Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vowel recognition with four coupled spin-torque nano-oscillators

Abstract

In recent years, artificial neural networks have become the flagship algorithm of artificial intelligence1. In these systems, neuron activation functions are static, and computing is achieved through standard arithmetic operations. By contrast, a prominent branch of neuroinspired computing embraces the dynamical nature of the brain and proposes to endow each component of a neural network with dynamical functionality, such as oscillations, and to rely on emergent physical phenomena, such as synchronization2,3,4,5,6, for solving complex problems with small networks7,8,9,10,11. This approach is especially interesting for hardware implementations, because emerging nanoelectronic devices can provide compact and energy-efficient nonlinear auto-oscillators that mimic the periodic spiking activity of biological neurons12,13,14,15,16. The dynamical couplings between oscillators can then be used to mediate the synaptic communication between the artificial neurons. One challenge for using nanodevices in this way is to achieve learning, which requires fine control and tuning of their coupled oscillations17; the dynamical features of nanodevices can be difficult to control and prone to noise and variability18. Here we show that the outstanding tunability of spintronic nano-oscillators—that is, the possibility of accurately controlling their frequency across a wide range, through electrical current and magnetic field—can be used to address this challenge. We successfully train a hardware network of four spin-torque nano-oscillators to recognize spoken vowels by tuning their frequencies according to an automatic real-time learning rule. We show that the high experimental recognition rates stem from the ability of these oscillators to synchronize. Our results demonstrate that non-trivial pattern classification tasks can be achieved with small hardware neural networks by endowing them with nonlinear dynamical features such as oscillations and synchronization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approach for pattern classification with coupled spin-torque nano-oscillators.
Fig. 2: Learning to classify patterns by tuning the frequencies of oscillators.
Fig. 3: Comparing the recognition rates of experimental and ideal oscillators.
Fig. 4: Benchmarking performances with classical neural networks.

Similar content being viewed by others

Data availability

The datasets generated and analysed during this study are available from the corresponding authors on reasonable request.

References

  1. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017).

    Article  ADS  CAS  Google Scholar 

  2. Borisyuk, R., Denham, M., Hoppensteadt, F., Kazanovich, Y. & Vinogradova, O. An oscillatory neural network model of sparse distributed memory and novelty detection. Biosystems 58, 265–272 (2000).

    Article  CAS  Google Scholar 

  3. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004).

    Article  ADS  CAS  Google Scholar 

  4. Rabinovich, M., Huerta, R. & Laurent, G. Transient dynamics for neural processing. Science 321, 48–50 (2008).

    Article  CAS  Google Scholar 

  5. Sussillo, D. Neural circuits as computational dynamical systems. Curr. Opin. Neurobiol. 25, 156–163 (2014).

    Article  CAS  Google Scholar 

  6. Pikovsky, A. & Rosenblum, M. Dynamics of globally coupled oscillators: progress and perspectives. Chaos 25, 097616 (2015).

    Article  ADS  Google Scholar 

  7. Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318–321 (2017).

    Article  ADS  CAS  Google Scholar 

  8. Csaba, G. & Porod, W. Computational study of spin-torque oscillator interactions for non-Boolean computing applications. IEEE Trans. Magn. 49, 4447–4451 (2013).

    Article  ADS  Google Scholar 

  9. Yogendra, K., Fan, D., Jung, B. & Roy, K. Magnetic pattern recognition using injection-locked spin-torque nano-oscillators. IEEE Trans. Electron Dev. 63, 1674–1680 (2016).

    Article  ADS  CAS  Google Scholar 

  10. Macià, F., Kent, A. D. & Hoppensteadt, F. C. Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation. Nanotechnology 22, 095301 (2011).

    Article  ADS  Google Scholar 

  11. Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Pattern recognition with “materials that compute”. Sci. Adv. 2, e1601114 (2016).

    Article  ADS  Google Scholar 

  12. Pickett, M. D., Medeiros-Ribeiro, G. & Williams, R. S. A scalable neuristor built with Mott memristors. Nat. Mater. 12, 114–117 (2013).

    Article  ADS  CAS  Google Scholar 

  13. Pufall, M. R. et al. Physical implementation of coherently coupled oscillator networks. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 76–84 (2015).

    Article  ADS  Google Scholar 

  14. Sharma, A. A., Bain, J. A. & Weldon, J. A. Phase coupling and control of oxide-based oscillators for neuromorphic computing. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 58–66 (2015).

    Article  ADS  Google Scholar 

  15. Grollier, J., Querlioz, D. & Stiles, M. D. Spintronic nanodevices for bioinspired computing. Proc. IEEE 104, 2024–2039 (2016).

    Article  Google Scholar 

  16. Parihar, A., Shukla, N., Jerry, M., Datta, S. & Raychowdhury, A. Computational paradigms using oscillatory networks based on state-transition devices. In 2017 International Joint Conference on Neural Networks (IJCNN) 3415–3422 (IEEE, 2017).

  17. Vassilieva, E., Pinto, G., de Barros, J. A. & Suppes, P. Learning pattern recognition through quasi-synchronization of phase oscillators. IEEE Trans. Neural Netw. 22, 84–95 (2011).

    Article  Google Scholar 

  18. Vodenicarevic, D., Locatelli, N., Araujo, F. A., Grollier, J. & Querlioz, D. A nanotechnology-ready computing scheme based on a weakly coupled oscillator network. Sci. Rep. 7, 44772 (2017).

    Article  ADS  CAS  Google Scholar 

  19. Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat. Mater. 13, 11–20 (2014).

    Article  ADS  CAS  Google Scholar 

  20. Slavin, A. & Tiberkevich, V. Nonlinear auto-oscillator theory of microwave generation by spin-polarized current. IEEE Trans. Magn. 45, 1875–1918 (2009).

    Article  ADS  CAS  Google Scholar 

  21. Kaka, S. et al. Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005).

    Article  ADS  CAS  Google Scholar 

  22. Mancoff, F. B., Rizzo, N. D., Engel, B. N. & Tehrani, S. Phase-locking in double-point-contact spin-transfer devices. Nature 437, 393–395 (2005).

    Article  ADS  CAS  Google Scholar 

  23. Houshang, A. et al. Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nat. Nanotech. 11, 280–286 (2016).

    Article  ADS  CAS  Google Scholar 

  24. Lebrun, R. et al. Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme. Nat. Commun. 8, 15825 (2017).

    Article  ADS  CAS  Google Scholar 

  25. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Article  CAS  Google Scholar 

  26. Tsunegi, S. et al. High emission power and Q factor in spin torque vortex oscillator consisting of FeB free layer. Appl. Phys. Express 7, 063009 (2014).

    Article  ADS  Google Scholar 

  27. Romera, M. et al. Enhancing the injection locking range of spin torque oscillators through mutual coupling. Appl. Phys. Lett. 109, 252404 (2016).

    Article  ADS  Google Scholar 

  28. Hillenbrand, J., Getty, L. A., Wheeler, K. & Clark, M. J. Acoustic characteristics of American English vowels. J. Acoust. Soc. Am. 97, 3099–3111 (1994).

    Article  ADS  Google Scholar 

  29. Vodenicarevic, D., Locatelli, N., Grollier, J. & Querlioz, D. Synchronization detection in networks of coupled oscillators for pattern recognition. In 2016 International Joint Conference on Neural Networks (IJCNN) 2015–2022 (IEEE, 2016).

  30. Fang, B. et al. Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat. Commun. 7, 11259 (2016).

    Article  ADS  CAS  Google Scholar 

  31. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339–342 (2005).

    Article  ADS  CAS  Google Scholar 

  32. Louis, S. et al. Low power microwave signal detection with a spin-torque nano-oscillator in the active self-oscillating regime. IEEE Trans. Magn. 53, 1–4 (2017).

    Article  Google Scholar 

  33. Jouppi, N. P. et al. Datacenter performance analysis of a tensor processing unit. In Proc. 44th Annual International Symposium on Computer Architecture 1–12 (ACM, 2017).

  34. Livi, P. & Indiveri, G. A current-mode conductance-based silicon neuron for address-event neuromorphic systems. In 2009 IEEE International Symposium on Circuits and Systems 2898–2901 (IEEE, 2009).

  35. Qiao, N. & Indiveri, G. Scaling mixed-signal neuromorphic processors to 28 nm FD-SOI technologies. In 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS) 552–555 (IEEE, 2016).

  36. Wijekoon, J. H. B. & Dudek, P. Compact silicon neuron circuit with spiking and bursting behaviour. Neural Netw. 21, 524–534 (2008).

    Article  Google Scholar 

  37. Tran, D. X. & Dang, T. T. An ultra-low power consumption and very compact 1.49 GHz CMOS voltage controlled ring oscillator. In 2014 International Conference on Advanced Technologies for Communications (ATC 2014) 239–244 (IEEE, 2014).

  38. Tomita, Y. et al. An 8-to-16GHz 28nm CMOS clock distribution circuit based on mutual-injection-locked ring oscillators. In 2013 Symposium on VLSI Circuits C238–C239 (IEEE, 2013).

  39. Gajek, M. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett. 100, 132408 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council ERC under grant bioSPINspired 682955, the French National Research Agency (ANR) under grant MEMOS ANR-14-CE26-0021, and a public grant overseen by the ANR as part of the ‘Investissements d’Avenir’ programme (Labex NanoSaclay, reference ANR-10-LABX-0035).

Reviewer information

Nature thanks F. Hoppensteadt, A. Kent and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The study was designed by J.G. and D.Q. Samples were optimized and fabricated by S.T. and K.Y. The main experiments were performed by M.R. and P.T. Spin diode experiments were performed by P.T. and J.T. Numerical simulations were realized by P.T., M.E., M.R., T.H. and D.V. All authors contributed to analysing the results and writing the paper.

Corresponding authors

Correspondence to Damien Querlioz or Julie Grollier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematic of the experimental set-up.

The four coupled vortex nano-oscillators are shown. IRFA and IRFB are the microwave currents injected in the strip line by the two microwave sources. HRF is the resulting microwave field. IDC1–4 are the applied direct currents.

Extended Data Fig. 2 Recognition rates obtained by different neural networks on the formant database.

a, Recognition rates of different neural networks on the formant database as a function of the number of trained parameters. be, Schematics of the simulated neural networks: b, multi-layer perceptron; c, perceptron; d, RNN; and e, LSTM.

Extended Data Fig. 3 Synchronization detection by the spin diode effect.

a, Rectified direct voltage measured between oscillator electrodes when the external microwave signal is injected in the strip line above the oscillator and its frequency is swept. Here, the direct current through the oscillator is 5 mA, the magnetic field is 585 mT and the injected microwave power is +1 dBm. b, Oscillator spectrum emission measured during the same frequency sweep as a. c, Proposed differential measurement configuration for CMOS-based detection of synchronization-induced rectified voltages. d, Two-stage CMOS circuit. e, The first stage, composed of two differential amplifiers (green), is followed by a gain stage (blue). VDD, supply voltage; GND, ground. f, Energy consumption of the CMOS circuit for one synchronization detection event, as a function of the amplitude of the generated rectified direct voltages.

Extended Data Table 1 Learning rule
Extended Data Table 2 Comparison of CMOS and spin-torque nano-oscillators for neuromorphic computing

Supplementary information

Supplementary Information

The document describes the numerical simulations that were performed to investigate the important features that oscillators should possess to classify accurately.

Supplementary Data

This file contains the vowel formant database. The spoken vowels used in this study are characterized by a set of frequencies called formants, that we obtain from a subset of the Hillenbrand database (https://homepages.wmich.edu/~hillenbr/voweldata.html). We use the first three formants (F1, F2 and F3) sampled at four different times of the duration of the spoken vowel: at the steady state and at 20%, 50%, and 80% of the vowel duration, respectively (12 parameters in total). When one of these 12 parameters could not be measured or irresolvable formants mergers occurred, Hillenbrand et al.[28] put a zero in this parameter in the database. For our study, we have removed the vowel utterances whose corresponding set of formants is not complete. Moreover, we use the same number of speakers for each vowel. The resulting formant database comprising 37 female speakers that we used is given. The file also includes the input frequencies fA and fB corresponding to each vowel and the coefficients of the two linear combinations that were used to obtain these input frequencies.

Supplementary Video

Training spin-torque nano-oscillators to classify. This short video shows the learning process for the spin-torque nano-oscillator based hardware. Here four coupled oscillators are trained to recognize seven American vowels. Each vowel is characterized by two frequencies, fA and fB, and is represented by a dot. The different vowels have different colors. The spread within each vowel is due to the different pronunciations of the 37 speakers. Each vowel is applied to the oscillator system as the sum of two microwave magnetic fields which can phase-lock the oscillators. The different colors in the background map represent the different experimental oscillator synchronization configurations obtained for different input frequencies fA and fB. Recognition is achieved when each vowel cloud corresponds to a single synchronization configuration. At the beginning of the video, the oscillator network is randomly set, and the recognition rate is closed to zero. At each training step, the dc current though each oscillator is modified through a learning rule which brings the oscillator frequency closer to the desired synchronization configuration associated to the vowels that have been applied. At the end of the video, after the networks has learned, the dots corresponding to each vowel are in majority encompassed in different regions of the background map corresponding to different synchronization configurations, which gives a recognition rate of 89% on the training data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romera, M., Talatchian, P., Tsunegi, S. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018). https://doi.org/10.1038/s41586-018-0632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0632-y

Keywords

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing