Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction

Abstract

The unimolecular nucleophilic substitution (SN1) mechanism features prominently in every introductory organic chemistry course. In principle, stepwise displacement of a leaving group by a nucleophile via a carbocationic intermediate enables the construction of highly congested carbon centres. However, the intrinsic instability and high reactivity of the carbocationic intermediates make it very difficult to control product distributions and stereoselectivity in reactions that proceed via SN1 pathways. Here we report asymmetric catalysis of an SN1-type reaction mechanism that results in the enantioselective construction of quaternary stereocentres from racemic precursors. The transformation relies on the synergistic action of a chiral hydrogen-bond-donor catalyst with a strong Lewis-acid promoter to mediate the formation of tertiary carbocationic intermediates at low temperature and to achieve high levels of control over reaction enantioselectivity and product distribution. This work provides a foundation for the enantioconvergent synthesis of other fully substituted carbon stereocentres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Approaches to the enantiocontrolled construction of quaternary stereocentres.
Fig. 2: Asymmetric allylation of propargyl acetates.
Fig. 3: Kinetic data and catalytic cycle.
Fig. 4: Mechanistic studies to probe the post-rate-limiting steps of the allylation reaction.

Similar content being viewed by others

References

  1. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    Article  ADS  CAS  Google Scholar 

  2. Liu, Y., Han, S.-J., Liu, W.-B. & Stoltz, B. M. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res. 48, 740–751 (2015).

    Article  CAS  Google Scholar 

  3. Das, J. P. & Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic centers in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

    Article  CAS  Google Scholar 

  4. Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

    Article  CAS  Google Scholar 

  5. Wilson, R. M., Jen, W. S. & MacMillan, D. W. C. Enantioselective organocatalytic intramolecular Diels−Alder reactions. The asymmetric synthesis of solanapyrone D. J. Am. Chem. Soc. 127, 11616–11617 (2005).

    Article  CAS  Google Scholar 

  6. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereo-divergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

    Article  ADS  CAS  Google Scholar 

  7. Behenna, D. C. & Stoltz, B. M. The enantioselective Tsuji allylation. J. Am. Chem. Soc. 126, 15044–15045 (2004).

    Article  CAS  Google Scholar 

  8. Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. & Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. Nature 532, 218–222 (2016).

    Article  ADS  CAS  Google Scholar 

  9. Zhang, P., Le, H., Kyne, R. E. & Morken, J. P. Enantioselective construction of all-carbon quaternary centers by branch-selective Pd-catalyzed allyl–allyl cross-coupling. J. Am. Chem. Soc. 133, 9716–9719 (2011).

    Article  CAS  Google Scholar 

  10. Jung, B. & Hoveyda, A. H. Site- and enantioselective formation of allene-bearing tertiary or quaternary carbon stereogenic centers through NHC–Cu-catalyzed allylic substitution. J. Am. Chem. Soc. 134, 1490–1493 (2012).

    Article  CAS  Google Scholar 

  11. Mei, T.-S., Patel, H. H. & Sigman, M. S. Enantioselective construction of remote quaternary stereocentres. Nature 508, 340–344 (2014).

    Article  ADS  CAS  Google Scholar 

  12. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic Resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  Google Scholar 

  13. Braun, M. & Kotter, W. Titanium(IV)-catalyzed dynamic kinetic asymmetric transformation of alcohols, silyl ethers, and acetals under carbon allylation. Angew. Chem. Int. Ed. 43, 514–517 (2004).

    Article  CAS  Google Scholar 

  14. Zhao, W., Wang, Z., Chu, B. & Sun, J. Enantioselective formation of all-carbon quaternary stereocenters from indoles and tertiary alcohols bearing a directing group. Angew. Chem. Int. Ed. 54, 1910–1913 (2015).

    Article  CAS  Google Scholar 

  15. Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

    Article  CAS  Google Scholar 

  16. Xu, H., Zuend, S. J., Woll, M. G., Tao, Y. & Jacobsen, E. N. Asymmetric cooperative catalysis of strong Brønsted acid-promoted reactions using chiral ureas. Science 327, 986–990 (2010).

    Article  ADS  CAS  Google Scholar 

  17. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    Article  CAS  Google Scholar 

  18. Kennedy, C. R., Lin, S. & Jacobsen, E. N. The cation–π interaction in small-molecule catalysis. Angew. Chem. Int. Ed. 55, 12596–12624 (2016).

    Article  CAS  Google Scholar 

  19. Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    Article  ADS  CAS  Google Scholar 

  20. Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis. Science 358, 761–764 (2017).

    Article  ADS  CAS  Google Scholar 

  21. Brown, H. C. & Okamoto, Y. Substituent constants for aromatic substitution. J. Am. Chem. Soc. 79, 1913–1917 (1957).

    Article  CAS  Google Scholar 

  22. McKinney, J. D., Gottschalk, K. E. & Pedersen, L. The polarizability of planar aromatic systems. An application to polychlorinated biphenyls (PCB’s), dioxins and polyaromatic hydrocarbons. J. Mol. Struct. (Theochem) 105, 427–438 (1983).

    Article  Google Scholar 

  23. Hunter, C. A. & Sanders, J. K. M. The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    Article  CAS  Google Scholar 

  24. Blackmond, D. G. Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew. Chem. Int. Ed. 44, 4302–4320 (2005).

    Article  CAS  Google Scholar 

  25. Singleton, D. A. & Thomas, A. A. High-precision simultaneous determination of multiple small kinetic isotope effects at natural abundance. J. Am. Chem. Soc. 117, 9357–9358 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the NIH through GM043214 and a postdoctoral fellowship to A.E.W. We thank S. McCann and C. Fry for assistance with NMR experiments, E. E. Kwan for discussions regarding the KIE studies, and S.-L. Zheng for X-ray structure determination.

Reviewer information

Nature thanks R. Gilmour and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.E.W. and E.N.J. conceived the work, A.E.W. and P.V. conducted the experiments, E.N.J. directed the research, and A.E.W., P.V. and E.N.J. wrote the manuscript.

Corresponding author

Correspondence to Eric N. Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text 1-15, with Supplementary Figures S1-S9 and Supplementary Tables S1-S3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wendlandt, A.E., Vangal, P. & Jacobsen, E.N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018). https://doi.org/10.1038/s41586-018-0042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-018-0042-1

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing