Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

78Ni revealed as a doubly magic stronghold against nuclear deformation

Abstract

Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus 78Ni, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with 78Ni as the turning point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental \({\boldsymbol{E}}({{\rm{2}}}_{{\rm{1}}}^{{\rm{+}}})\) systematics of the even–even nuclear landscape.
Fig. 2: Layout of the experimental equipment and particle identification plots of isotopes.
Fig. 3: Doppler-corrected γ-ray energy spectra.
Fig. 4: Comparison of theoretical predictions with experimental data.
Fig. 5: Experimental and calculated partial cross-sections for the 79Cu(p, 2p)78Ni reaction.

Similar content being viewed by others

Data availability

All of the relevant data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wienholtz, F. et al. Masses of exotic calcium isotopes pin down nuclear forces. Nature 498, 346–349 (2013); erratum 500, 612 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Steppenbeck, D. et al. Evidence for a new nuclear “magic number” from the level structure of 54Ca. Nature 502, 207–210 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Erler, J. et al. The limits of the nuclear landscape. Nature 486, 509–512 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Haxel, O., Jensen, J. & Suess, H. On the “magic numbers” in nuclear structure. Phys. Rev. 75, 1766 (1949).

    Article  ADS  CAS  Google Scholar 

  5. Goeppert Mayer, M. On closed shells in nuclei. Phys. Rev. 75, 1969–1970 (1949).

    Article  ADS  CAS  Google Scholar 

  6. Navin, A. et al. Direct evidence of the breakdown of the N = 8 shell closure in 12Be. Phys. Rev. Lett. 85, 266–269 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Thibault, C. et al. Direct measurement of the mass of 11Li and 26–31Na with an on-line mass separator. Phys. Rev. C 12, 644–657 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Guillemaud-Mueller, D. et al. β decay schemes of very neutron-rich sodium isotopes and their descendants. Nucl. Phys. A 426, 37–76 (1984).

    Article  ADS  Google Scholar 

  9. Bastin, B. et al. Collapse of the N = 28 shell closure in 42Si. Phys. Rev. Lett. 99, 022503 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Tshoo, K. et al. N = 16 spherical shell closure in 24O. Phys. Rev. Lett. 109, 022501 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Huck, A. et al. Beta decay of the new isotopes 52K, 52Ca, and 52Sc; a test of the shell model far from stability. Phys. Rev. C 31, 2226–2237 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Talmi, I. & Unna, I. Order of levels in the shell model and spin of 11Be. Phys. Rev. Lett. 4, 469–470 (1960).

    Article  ADS  Google Scholar 

  13. Otsuka, T., Suzuki, T., Fujimoto, R., Grawe, H. & Akaishi, Y. Evolution of the nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Otsuka, T. et al. Novel features of nuclear forces and shell evolution in exotic nuclei. Phys. Rev. Lett. 104, 012501 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Otsuka, T., Suzuki, T., Holt, J. D., Schwenk, A. & Akaishi, Y. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Hammer, H.-W., Nogga, A. & Schwenk, A. Three-body forces: from cold atoms to nuclei. Rev. Mod. Phys. 85, 197–217 (2013).

    Article  ADS  CAS  Google Scholar 

  17. Engelmann, C. et al. Production and identification of heavy Ni isotopes: evidence for the doubly magic nucleus \({\,}_{28}^{78}{\rm{Ni}}\). Z. Phys. A 352, 351–352 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Van de Walle, J. et al. Coulomb excitation of neutron-rich Zn isotopes: first observation of the \({2}_{1}^{+}\) state in 80Zn. Phys. Rev. Lett. 99, 142501 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Hakala, J. et al. Evolution of the N = 50 shell gap energy towards 78Ni. Phys. Rev. Lett. 101, 052502 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Mazzocchi, C. et al. Low energy structure of even-even Ni isotopes close to 78Ni. Phys. Lett. B 622, 45–54 (2005).

    Article  ADS  CAS  Google Scholar 

  21. Hosmer, P. T. et al. Half-life of the doubly magic r-process nucleus 78Ni. Phys. Rev. Lett. 94, 112501 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Xu, Z. Y. et al. β-decay half-lives of 76,77Co, 79,80Ni and 81Cu: experimental indication of a doubly magic 78Ni. Phys. Rev. Lett. 113, 032505 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Sahin, E. et al. Shell evolution towards 78Ni: low-lying states in 77Cu. Phys. Rev. Lett. 118, 242502 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Olivier, L. et al. Persistence of the Z = 28 shell gap around 78Ni: first spectroscopy of 79Cu. Phys. Rev. Lett. 119, 192501 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Welker, A. et al. Binding energy of 79Cu: probing the structure of the doubly magic 78Ni from only one proton away. Phys. Rev. Lett. 119, 192502 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Hagen, G., Jansen, G. R. & Papenbrock, T. Structure of 78Ni from first-principles computations. Phys. Rev. Lett. 117, 172501 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Santamaria, C. et al. Extension of the N = 40 island of inversion towards N = 50: spectroscopy of 66Cr, 70,72Fe. Phys. Rev. Lett. 115, 192501 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Nowacki, F., Poves, A., Caurier, E. & Bounthong, B. Shape coexistence in 78Ni as the portal to the fifth island of inversion. Phys. Rev. Lett. 117, 272501 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Franchoo, S. et al. Beta-decay of 68–74Ni and level structure of neutron-rich Cu isotopes. Phys. Rev. Lett. 81, 3100–3103 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Flanagan, K. T. et al. Nuclear spins and magnetic moments of 71,73,75Cu: inversion of π2p 3/2 and π1f 5/2 levels in 75Cu. Phys. Rev. Lett. 103, 142501 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Sieja, K. & Nowacki F. Shell quenching in 78Ni: hint from the structure of neutron-rich copper isotopes. Phys. Rev. C 81, 061303 (2010).

    Article  ADS  CAS  Google Scholar 

  32. Gottardo, A. et al. First evidence of shape coexistence in the 78Ni region: intruder \({0}_{2}^{+}\) state in 80Ge. Phys. Rev. Lett. 116, 182501 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Yang, X. F. et al. Isomer shift and magnetic moment of the long-lived 1/2+ isomer in \({\,}_{30}^{79}{{\rm{Zn}}}_{49}\): signature of shape coexistence near 78Ni. Phys. Rev. Lett. 116, 182502 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Kubo, T. et al. BigRIPS separator and ZeroDegree spectrometer at RIKEN RI Beam Factory. Prog. Theor. Phys. 2012, 03C003 (2012).

    Google Scholar 

  35. Obertelli, A. et al. MINOS: a vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei. Eur. Phys. J. A 50, 8 (2014).

    Article  CAS  Google Scholar 

  36. Takeuchi, S. et al. DALI2: a NaI(Tl) detector array for measurements of γ rays from fast nuclei. Nucl. Instr. Meth. Phys. Res. A 763, 596–603 (2014).

    Article  ADS  CAS  Google Scholar 

  37. Sorlin, O. et al. 68Ni: magicity versus superfluidity. Phys. Rev. Lett. 88, 092501 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Guénaut, C. et al. High-precision mass measurements of nickel, copper, and gallium isotopes and the purported shell closure at N = 40. Phys. Rev. C 75, 044303 (2007).

    Article  ADS  CAS  Google Scholar 

  39. Langanke, K., Terasaki, J., Nowacki, F., Dean, D. J. & Nazarewicz, W. How magic is the magic 68Ni nucleus? Phys. Rev. 67, 044314 (2003).

    ADS  Google Scholar 

  40. National Nuclear Data Center. Evaluated Nuclear Structure Data Files http://www.nndc.bnl.gov/ensdf/ (2018).

  41. Lenzi, S. M., Nowacki, F., Poves, A. & Sieja, K. Island of inversion around 64Cr. Phys. Rev. C 82, 054301 (2010).

    Article  ADS  CAS  Google Scholar 

  42. Shimizu, N. et al. New-generation Monte Carlo shell model for the K computer era. Prog. Theor. Exp. Phys. 2012, 01A205 (2012).

    Article  Google Scholar 

  43. Tsunoda, Y., Otsuka, T., Shimizu, N., Honma, M. & Utsuno, Y. Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure. Phys. Rev. C 89, 031301 (2014).

    Article  ADS  CAS  Google Scholar 

  44. Péru, S. & Martini, M. Mean field based calculations with the Gogny force: some theoretical tools to explore the nuclear structure. Eur. Phys. J. A 50, 88 (2014).

    Article  ADS  CAS  Google Scholar 

  45. Goriely, S., Hilaire, S., Girod, M. & Péru, S. First Gogny–Hartree–Fock–Bogoliubov nuclear mass model. Phys. Rev. Lett. 102, 242501 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Stroberg, S. R. et al. Nucleus-dependent valence-space approach to nuclear structure. Phys. Rev. Lett. 118, 032502 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Hergert, H., Bogner, S. K., Morris, T. D., Schwenk, A. & Tsukiyama, K. The In-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rep. 621, 165–222 (2016).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  48. Epelbaum, E., Hammer, H.-W. & Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009).

    Article  ADS  CAS  Google Scholar 

  49. Wakasa, T., Ogata, K. & Noro, T. Proton-induced knockout reactions with polarized and unpolarized beams. Prog. Part. Nucl. Phys. 96, 32–87 (2017).

    Article  ADS  CAS  Google Scholar 

  50. Wang, M. et al. The AME2016 atomic mass evaluation. Chin. Phys. C 41, 030003 (2017).

    Article  ADS  CAS  Google Scholar 

  51. Okuno, H., Fukunishi, N. & Kamigaito, O. Progress of RIBF accelerators. Prog. Theor. Exp. Phys. 2012, 03C002 (2012).

    Article  Google Scholar 

  52. Fukuda, N. et al. Identification and separation of radioactive isotope beams by the BigRIPS separator at the RIKEN RI Beam Factory. Nucl. Instr. Meth. Phys. Res. B 317, 323–332 (2013).

    Article  ADS  CAS  Google Scholar 

  53. Baba, H. et al. New data acquisition system for the RIKEN Radioactive Isotope Beam Factory. Nucl. Instr. Meth. Phys. Res. A 616, 65–68 (2010).

    Article  ADS  CAS  Google Scholar 

  54. Calvet, D. A versatile readout system for small to medium scale gaseous and silicon detectors. IEEE Trans. Nucl. Sci. 61, 675–682 (2014).

    Article  ADS  Google Scholar 

  55. Baron, P. et al. Operational experience with the readout system of the MINOS vertex tracker. IEEE Trans. Nucl. Sci. 64, 1494–1500 (2017).

    Article  ADS  CAS  Google Scholar 

  56. Doornenbal, P. In-beam gamma-ray spectroscopy at the RIBF. Prog. Theor. Phys. 2012, 03C004 (2012).

    Google Scholar 

  57. Santamaria, C. et al. Tracking with the MINOS Time Projection Chamber. Nucl. Instr. Meth. Phys. Res. A 905, 138–148 (2018).

    Article  ADS  CAS  Google Scholar 

  58. Agostinelli, S. et al. GEANT4 – a simulation toolkit. Nucl. Instr. Meth. Phys. Res. A 506, 250–303 (2003).

    Article  ADS  CAS  Google Scholar 

  59. Wraith, C. et al. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers. Phys. Lett. B 771, 385–391 (2017).

    Article  ADS  CAS  Google Scholar 

  60. De Groote, R.P. et al. Dipole and quadrupole moments of 73–78Cu as a test of the robustness of the Z = 28 shell closure near 78Ni. Phys. Rev. C 96, 041312 (2017).

    Article  Google Scholar 

  61. Shand, C. M. et al. Shell evolution beyond Z = 28 and N = 50: spectroscopy of 81,82,83,84Zn. Phys. Lett. B 773, 492–497 (2017).

    Article  ADS  CAS  Google Scholar 

  62. Cortés, M. L. et al. Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target. Phys. Rev. C 97, 044315 (2018).

    Article  ADS  Google Scholar 

  63. Whitehead, R. R. in Theory and Applications of Moments Methods in Many Fermion Systems (eds Dalton, B. J. et al.), 235–255, (Plenum, New York, 1980).

  64. Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. & Zuker, A. P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005).

    Article  ADS  CAS  Google Scholar 

  65. Leoni, S. et al. Multifaceted quadruplet of low-lying spin-zero states in 66Ni: emergence of shape isomerism in light nuclei. Phys. Rev. Lett. 118, 162502 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Suchyta, S. et al. Shape coexistence in 68Ni. Phys. Rev. C 89, 021301 (2014).

    Article  ADS  CAS  Google Scholar 

  67. Flavigny, F. et al. Characterization of the low-lying 0+ and 2+ states in 68Ni via β decay of the low-spin 68Co isomer. Phys. Rev. C 91, 034310 (2015).

    Article  ADS  CAS  Google Scholar 

  68. Chiara, C. J. et al. Identification of deformed intruder states in semi-magic 70Ni. Phys. Rev. C 91, 044309 (2015).

    Article  ADS  CAS  Google Scholar 

  69. Morales, A. I. et al. Type II shell evolution in A = 70 isobars from the N≥40 island of inversion. Phys. Lett. B 765, 328–333 (2017).

    Article  ADS  CAS  Google Scholar 

  70. Tsukiyama, K., Bogner, S. K. & Schwenk, A. In-medium similarity renormalization group for nuclei. Phys. Rev. Lett. 106, 222502 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Morris, T. D., Parzuchowski, N. M. & Bogner, S. K. Magnus expansion and in-medium similarity renormalization group. Phys. Rev. C 92, 034331 (2015).

    Article  ADS  CAS  Google Scholar 

  72. Tsukiyama, K., Bogner, S.K. & Schwenk, A. In-medium similarity renormalization group for open-shell nuclei. Phys. Rev. C 85, 061304 (2012).

    Article  ADS  CAS  Google Scholar 

  73. Bogner, S. K. et al. Nonperturbative shell-model interactions from the in-medium similarity renormalization group. Phys. Rev. Lett. 113, 142501 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Stroberg, S.R., Hergert, H., Holt, J.D., Bogner, S.K. & Schwenk, A. Ground and excited states of doubly open-shell nuclei from ab initio valence-space Hamiltonians. Phys. Rev. C 93, 051301 (2016).

    Article  ADS  CAS  Google Scholar 

  75. Hebeler, K., Bogner, S.K., Furnstahl, R.J., Nogga, A. & Schwenk, A. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 83, 031301 (2011).

    Article  ADS  CAS  Google Scholar 

  76. Morris, T. D. et al. Structure of the lightest tin isotopes. Phys. Rev. Lett. 120, 152503 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Simonis, J. et al. Saturation with chiral interactions and consequences for finite nuclei. Phys. Rev. C 96, 014303 (2017).

    Article  ADS  Google Scholar 

  78. Péru, S. & Goutte, H. Role of deformation on giant resonances within the quasiparticle random-phase approximation and the Gogny force. Phys. Rev. C 77, 044313 (2008).

    Article  ADS  CAS  Google Scholar 

  79. Gaudefroy, L. et al. Collective structure of the N = 40 isotones. Phys. Rev. C 80, 064313 (2009).

    Article  ADS  CAS  Google Scholar 

  80. Anguiano, M., Egido, J. L. & Robledo, L. M. Coulomb exchange and pairing contributions in nuclear Hartree–Fock–Bogoliubov calculations with the Gogny force. Nucl. Phys. A 683, 227–254 (2001).

    Article  ADS  MATH  Google Scholar 

  81. Amos, K., Dortmans, P. J., von Geramb, H. V., Karataglidis, S. & Raynal, J. in Advanced Nuclear Physics Vol. 25 (eds Negele, J. W. & Vogt, E.) 276–536 (Plenum, New York, 2000).

  82. Bohr, A. & Mottelson, B. R. Nuclear Structure Vol. I (Benjamin, New York, 1969).

    MATH  Google Scholar 

  83. Perey, F. G. & Buck, B. A non-local potential model for the scattering of neutrons by nuclei. Nucl. Phys. 32, 353–380 (1962).

    Article  MATH  Google Scholar 

  84. Franey, M. A. & Love, W. G. Nucleon-nucleon t-matrix interaction for scattering at intermediate energies. Phys. Rev. C 31, 488–498 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the RIKEN Nishina Center accelerator complex for providing a stable and high-intensity uranium beam and the BigRIPS team for the smooth operation of the secondary beams. We also thank N. Miyauchi for 3D schematic of the RIBF facility shown in Fig. 2a. The development of MINOS and the core MINOS team have been supported by the European Research Council through ERC grant number MINOS-258567. R.T. was supported by JSPS Grant-in-Aid for JSPS Research Fellows JP14J08717. A.O. was supported by JSPS long-term fellowship L-13520 at the RIKEN Nishina Center. C. Santamaria was supported by the IPA programme at the RIKEN Nishina Center. J.D.H. acknowledges support by the National Research Council of Canada and NSERC. This work was supported in part by the ERC through grant number 307986 STRONGINT, the DFG under grant SFB 1245 and the BMBF under contract number 05P18RDFN1. The MCSM calculations were performed on the K computer at RIKEN AICS (hp160211, hp170230, hp180179). J.M., T.O. and Y.T. acknowledge support from MEXT as ‘Priority Issue on post-K computer’ (Elucidation of the Fundamental Laws and Evolution of the Universe) and JICFuS. J.M. and K.O. were supported by Grant-in-Aid for Scientific Research JP18K03639 (J.M.) and JP16K05352 (K.O.). A. Poves acknowledges support by Mineco (Spain) grants FPA2014-57916 and Severo Ochoa Program SEV-2016-0597. This work was supported in part by the DFG through the Cluster of Excellence PRISMA. L.X.C. was supported by Vietnam MOST through the Physics Development Program grant TLCN.25/18. Z.D., Z.K. and Z.V. acknowledge support from the GINOP-2.3.3-15-2016-00034 project. M.L, C.L and V.W. acknowledge support from the German BMBF through grants 05P15RDNF1 and 05P12RDNF8.

Author information

Authors and Affiliations

Authors

Contributions

R.T. performed offline data analyses and GEANT4 simulations and prepared the figures; P.D. and A.O. designed the experiment; R.T., C. Santamaria, P.D., A.O., J.D.H., J.M., F.N., K.O., T.O., A.S. and Y.T. wrote the manuscript; R.T., C. Santamaria, P.D., A.O., G.A., D.C., F.C., A.C., A.D., J.-M.G., A.G., V.L., M.M., S.M., M.N., C.P., A. Peyaud, E.C.P., J.-Y.R., Y.S., S.T. and H.W. were responsible for setting up the liquid-hydrogen target, the vertex reconstruction system, MINOS and the γ-ray detector array, DALI2; R.T., C. Santamaria, H.B., D.C., A.C. and T.I. were responsible for the data acquisition system and analysis software; R.T., C. Santamaria, P.D., A.O., G.A., H.B., D.C., F.C., A.C., A.D., J.-M.G., A.G., T.I., V.L., M.M., S.M., M.N., H.O., C.P., A. Peyaud, E.C.P., J.-Y.R., Y.S., S.T., H.W., F.B., L.X.C., Z.D., S.F., F.G., A.G., K.H., Z.K., S.K., J.L., M.L., C.L., R.L., K.N., T. Miyazaki, S.N., L.O., S.O., Z.P., E.S., C. Shand, P.-A.S., I.S., D. Steppenbeck, T.S., D. Suzuki, Z.V., V.W., J.W. and Z.Y.X. checked the data accumulation online and maintained operation of the experiment; P.D., A.O., K.Y., T. Motobayashi, H.S. and T.U. supervised the participants; F.N. and A. Poves performed the LSSM calculations; T.O. and Y.T. performed the MCSM calculations; S.P. performed the QRPA calculations; J.D.H., J.M., A.S., J.S. and S.R.S. performed the IM-SRG calculations; K.O. performed the DWIA calculations. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to P. Doornenbal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Energy spectra of prompt γ-ray coincidences with 79Cu(p, 2p)78Ni reactions.

a, As in Fig. 3a, but with a binning of 40 keV, which allows us to resolve the transition at 583 keV. b, γ-ray spectrum in coincidence with the 583-keV transition. The expected intensities for coincidences with the 583-keV transition are indicated by the simulated lineshapes with and without the 1,103-keV transition, shown by the blue dashed and magenta solid lines, respectively. The results reveal no coincidence between the 583- and 1,103-keV transitions. c, γ-ray spectrum in coincidence with the 1,103-keV transition. The hypothesis of no coincidence between the 583- and 1,103-keV transitions is corroborated. Coincidence ranges are illustrated by the shaded areas in b and c.

Extended Data Fig. 2 Evolution of peak significance and fitted intensities as a function of γ-ray multiplicity.

a, b, Number of emitted γ-rays obtained for the fitted individual transitions. c, d, S.L. of individual transitions for the 79Cu(p, 2p)78Ni (c) and 80Zn(p, 3p)78Ni (d) reactions.

Extended Data Table 1 Observed γ-ray transition energies, relative intensities and S.L. for the 79Cu(p, 2p)78Ni and 80Zn(p, 3p)78Ni reaction channels

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniuchi, R., Santamaria, C., Doornenbal, P. et al. 78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 569, 53–58 (2019). https://doi.org/10.1038/s41586-019-1155-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-019-1155-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing