AUC = 0.85 
and a precision of 5.4% at a threshold of P = 0.5 for the sum of absolute 
stress components (Fig. 1d–f), maximum shear stress and von Mises 
yield criterion.

We further show that a logistic regression based directly on the main-
shock average slip, d, and the minimum distance, r, between space cells 
and mainshock rupture (that is, the simplest of the possible models, 
with orthogonal features) provides comparable or better accuracy than 
the stress-based models mentioned above. Both d and r (in metres) 
were obtained from the SRCMOD database—the same primary data as 
those used by DeVries et al.1 to compute their stress metrics. The results 
are shown in Fig. 2. The performance is improved to AUC = 0.86 and 
the same precision 5.4% compared to the ones obtained with stress 
features2,3. The distance–slip probabilistic model is described by

=
+ β β β− + +

yPr( ) 1
1 e

(1)r d( log log )0 1 2

where β0 = 10.18 ± 0.07, β1 = −2.32 ± 0.02 and β2 = 1.16 ± 0.01. 
Equation (1) provides a transparent and interpretable model to fore-
cast aftershock patterns from geometric and kinematic data, retrievable 
almost in real time after a mainshock. This approach is in line with both 
the literature on operational earthquake forecasting3–5 and statistical 
seismology6–8.

This communication shows that, given the same datasets and 
same accuracy assessments proposed by DeVries et al.1, deep learn-
ing does not offer new insights or better accuracy in predicting 

aftershock patterns. However, we strongly believe that deep learning 
is revolutionizing data analytics in many domains12,13, including 
statistical seismology14. Therefore, the objective of our study is not 
to restrain its use in this field, but to stimulate a further research 
effort15.

Data availability
The data that support the findings of this study are available from the SRCMOD 
fault rupture catalogue (http://equake-rc.info/SRCMOD), the International 
Seismological Centre earthquake catalogue (http://www.isc.ac.uk/iscgem) and 
from DeVries et al.1 at https://github.com/phoebemrdevries/Learning-aftershock-
location-patterns.

Code availability
Original codes by DeVries et al.1 are available at https://github.com/phoebemr-
devries/Learning-aftershock-location-patterns. An R code including the distance–
slip feature definition and logistic regression training/testing is available from the 
corresponding authors on request.
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Fig. 2 | Prediction of aftershock spatial patterns using the distance,  
r, and the slip, d. a, Test-data ROC curves for the logistic regression.  
b, Logistic regression fit on training data. c, Example of logistic regression 
prediction. 58 ROC curves are shown, for the 57 mainshocks of the test set 

(grey) and all combined mainshock–aftershock pairs (red; see legend of 
Fig. 1 for blue colour explanation). Dashed and solid curves in c represent 
Pr(y) = 0.5 and 0.7, respectively.
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Before commenting on the interesting philosophical issues raised by 
Mignan and Broccardo1, I note that the authors were able to repro-
duce the results presented in our paper2 (available at https://github.
com/phoebemrdevries/Learning-aftershock-location-patterns). In the 
accompanying Comment1, the authors make two conceptual points:  
(1) a model with fewer parameters can explain the same feature to label 
mapping just as well as the neural network presented in our paper2 and 
(2) quantities such as the average fault slip and the distance from the 
mainshock are precise and useful predictors that can be used instead 
of the elastic stresses that we used.

The fact that a neural network result can be closely approximated by a 
simpler model (the first point of Mignan and Broccardo) is a core result 
of our paper and one that we described in detail. In fact, it is the way in 
which our findings are interpretable. For example, the entire last para-
graph of our paper is dedicated to this result, stating explicitly: “In other 
words, without any assumptions about receiver plane orientation or 
geometry, the neural network identified an aftershock location forecast 
that is strongly correlated with a small number of physical quantities”, 
including the maximum shear stress and the von Mises yield criterion. 
Similarly, we presented a graphical representation of this central result 
in figure 2d of our paper2, where we presented the neural network pre-
diction, and in figure 2b, c, where we showed how the maximum shear 
stress and the von Mises yield criterion provide close approximations. 
In the first part of their Comment1, Mignan and Broccardo recapitulate 
this central result of our paper by constructing a single-node network 
that yields an AUC score approximately equal to that obtained by the 
neural network in our study2 or the von Mises yield criterion alone 
(which, when filtered through a sigmoid, is a single-node network). 
The perspective presented in our paper is that it was interesting to dis-
cover that a neural network learned a simple, non-exotic combination 
of stresses that provided considerably improved precision.

Whereas point (1) is a restatement of a central result from our paper, 
point (2) represents a philosophical departure. In particular, they show 
that two parameters, the average mainshock fault slip and the fault– 
aftershock distance, are also precise and interpretable predictors of after-
shock locations, serving as a parsimonious phenomenological model. 
We used an alternative, physics-focused approach to focus on physical 
parameters that appear in the equations for frictional fault failure (normal 
and shear stresses) and fracture (difference in principle stresses). Our 
approach ensures that the labels are consistent with the conservation of 
both mass and linear momentum. In other words, we included prior infor-
mation about the physics of solid Earth by developing labels that were 
consistent with elastic-stress transfer. Because stresses decay with distance 
from a mainshock, the direct use of distance as a proxy for locally resolved 
stresses may be an effective approximation for operational aftershock 
forecasting of the type considered by Mignan and Broccardo. I thank 
the authors for replicating our results and for their insightful Comment.
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