Article | Published:

Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell

Naturevolume 558pages383389 (2018) | Download Citation

Abstract

Understanding the causes of recent catastrophic ice shelf disintegrations is a crucial step towards improving coupled models of the Antarctic Ice Sheet and predicting its future state and contribution to sea-level rise. An overlooked climate-related causal factor is regional sea ice loss. Here we show that for the disintegration events observed (the collapse of the Larsen A and B and Wilkins ice shelves), the increased seasonal absence of a protective sea ice buffer enabled increased flexure of vulnerable outer ice shelf margins by ocean swells that probably weakened them to the point of calving. This outer-margin calving triggered wider-scale disintegration of ice shelves compromised by multiple factors in preceding years, with key prerequisites being extensive flooding and outer-margin fracturing. Wave-induced flexure is particularly effective in outermost ice shelf regions thinned by bottom crevassing. Our analysis of satellite and ocean-wave data and modelling of combined ice shelf, sea ice and wave properties highlights the need for ice sheet models to account for sea ice and ocean waves.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Bindschadler, R. et al. Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet for the International Polar Year. Cryosphere 5, 569–588 (2011).

  2. 2.

    Gudmundsson, G. H. Ice-shelf buttressing and the stability of marine ice sheets. Cryosphere 7, 647–655 (2013).

  3. 3.

    Fürst, J. J. et al. The safety band of Antarctic ice shelves. Nat. Clim. Chang. 6, 479–482 (2016).

  4. 4.

    Morris, E. & Vaughan, D. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspective (eds Domack, E. et al.) 61–68 (American Geophysical Union, Washington DC, 2003).

  5. 5.

    Scambos, T., Hulbe, C. & Fahnestock, M. in Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspective (eds Domack, E. et al.) 335–347 (American Geophysical Union, Washington DC, 2003).

  6. 6.

    van den Broeke, M. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett. 32, L12815 (2005).

  7. 7.

    Braun, M. & Humbert, A. Recent retreat of Wilkins Ice Shelf reveals new insights in ice shelf breakup mechanisms. IEEE Geosci. Remote Sens. Lett. 6, 263–267 (2009).

  8. 8.

    Rack, W. & Rott, H. Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula. Ann. Glaciol. 39, 505–510 (2004).

  9. 9.

    Vieli, A., Payne, A. J., Shepherd, A. & Du, Z. Causes of pre-collapse changes of the Larsen B ice shelf: numerical modelling and assimilation of satellite observations. Earth Planet. Sci. Lett. 259, 297–306 (2007).

  10. 10.

    Scambos, T. A. et al. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins Ice Shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009).

  11. 11.

    Khazendar, A., Rignot, E., Larour, E. & Larsen, B. Ice shelf rheology preceding its disintegration inferred by a control method. Geophys. Res. Lett. 34, L19503 (2007).

  12. 12.

    Glasser, N. F. & Scambos, T. A. A structural glaciological analysis of the 2002 Larsen B ice shelf collapse. J. Glaciol. 54, 3–16 (2008).

  13. 13.

    Rott, H., Skvarca, P. & Nagler, T. Rapid collapse of Northern Larsen Ice Shelf. Antarct. Sci. 271, 788–792 (1996).

  14. 14.

    Holdsworth, G. & Glynn, J. Iceberg calving from floating glaciers by a vibration mechanism. Nature 274, 464–466 (1978).

  15. 15.

    Squire, V. A., Robinson, W. H., Meylan, M. H. & Haskell, T. G. Observations of flexural waves in the Erebus Glacier Tongue, McMurdo Sound, Antarctica, and nearby sea ice. J. Glaciol. 40, 377–385 (1994).

  16. 16.

    Sergienko, O. V. Elastic response of floating glacier ice to impact of long-period ocean waves. J. Geophys. Res. 115, F04028 (2010).

  17. 17.

    Robinson, W. & Haskell, T. G. Travelling flexural waves in the Erebus Glacier Tongue, McMurdo Sound, Antarctica. Cold Reg. Sci. Technol. 20, 289–293 (1992).

  18. 18.

    MacAyeal, D. R. et al. Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in tropics and Northern Hemisphere. Geophys. Res. Lett. 33, L17502 (2006).

  19. 19.

    Bromirski, P. D., Sergienko, O. V. & MacAyeal, D. R. Transoceanic infragravity waves impacting Antarctic ice shelves. Geophys. Res. Lett. 37, L02502 (2010).

  20. 20.

    Brunt, K. M., Okal, E. A. & MacAyeal, D. R. Antarctic ice-shelf calving triggered by the Honshu (Japan) earthquake and tsunami, March 2011. J. Glaciol. 57, 785–788 (2011).

  21. 21.

    Robinson, W. & Haskell, T. G. Calving of Erebus Glacier tongue. Nature 346, 615–616 (1990).

  22. 22.

    Braun, M., Humbert, A. & Moll, A. Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability. Cryosphere 3, 41–56 (2009).

  23. 23.

    Domack, E. et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436, 681–685 (2005).

  24. 24.

    Rignot, E. et al. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophys. Res. Lett. 31, L18401 (2004).

  25. 25.

    Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. (2004).

  26. 26.

    MacAyeal, D. R., Scambos, T. A., Hulbe, C. L. & Fahnestock, M. A. Catastrophic ice shelf breakup by an ice shelf fragment capsize mechanism. J. Glaciol. 49, 22–36 (2003).

  27. 27.

    Stammerjohn, S., Massom, R., Rind, D. & Martinson, D. Regions of rapid sea ice change: an inter-hemispheric seasonal comparison. Geophys. Res. Lett. 39, L06501 (2012).

  28. 28.

    Padman, L. Oceanic controls on the mass balance of Wilkins Ice Shelf, Antarctica. J. Geophys. Res. Oceans 117, C01010 (2012).

  29. 29.

    Cook, A. J. & Vaughan, D. G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years. Cryosphere 4, 77–98 (2010).

  30. 30.

    Arigony-Neto, J. et al. in Global Land Ice Measurements from Space (eds Kargel, J. et al.) Ch. 30, 717–741 (Springer Praxis, Heidelberg, 2014).

  31. 31.

    Turner, J., Harangozo, S. A., Marshall, G. J., King, J. C. & Colwell, S. R. Anomalous atmospheric circulation over the Weddell Sea, Antarctica, during the austral summer of 2001/02 resulting in extreme sea-ice conditions. Geophys. Res. Lett. 29, 2160 (2002).

  32. 32.

    Cape, M. R. et al. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. J. Geophys. Res. Atmos. 120, 11037–11057 (2015).

  33. 33.

    Bennetts, L. G. & Squire, V. A. On the calculation of an attenuation coefficient for transects of ice-covered ocean. Proc. R. Soc. Lond. A 468, 136–162 (2012).

  34. 34.

    Meylan, M. H., Bennetts, L. G. & Kohout, A. L. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophys. Res. Lett. 41, 5046–5051 (2014).

  35. 35.

    Kohout, A. L. & Meylan, M. H. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone. J. Geophys. Res. 113, C09016 (2008).

  36. 36.

    Luckman, A. et al. Basal crevasses in Larsen C Ice Shelf and implications for their global abundance. Cryosphere 6, 113–123 (2012).

  37. 37.

    McGrath, D. et al. Basal crevasses on the Larsen C Ice Shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophys. Res. Lett. 39, L16504 (2012).

  38. 38.

    Fox, C. & Squire, V. A. S. Coupling between the ocean and an ice shelf. Ann. Glaciol. 15, 101–108 (1991).

  39. 39.

    Bromirski, P. D. et al. Ross ice shelf vibrations. Geophys. Res. Lett. 42, 7589–7597 (2015).

  40. 40.

    van der Veen, C. J. Fracture propagation as means of rapidly transferring surface meltwater to the base of glaciers. Geophys. Res. Lett. 34, L01501 (2007).

  41. 41.

    Doake, C. S. M., Corr, H. F. J., Rott, H., Skvarca, P. & Young, N. W. Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica. Nature 391, 778–780 (1998).

  42. 42.

    MacAyeal, D. R., Abbot, D. S. & Sergienko, O. V. Iceberg capsize tsunamigenesis. Ann. Glaciol. 52, 51–56 (2011).

  43. 43.

    Banwell, A. F., MacAyeal, D. R. & Sergienko, O. V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 40, 5872–5876 (2013).

  44. 44.

    Langhorne, P. J., Squire, V. A., Fox, C. & Haskell, T. G. Lifetime estimation for a land-fast ice sheet subjected to ocean swell. Ann. Glaciol. 33, 333–338 (2001).

  45. 45.

    Massom, R. A. et al. Examining the interaction between multi-year landfast sea ice and the Mertz Glacier Tongue, East Antarctica: another factor in ice sheet stability? J. Geophys. Res. 115, C12027 (2010).

  46. 46.

    Borstad, C. et al. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophys. Res. Lett. 43, 2027–2035 (2016).

  47. 47.

    Khazendar, A. et al. Observed thinning of Totten Glacier is linked to coastal polynya variability. Nat. Commun. 4, (2013).

  48. 48.

    Holland, P. R. et al. Oceanic and atmospheric forcing of Larsen C Ice-Shelf thinning. Cryosphere 9, 1005–1024 (2015).

  49. 49.

    Hogg, A. E. & Hilmar Gudmundsson, G. Impacts of the Larsen-C Ice Shelf calving event. Nat. Clim. Chang. 7, 540–542 (2017).

  50. 50.

    Bell, R. et al. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 544, 344–348 (2017).

  51. 51.

    Scambos, T., Bohlander, J. & Raup, B. Images of Antarctic Ice Shelves [February 2002 to April 2009]. Larsen B and Wilkins https://doi.org/10.7265/N5NC5Z4N (National Snow and Ice Data Center, Boulder, 1996).

  52. 52.

    Comiso, J. Bootstrap Sea Ice Concentrations from NIMBUS-7 SMMR and DMSP SSM/I-SSMIS Version 2 (1979–2010) http://nsidc.org/data/NSIDC-0079 (National Snow and Ice Data Center, Boulder, 2000, updated 2015).

  53. 53.

    Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X. & Rind, D. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 113, C03S90 (2008).

  54. 54.

    Parkinson, C. L. Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol. 34, 435–440 (2002).

  55. 55.

    Worby, A. P. et al. Thickness distribution of Antarctic sea ice. J. Geophys. Res. 113, C05S92 (2008).

  56. 56.

    Lange, M. A. & Eicken, H. The sea ice thickness distribution in the northwestern Weddell Sea. J. Geophys. Res. 96, 4821–4837 (1991).

  57. 57.

    Haas, C. in Sea Ice (eds Thomas, D. N. & Dieckmann, G. S.) 2nd edn, 113–152 (Wiley-Blackwell, Chichester, 2010).

  58. 58.

    Haas, C. & Viehoff, T. Sea Ice Conditions in the Bellingshausen-Amundsen Sea: Shipboard Observations and Satellite Imagery During ANT XIr3. Internal Report 51 (Department of Physics, Alfred Wegener Institute, Bremerhaven, 1994).

  59. 59.

    Steer, A., Worby, A. & Heil, P. Observed changes in sea-ice floe size distribution during early summer in the western Weddell Sea. Deep-Sea Res. II 55, 933–942 (2008).

  60. 60.

    Haas, C. Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas, Antarctica. Cold Reg. Sci. Technol. 27, 1–16 (1998).

  61. 61.

    Williams, G. et al. Thick and deformed Antarctic sea ice mapped with autonomous underwater vehicles. Nat. Geosci. 8, 61–67 (2015).

  62. 62.

    Heil, P. Atmospheric conditions and fast ice at Davis, East Antarctica: a case study. J. Geophys. Res. 111, C05009 (2006).

  63. 63.

    Durrant, T., Hemer, M., Trenham, C. & Greenslade, D. CAWCR Wave Hindcast 1979-2010, Version 7 Data Collection https://doi.org/10.4225/08/523168703DCC5 (The Centre for Australian Weather and Climate Research, 2013).

  64. 64.

    Durrant, T., Greenslade, D., Hemer, M. & Trenham, C. A Global Wave Hindcast Focussed on the Central and South Pacific. CAWCR Technical Report 070, http://www.cawcr.gov.au/technical-reports/CTR_070.pdf (The Centre for Australian Weather and Climate Research, 2014).

  65. 65.

    Bennetts, L. G. & Squire, V. A. Model sensitivity analysis of scattering-induced attenuation of ice-coupled waves. Ocean Model. 45–46, 1–13 (2012).

  66. 66.

    Williams, T. D., Bennetts, L. G., Dumont, D., Squire, V. A. & Bertino, L. Wave-ice interactions in the marginal ice zone. Part 1: Theoretical foundations. Ocean Model. 71, 81–91 (2013).

  67. 67.

    Williams, T. D., Bennetts, L. G., Dumont, D., Squire, V. A. & Bertino, L. Wave-ice interactions in the marginal ice zone. Part 2: Numerical implementation and sensitivity studies along 1D transects of the ocean surface. Ocean Model. 71, 92–101 (2013).

  68. 68.

    Williams, T. D. & Squire, V. A. Wave scattering at the sea-ice/ice-shelf transition with other applications. SIAM J. Appl. Math. 67, 938–959 (2007).

  69. 69.

    Bromirski, P. D. & Stephen, R. A. Response of the Ross Ice Shelf, Antarctica, to ocean gravity-wave forcing. Ann. Glaciol. 53, 163–172 (2012).

  70. 70.

    Fox, C. & Squire, V. A. On the oblique reflexion and transmission of ocean waves at shore fast sea ice. Phil. Trans. R. Soc. Lond. A 347, 185–218 (1994).

  71. 71.

    Mindlin, R. D. Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Math. 18, 31–38 (1951).

  72. 72.

    Webb, S. C., Zhang, X. & Crawford, W. Infragravity waves in the deep ocean. J. Geophys. Res. 96 (C2), 2723–2736 (1991).

  73. 73.

    Okal, E. A. & MacAyeal, D. R. Seismic recording on drifting icebergs: catching seismic waves, tsunamis and storms from Sumatra and elsewhere. Seismol. Res. Lett. 77, 659–671 (2006).

  74. 74.

    Cathles, L. M., Okal, E. A. & MacAyeal, D. R. Seismic observations of sea swell on the floating Ross Ice Shelf, Antarctica. J. Geophys. Res. 114, F02015 (2009).

  75. 75.

    Wadhams, P. & Doble, M. J. Sea ice thickness measurement using episodic infragravity waves from distant storms. Cold Reg. Sci. Technol. 56, 98–101 (2009).

  76. 76.

    Holdsworth, G. in Oceanology of the Antarctic Continental Shelf (ed. Jacobs, S. S.) 253–271 (American Geophysical Union, Washington DC, 1985).

  77. 77.

    Vaughan, D. G. Tidal flexure at ice shelf margins. J. Geophys. Res. 100, 6213–6224 (1995).

  78. 78.

    Padman, L., Siegfried, M. R. & Fricker, H. A. Ocean tide influences on the Antarctic and Greenland ice shelves. Rev. Geophys. (2018).

  79. 79.

    Lescarmontier, L. et al. Rifting processes and ice-flow modulation observed on Mertz Glacier, East Antarctica. J. Glaciol. 61, 1183–1193 (2015).

  80. 80.

    Lescarmontier, L. et al. Vibrations of Mertz Glacier ice tongue, East Antarctica. J. Glaciol. 58, 665–676 (2012).

  81. 81.

    Legrésy, B., Wendt, A., Tabacco, I., Remy, F. & Dietrich, R. Influence of tides and tidal current on Mertz Glacier, Antarctica. J. Glaciol. 50, 427–435 (2004).

Download references

Acknowledgements

This work contributes to Australian Antarctic Science project 4116, and was supported by the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate and Ecosystems Cooperative Research Centre. It also contributes to the World Climate Research Programme (WCRP) Climate and Cryosphere (CliC) project Targeted Activity “Linkages Between Cryosphere Elements”. T.A.S. acknowledges NSF PLR 17-020175 and S.E.S. acknowledges NSF PLR 1440435. V.A.S. acknowledges the US Office of Naval Research Departmental Research Initiative “Sea State and Boundary Layer Physics of the Emerging Arctic Ocean” (award number N00014-131-0279) and the University of Otago. We appreciate the assistance of N. Glasser for Fig. 6b, c illustrating shelf fractures. We thank referees J. Hutchings, E. Rogers and R. Shen for their comments, which undoubtedly strengthened the paper.

Reviewer information

Nature thanks J. Hutchings, E. Rogers, R. Shen and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Affiliations

  1. Australian Antarctic Division, Kingston, Tasmania, Australia

    • Robert A. Massom
  2. Antarctic Climate and Ecosystems CRC, Hobart, Tasmania, Australia

    • Robert A. Massom
    •  & Phillip Reid
  3. National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA

    • Theodore A. Scambos
  4. School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia

    • Luke G. Bennetts
  5. Australian Bureau of Meteorology, Hobart, Tasmania, Australia

    • Phillip Reid
  6. University of Otago, Dunedin, New Zealand

    • Vernon A. Squire
  7. Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA

    • Sharon E. Stammerjohn

Authors

  1. Search for Robert A. Massom in:

  2. Search for Theodore A. Scambos in:

  3. Search for Luke G. Bennetts in:

  4. Search for Phillip Reid in:

  5. Search for Vernon A. Squire in:

  6. Search for Sharon E. Stammerjohn in:

Contributions

R.A.M. conceived the research, carried out the data synthesis and led the paper writing. All authors contributed to data analysis and interpretation, and writing, with each author contributing to several aspects of the manuscript and to its ideas. T.A.S. provided the ice shelf imagery and information and ice shelf expertise. L.G.B. carried out the sea ice-wave and ice shelf-wave interaction modelling and analysis, with V.A.S. providing expert input. P.R. contributed the wave data and analysis, and analysis of sea ice concentration data. S.E.S. provided analysis of change in sea ice seasonality from satellite data.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Robert A. Massom.

Extended data figures and tables

  1. Extended Data Fig. 1 Trends in satellite-derived daily sea ice concentration offshore of the ice shelves for 1979–2010.

    Data for the Larsen A and B (a) and Wilkins (b) ice shelves are from the boxes marked L and W, respectively, in Fig. 3. Red denotes statistical significance at 90% level, while blue is not statistically significant. Source Data

  2. Extended Data Fig. 2 Maps of sea ice concentration anomaly conditions during the five disintegration events.

    a, January 1995 (Larsen A); b, January–March 2002 (Larsen B); c, February–March 2008 (Wilkins); d, May–July 2008 (Wilkins); and e, March–April 2009 (Wilkins), versus the 1979–2010 mean for those months. The solid black contour demarcates the contemporary sea ice edge, while the dashed black contour demarcates the mean climatological (1981–2010) ice edge location for the periods in question. See Methods for an explanation of the sea ice artefact within the black circle in a. The Larsen A, Larsen B and Wilkins ice shelves are marked as LA, LB and WIS in d. The background map is based on the CIA World Map database (and we produced it using IDL; see Methods).

  3. Extended Data Fig. 3 Time series of observed wave height and peak wave period and modelled maximum ice shelf strain, in the lead up to and during the Larsen disintegration events.

    a, b, Daily significant wave height (blue) and peak wave period (red) within the Larsen boxed region (marked L in Fig. 3 for the Larsen A Ice Shelf collapse in 1995 and the Larsen B Ice Shelf collapse in 2002, respectively. c, d, Corresponding model predictions of maximum ice shelf strain for an ice shelf of thickness 80 m, 150 m and 200 m. Pink horizontal bars indicate periods when waves were propagating towards the shelf from the sector 30°–120° E, and light blue bars indicate periods when the ice concentration was less than 40%. Approximate timings of disintegration event onsets are marked as vertical dashed lines. Source Data

  4. Extended Data Fig. 4 Time series of observed wave height and peak period and modelled maximum ice shelf strain, in the lead up to and during the Wilkins disintegration events.

    a, b, Daily significant wave height (blue) and peak wave period (red) within the Wilkins boxed region (marked W in Fig. 3 for the Wilkins Ice Shelf disintegration events in 2008 and 2009, respectively. c, d, Corresponding model predictions of maximum ice shelf strain for an ice shelf of thickness 80 m, 150 m and 200 m. Pink horizontal bars indicate periods when waves were propagating towards the shelf from the sector 0°–90° W, and light blue bars indicate periods when the sea ice concentration was less than 40%. Approximate timings of disintegration event onsets are marked as dashed lines. Source Data

  5. Extended Data Fig. 5 MODIS visible images of the northern and western boundaries of the Wilkins Ice Shelf showing the presence or absence of landfast ice.

    a, 18 January 2006; b, 16 January 2008; c, 17 March 2008; d, 27 December 2008; e, 6 March 2009; and f, 10 April 2009. CI is Charcot Island, LI is Latady Island, RI is Rothschild Island and AI is Alexander Island. Dashed lines denote the approximate seaward limit of the ice shelf. Other features (such as ‘unconsolidated mélange’) marked are explained in the text. Imagery from the NASA MODIS instrument was obtained from the NASA NSIDC DAAC archive (http://nsidc.org/data/iceshelves_images/)51. Source Data

  6. Extended Data Fig. 6 Modelled strain magnitude as a function of distance in from the seaward ice shelf edge.

    Modelled for an ice shelf of thickness 80 m, 150 m and 200 m and for wave periods 8 s (a), 12 s (b) and 16 s (c). Wave height is 2 m and a regular incident swell is assumed. Source Data

  7. Extended Data Table 1 Monthly, annual and seasonal mean satellite-derived sea ice concentrations for the earlier ‘ice-covered epoch’ from the region offshore of the Larsen A and B ice shelves
  8. Extended Data Table 2 Monthly, annual and seasonal mean satellite-derived sea ice concentrations for the later ‘sea ice loss epoch’ from the region offshore of the Larsen A and B ice shelves
  9. Extended Data Table 3 Monthly, annual and seasonal mean satellite-derived sea ice concentrations from the region offshore of the Wilkins Ice Shelf

Source Data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41586-018-0212-1

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.