Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent spin–photon coupling using a resonant exchange qubit

Abstract

Electron spins hold great promise for quantum computation because of their long coherence times. Long-distance coherent coupling of spins is a crucial step towards quantum information processing with spin qubits. One approach to realizing interactions between distant spin qubits is to use photons as carriers of quantum information. Here we demonstrate strong coupling between single microwave photons in a niobium titanium nitride high-impedance resonator and a three-electron spin qubit (also known as a resonant exchange qubit) in a gallium arsenide device consisting of three quantum dots. We observe the vacuum Rabi mode splitting of the resonance of the resonator, which is a signature of strong coupling; specifically, we observe a coherent coupling strength of about 31 megahertz and a qubit decoherence rate of about 20 megahertz. We can tune the decoherence electrostatically to obtain a minimal decoherence rate of around 10 megahertz for a coupling strength of around 23 megahertz. We directly measure the dependence of the qubit–photon coupling strength on the tunable electric dipole moment of the qubit using the ‘AC Stark’ effect. Our demonstration of strong qubit–photon coupling for a three-electron spin qubit is an important step towards coherent long-distance coupling of spin qubits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hybrid quantum device and vacuum Rabi splitting.
Fig. 2: Spin-qubit operation regime.
Fig. 3: Resonator response.
Fig. 4: Resonator spectrum at the saddle point in the qubit energy.
Fig. 5: Qubit spectroscopy.
Fig. 6: AC Stark shift.

Similar content being viewed by others

References

  1. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  MATH  Google Scholar 

  2. Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443–447 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Bruhat, L. E. et al. Strong coupling between an electron in a quantum dot circuit and a photon in a cavity. Preprint at https://arxiv.org/abs/1612.05214 (2016).

  5. Mi, X., Cady, J. V., Zajac, D. M., Deelman, P. W. & Petta, J. R. Strong coupling of a single electron in silicon to a microwave photon. Science 355, 156–158 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Stockklauser, A. et al. Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator. Phys. Rev. X 7, 011030 (2017).

    Google Scholar 

  7. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  CAS  Google Scholar 

  8. Zwanenburg, F. A. et al. Silicon quantum electronics. Rev. Mod. Phys. 85, 961–1019 (2013).

    Article  ADS  CAS  Google Scholar 

  9. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664–669 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  11. Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  12. Pioro-Ladrière, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008).

    Article  CAS  Google Scholar 

  13. Hu, X., Liu, Y.-x. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).

    Article  ADS  CAS  Google Scholar 

  14. Beaudoin, F., Lachance-Quirion, D., Coish, W. A. & Pioro-Ladrière, M. Coupling a single electron spin to a microwave resonator: controlling transverse and longitudinal couplings. Nanotechnology 27, 464003 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Medford, J. et al. Quantum-dot-based resonant exchange qubit. Phys. Rev. Lett. 111, 050501 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Medford, J. et al. Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat. Nanotechnol. 8, 654–659 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Gaudreau, L. et al. Coherent control of three-spin states in a triple quantum dot. Nat. Phys. 8, 54–58 (2012).

    Article  CAS  Google Scholar 

  18. Taylor, J. M., Srinivasa, V. & Medford, J. Electrically protected resonant exchange qubits in triple quantum dots. Phys. Rev. Lett. 111, 050502 (2013).

    Article  ADS  PubMed  CAS  Google Scholar 

  19. Russ, M. & Burkard, G. Asymmetric resonant exchange qubit under the influence of electrical noise. Phys. Rev. B 91, 235411 (2015).

    Article  ADS  CAS  Google Scholar 

  20. Srinivasa, V., Taylor, J. M. & Tahan, C. Entangling distant resonant exchange qubits via circuit quantum electrodynamics. Phys. Rev. B 94, 205421 (2016).

    Article  ADS  Google Scholar 

  21. Russ, M. & Burkard, G. Long distance coupling of resonant exchange qubits. Phys. Rev. B 92, 205412 (2015).

    Article  ADS  CAS  Google Scholar 

  22. Russ, M., Ginzel, F. & Burkard, G. Coupling of three-spin qubits to their electric environment. Phys. Rev. B 94, 165411 (2016).

    Article  ADS  CAS  Google Scholar 

  23. Devoret, M., Girvin, S. & Schoelkopf, R. Circuit-QED: how strong can the coupling between a Josephson junction atom and a transmission line resonator be? Ann. Phys. 16, 767–779 (2007).

    Article  MATH  CAS  Google Scholar 

  24. Samkharadze, N. et al. High-kinetic-inductance superconducting nanowire resonators for circuit QED in a magnetic field. Phys. Rev. Appl. 5, 044004 (2016).

    Article  ADS  CAS  Google Scholar 

  25. Collett, M. J. & Gardiner, C. W. Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386–1391 (1984).

    Article  ADS  Google Scholar 

  26. Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  27. Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    Article  ADS  PubMed  CAS  Google Scholar 

  29. Sete, E. A., Gambetta, J. M. & Korotkov, A. N. Purcell effect with microwave drive: suppression of qubit relaxation rate. Phys. Rev. B 89, 104516 (2014).

    Article  ADS  CAS  Google Scholar 

  30. Russ, M. & Burkard, G. Three-electron spin qubits. J. Phys. Condens. Matter 29, 393001 (2017).

    Article  PubMed  Google Scholar 

  31. Mehl, S. & DiVincenzo, D. P. Noise analysis of qubits implemented in triple quantum dot systems in a Davies master equation approach. Phys. Rev. B 87, 195309 (2013).

    Article  ADS  CAS  Google Scholar 

  32. Hung, J.-T., Fei, J., Friesen, M. & Hu, X. Decoherence of an exchange qubit by hyperfine interaction. Phys. Rev. B 90, 045308 (2014).

    Article  ADS  CAS  Google Scholar 

  33. Malinowski, F. K. et al. Symmetric operation of the resonant exchange qubit. Phys. Rev. B 96, 045443 (2017).

    Article  ADS  Google Scholar 

  34. Petta, J. R. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  PubMed  CAS  Google Scholar 

  35. Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  36. Trauzettel, B., Bulaev, D. V., Loss, D. & Burkard, G. Spin qubits in graphene quantum dots. Nat. Phys. 3, 192–196 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with M. Russ and A. Stockklauser. We thank M. Collodo, P. Kurpiers and P. Märki for contributions to our experimental set-up. This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research (NCCR) Quantum Science and Technology. U.C.M. and A.B. were supported by NSERC and the Canada First Research Excellence fund.

Reviewer information

Nature thanks T. Meunier and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.J.L., J.V.K. and P.S. fabricated the device. A.J.L. and J.V.K. performed the experiments. A.J.L. and J.V.K. analysed the data. U.C.M. and A.B. provided theory support for the experiment. C.R. and W.W. grew the wafer material. A.J.L., J.V.K., T.I. and U.C.M. wrote the manuscript with the input of all authors. A.W., K.E. and T.I. supervised the experiment.

Corresponding author

Correspondence to A. J. Landig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Methods S1-S5 and Supplementary Figures S1-S2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landig, A.J., Koski, J.V., Scarlino, P. et al. Coherent spin–photon coupling using a resonant exchange qubit. Nature 560, 179–184 (2018). https://doi.org/10.1038/s41586-018-0365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0365-y

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing