Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of coral reef growth capacity to track future increases in sea level

Abstract

Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reef carbonate budgets and accretion rates for the tropical western Atlantic and Indian Ocean.
Fig. 2: Difference between calculated reef accretion potential (mm yr−1) relative to recent (1993–2010) and projected rates of SLR.
Fig. 3: Total predicted increases in water depth above reefs by 2100.
Fig. 4: Relationships between mean coral cover (%) and changes in water depth (m) above reefs by 2050.

Similar content being viewed by others

References

  1. Storlazzi, C. D., Elias, E. P. L. & Berkowitz, P. Many atolls may be uninhabitable within decades due to climate change. Sci. Rep. 5, 14546 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  2. Kench, P. S., Ford, M. R. & Owen, S. D. Patterns of island change and persistence offer alternate adaptation pathways for atoll nations. Nat. Commun. 9, 605 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  3. Beetham, E., Kench, P. S. & Popinet, S. Future reef growth can mitigate physical impacts of sea-level rise on Atoll Islands. Earths Future 5, 1002–1014 (2017).

    Article  ADS  Google Scholar 

  4. Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Baldock, T. E., Golshani, A., Callaghan, D. P., Saunders, M. I. & Mumby, P. J. Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs. Mar. Pollut. Bull. 83, 155–164 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Baldock, T. E. et al. Impact of sea-level rise on cross-shore sediment transport on fetch-limited barrier reef island beaches under modal and cyclonic conditions. Mar. Pollut. Bull. 97, 188–198 (2015).

    Article  PubMed  CAS  Google Scholar 

  7. Quataert, E., Storlazzi, C., van Rooijen, A., Cheriton, O. & van Dongeren, A. The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines. Geophys. Res. Lett. 42, 6407–6415 (2015).

    Article  ADS  Google Scholar 

  8. van Woesik, R., Golbuu, Y. & Roff, G. Keep up or drown: adjustment of western Pacific coral reefs to sea-level rise in the 21st century. R. Soc. Open Sci. 2, 150181 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    Article  ADS  PubMed  CAS  Google Scholar 

  11. Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Perry, C. T. et al. Remote coral reefs can sustain high growth potential and may match future sea-level trends. Sci. Rep. 5, 18289 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (ed. Stocker, T. F. et al.) Ch. 13 (Cambridge Univ. Press, 2013).

  17. Storlazzi, C. D., Elias, E., Field, M. E. & Presto, M. K. Numerical modelling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport. Coral Reefs 30, 83–96 (2011).

    Article  ADS  Google Scholar 

  18. Beetham, E., Kench, P., O’Callaghan, J. & Popinet, S. Wave transformation and shoreline water level on Funafuti Atoll, Tuvalu. J. Geophys. Res. Oceans 121, 311–326 (2016).

    Article  ADS  Google Scholar 

  19. Perry, C. T. et al. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth. Glob. Change Biol. 21, 1153–1164 (2015).

    Article  ADS  Google Scholar 

  20. Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).

    Article  Google Scholar 

  21. van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 39666 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sheppard, C. et al. Bleaching and mortality in the Chagos Archipelago. Atoll Res. Bull. 613, 1–26 (2017).

    Article  Google Scholar 

  23. Vecsei, A. A new estimate of global reefal carbonate production including the fore-reefs. Glob. Planet. Change 43, 1–18 (2004).

    Article  ADS  Google Scholar 

  24. Jackson, J. B. C., Donovan, M. K., Cramer, K. L. & Lam, V. V. (eds) Status and Trends of Caribbean Coral Reefs: 1970–2012 (Global Coral Reef Monitoring Network, IUCN, Gland, 2014).

  25. Perry, C. T. et al. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc. R. Soc. B 281, 20142018 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mumby, P. J. & Steneck, R. S. Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol. Evol. 23, 555–563 (2008).

    Article  PubMed  Google Scholar 

  27. Perry, C. T. & Morgan, K. M. Post-bleaching coral community change on southern Maldivian reefs: is there potential for rapid recovery? Coral Reefs 36, 1189–1194 (2017).

    Article  ADS  Google Scholar 

  28. Graham, N. A., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  29. Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. 22, 232–261 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pisapia, C. et al. Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998. Sci. Rep. 6, 34720 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  31. Slangen, A. B. A. et al. Projecting twenty-first century regional sea-level changes. Clim. Change 124, 317–332 (2014).

    Article  CAS  Google Scholar 

  32. Siegle, E. & Costa, M. B. Nearshore wave power increase on reef-shaped coasts due to sea-level rise. Earths Future 5, 1054–1065 (2017).

    Article  ADS  Google Scholar 

  33. Carson, M. et al. Coastal sea level changes, observed and projected during the 20th and 21st century. Clim. Change 134, 269–281 (2016).

    Article  Google Scholar 

  34. Wolff, N. H. et al. Global inequities between polluters and the polluted: climate change impacts on coral reefs. Glob. Change Biol. 21, 3982–3994 (2015).

    Article  ADS  Google Scholar 

  35. Enochs, I. C. et al. Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs. Proc. R. Soc. B 283, 20161742 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schönberg, C. H. L., Fang, J. K. H., Carreiro-Silva, M., Tribollet, A. & Wisshak, M. Bioerosion: the other ocean acidification problem. ICES J. Mar. Sci. 74, 895–925 (2017).

    Article  Google Scholar 

  37. Perry, C. T. et al. Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31, 853–868 (2012).

    Article  ADS  Google Scholar 

  38. Januchowski-Hartley, F. A., Graham, N. A. J., Wilson, S. K., Jennings, S. & Perry, C. T. Drivers and predictions of coral reef carbonate budget trajectories. Proc. R. Soc. B 284, 20162533 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Steneck, R. S., Macintyre, I. G. & Reid, R. P. A unique algal ridge system in Exuma Cays, Bahamas. Coral Reefs 16, 29–37 (1997).

    Article  Google Scholar 

  40. Gherardi, D. F. M. & Bosence, D. W. J. Late Holocene reef growth and relative sea-level changes in Atol das Rocas, equatorial south Atlantic. Coral Reefs 24, 264–272 (2005).

    Article  Google Scholar 

  41. Murphy, G. N., Perry, C. T., Chin, P. & McCoy, C. New approaches to quantifying bioerosion by endolithic sponge populations: applications to the coral reefs of Grand Cayman. Coral Reefs 35, 1109–1121 (2016).

    Article  ADS  Google Scholar 

  42. Smith, S. V. & Kinsey, D. W. Calcium carbonate production, coral reef growth, and sea level change. Science 194, 937–939 (1976).

    Article  ADS  PubMed  CAS  Google Scholar 

  43. Kinsey, D. W. & Hopley, D. The significance of coral reefs as global carbon sink—response to greenhouse. Palaeogeogr. Palaeoclimatol. Palaeoecol. 89, 363–377 (1991).

    Article  Google Scholar 

  44. Hubbard, D. K., Miller, A. I. & Scaturo, D. Production and cycling of calcium carbonate in a shelf-edge reef system (St. Croix, U.S. Virgin Islands): applications to the nature of reef systems in the fossil record. J. Sedim. Petrol. 60, 335–360 (1990).

    Google Scholar 

  45. Blanchon, P. et al. Retrograde accretion of a Caribbean fringing reef controlled by hurricanes and sea-level rise. Front. Earth Sci. 5, 78 (2017).

    Article  ADS  Google Scholar 

  46. Eyre, B. D., Andersson, A. J. & Cryonak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).

    Article  ADS  CAS  Google Scholar 

  47. Dullo, W. C. Coral growth and reef growth: a brief review. Facies 51, 33–48 (2005).

    Article  Google Scholar 

  48. Hubbard, D. K. Depth- and species-related patterns of Holocene reef accretion in the Caribbean and western Atlantic: a critical assessment of existing models. Int. Assoc. Sedimentol. Spec. Publ. 41, 1–18 (2009).

    Google Scholar 

  49. Yates, K. K., Zawada, D. G., Smiley, N. A. & Tiling-Range, G. Divergence of seafloor elevation and sea level rise in coral reef ecosystems. Biogeosciences 14, 1739–1772 (2017).

    Article  ADS  Google Scholar 

  50. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  51. R Core Team. R: A language and Environment for Statistical Computing https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2017).

  52. Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn (Sage, Thousand Oaks, 2011).

    Google Scholar 

  53. Taylor, K., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  ADS  Google Scholar 

  54. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  55. Pinheiro, J. C. & Bates, D. M. Mixed-effects Models in S and S-plus (Springer-Verlag, New York, 2000).

    Book  MATH  Google Scholar 

  56. Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many local institutions that supported and facilitated field data collection. Data collection in the tropical western Atlantic was supported through a Leverhulme Trust International Research Network grant (F/00426/G) to C.T.P. and data collection carried out specifically in Mexico was supported through a Royal Society - Newton Advanced Research Fellowship (NA-150360) to L.A.-F. and C.T.P., in Florida and Puerto Rico as part of the National Coral Reef Monitoring Program through NOAA’s Coral Reef Conservation Program and Ocean Acidification Program to D.P.M. and in the eastern Caribbean through a National Geographic Research Grant to R.S.S. Data collection in the Indian Ocean was supported in Kenya and Mozambique through a NERC-ESPA-DFiD: Ecosystem Services for Poverty Alleviation Programme Grant (NE/K01045X/1) to C.T.P., in the Maldives through a NERC Grant (NE/K003143/1) and a Leverhulme Trust Research Fellowship (RF-2015-152) to C.T.P., in the Chagos Archipelago through a DEFRA Darwin Initiative grant (19-027), in the Seychelles through an Australian Research Council grant (DE130101705) and Royal Society grant (RS-UF140691) to N.A.J.G. and in Ningaloo through the BHP-CSIRO Ningaloo Outlook Marine Research Partnership. P.J.M. acknowledges the Australian Research Council and World Bank/GEF CCRES project for funding. Rebecca Fisher (Australian Institute of Marine Science, Western Australia) provided statistical advice.

Reviewer information

Nature thanks I. D. Haigh and I. Kuffner for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.T.P. conceived the study with support from L.A.-F., N.A.J.G., P.S.K. and K.M.M. C.T.P., N.A.J.G., P.S.K., K.M.M., P.J.M., A.B.A.S. and S.K.W. developed and implemented the analyses. C.T.P. led the manuscript and all other authors contributed data and made substantive contributions to the text.

Corresponding author

Correspondence to Chris T. Perry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 TWA and Indian Ocean coral carbonate production and bioerosion rates.

Plots showing mean site level coral carbonate production rate (a) and bioerosion rate (b) data (kg CaCO3 m−2 yr−1) grouped by country or territory within ecoregions for TWA and Indian Ocean sites. Box plots depict the median (horizontal line), box height depicts first and third quartiles, whiskers represent the 95th percentile, and outliers outside the 95th percentile are shown as circles. Country/territory codes are as follows: (1) Florida (n = 36); (2) Puerto Rico (n = 6); (3) Grand Cayman (n = 26); (4) Belize (n = 36); (5) Mexico (n = 64); (6) St. Croix (n = 36); (7) St. Maarten (n = 11); (8) Anguilla (n = 10); (9) Barbuda (n = 20); (10) Antigua (n = 28); (11) St. Lucia and St. Vincent (n = 37); (12) Bequia (n = 12); (13) Mustique (n = 16); (14) Canouan and Tobago Cays (n = 20); (15) Union/PSV and Carriacou (n = 20); (16) Bonaire (n = 62); (17) Mozambique (n = 55); (18) Kenya (n = 29); (19) Seychelles (n = 144); (20) Maldives (n = 25); (21) Chagos (n = 111); (22) Ningaloo (n = 34). n indicates the number of transects per country or territory.

Extended Data Fig. 2 Reef accretion before and after the central Indian Ocean 2016 bleaching event.

ad, Calculated RAPmax rates (mm yr−1) before (a, c) and after (b, d) the 2016 bleaching event in the Seychelles and the Maldives. e, Plot shows changes in RAPmax rates at ‘recovered’ (n = 96) and ‘regime-shifted’ reefs37 (n = 72 pre-bleaching, n = 48 post-bleaching) in the Seychelles, and Maldives (n = 35 pre-bleaching, n = 25 post bleaching). Box plots depict the median (horizontal line), box height depicts first and third quartiles, whiskers represent the 95th percentile, and outliers outside the 95th percentile are shown as circles.

Extended Data Table 1 Effects of biogeography, coral cover, GHG emissions scenario and range of SLR projection on the future submergence of coral reefs by 2050
Extended Data Table 2 Effect of biogeographic region on rates of SLR
Extended Data Table 3 Differences between SLR rates between biogeographic regions (mm yr−1)
Extended Data Table 4 Variability in potential accretion rate

Supplementary information

Reporting Summary

Supplementary Table 1

Supplementary Table 1 - Field data and accretion. The file contains location data for all sites along with transect level data on measured rates of carbonate production and bioerosion, and resultant reef accretion rates.

Supplementary Table 2

Supplementary Table 2 - Recent and projected SLR rates. File contains recent and projected rates of SLR for each study region.

Supplementary Table 3

Supplementary Table 3 - Accretion-SLR interactions and projected increases in water depths. File contains data on calculated differences between accretion rates and recent and projected rates of sea level rise under RCP4.5 and 8.5 sea-level rise scenarios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, C.T., Alvarez-Filip, L., Graham, N.A.J. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018). https://doi.org/10.1038/s41586-018-0194-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0194-z

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing