Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles for urothelium in normal and aberrant urinary tract development

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUTs) represent the leading cause of chronic kidney disease and end-stage kidney disease in children. Increasing evidence points to critical roles for the urothelium in the developing urinary tract and in the genesis of CAKUTs. The involvement of the urothelium in patterning the urinary tract is supported by evidence that CAKUTs can arise as a result of abnormal urothelial development. Emerging evidence indicates that congenital urinary tract obstruction triggers urothelial remodelling that stabilizes the obstructed kidney and limits renal injury. Finally, the diagnostic potential of radiological findings and urinary biomarkers derived from the urothelium of patients with CAKUTs might aid their contribution to clinical care.

Key points

  • Interactions between the developing urothelium and its underlying mesenchyme serve critical roles in developmental patterning of the bladder and ureter.

  • Genetic disruption of signalling pathways that mediate terminal differentiation of urothelium and urothelial–mesenchymal interactions results in phenotypes of congenital abnormalities of the urinary tract in humans and mice.

  • The urothelial plaque serves a critical protective role in response to congenital urinary tract obstruction.

  • Urothelium-specific radiological and biochemical markers represent potential means of detecting congenital abnormalities of the urinary tract, but prospective studies are warranted to evaluate their diagnostic accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural properties of urothelium.
Fig. 2: Urothelial–stromal crosstalk serves essential roles in urinary tract development.
Fig. 3: Intrarenal urothelial remodelling in the setting of congenital urinary tract obstruction.

Similar content being viewed by others

References

  1. Murugapoopathy, V. & Gupta, I. R. A primer on congenital anomalies of the kidneys and urinary tracts (CAKUT). Clin. J. Am. Soc. Nephrol. 15, 723–731 (2020).

    PubMed  Google Scholar 

  2. Sanna-Cherchi, S., Westland, R., Ghiggeri, G. M. & Gharavi, A. G. Genetic basis of human congenital anomalies of the kidney and urinary tract. J. Clin. Invest. 128, 4–15 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. BDMP/CPHA. Birth Defects Monitoring Program (BDMP)/Commission on Professional and Hospital Activities (CPHA) surveillance data, 1988–1991. Teratology 48, 658–675 (1993).

    Google Scholar 

  4. Garne, E., Dolk, H., Loane, M., Boyd, P. A. & Eurocat EUROCAT website data on prenatal detection rates of congenital anomalies. J. Med. Screen. 17, 97–98 (2010).

    PubMed  Google Scholar 

  5. MACDP. Metropolitan Atlanta Congenital Defects Program surveillance data, 1988–1991. Teratology 48, 695–709 (1993).

    Google Scholar 

  6. Schulman, J., Edmonds, L. D., McClearn, A. B., Jensvold, N. & Shaw, G. M. Surveillance for and comparison of birth defect prevalences in two geographic areas — United States, 1983–88. MMWR CDC Surveill. Summ. 42, 1–7 (1993).

    CAS  PubMed  Google Scholar 

  7. Postoev, V. A. et al. Congenital anomalies of the kidney and the urinary tract: a Murmansk county birth registry study. Birth Defects Res. A Clin. Mol. Teratol. 106, 185–193 (2016).

    CAS  PubMed  Google Scholar 

  8. Tain, Y. L., Luh, H., Lin, C. Y. & Hsu, C. N. Incidence and risks of congenital anomalies of kidney and urinary tract in newborns: a population-based case-control study in Taiwan. Medicine 95, e2659 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Harambat, J., van Stralen, K. J., Kim, J. J. & Tizard, E. J. Epidemiology of chronic kidney disease in children. Pediatr. Nephrol. 27, 363–373 (2012).

    PubMed  Google Scholar 

  10. Sanna-Cherchi, S. et al. Renal outcome in patients with congenital anomalies of the kidney and urinary tract. Kidney Int. 76, 528–533 (2009).

    PubMed  Google Scholar 

  11. Wuhl, E. et al. Timing and outcome of renal replacement therapy in patients with congenital malformations of the kidney and urinary tract. Clin. J. Am. Soc. Nephrol. 8, 67–74 (2013).

    PubMed  Google Scholar 

  12. Calderon-Margalit, R. et al. History of childhood kidney disease and risk of adult end-stage renal disease. N. Engl. J. Med. 378, 428–438 (2018).

    PubMed  Google Scholar 

  13. Chesnaye, N. et al. Demographics of paediatric renal replacement therapy in Europe: a report of the ESPN/ERA-EDTA registry. Pediatr. Nephrol. 29, 2403–2410 (2014).

    PubMed  Google Scholar 

  14. van der Ven, A. T., Vivante, A. & Hildebrandt, F. Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 36–50 (2018).

    PubMed  Google Scholar 

  15. Hsu, C. W., Yamamoto, K. T., Henry, R. K., De Roos, A. J. & Flynn, J. T. Prenatal risk factors for childhood CKD. J. Am. Soc. Nephrol. 25, 2105–2111 (2014).

    PubMed  PubMed Central  Google Scholar 

  16. Dart, A. B., Ruth, C. A., Sellers, E. A., Au, W. & Dean, H. J. Maternal diabetes mellitus and congenital anomalies of the kidney and urinary tract (CAKUT) in the child. Am. J. Kidney Dis. 65, 684–691 (2015).

    PubMed  Google Scholar 

  17. Parikh, C. R., McCall, D., Engelman, C. & Schrier, R. W. Congenital renal agenesis: case–control analysis of birth characteristics. Am. J. Kidney Dis. 39, 689–694 (2002).

    PubMed  Google Scholar 

  18. Pryde, P. G., Sedman, A. B., Nugent, C. E. & Barr, M. Jr. Angiotensin-converting enzyme inhibitor fetopathy. J. Am. Soc. Nephrol. 3, 1575–1582 (1993).

    CAS  PubMed  Google Scholar 

  19. Wu, X. R., Kong, X. P., Pellicer, A., Kreibich, G. & Sun, T. T. Uroplakins in urothelial biology, function, and disease. Kidney Int. 75, 1153–1165 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Acharya, P. et al. Distribution of the tight junction proteins ZO-1, occludin, and claudin-4, -8, and -12 in bladder epithelium. Am. J. Physiol. Renal Physiol. 287, F305–F318 (2004).

    CAS  PubMed  Google Scholar 

  21. Lavelle, J. et al. Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am. J. Physiol. Renal Physiol. 283, F242–F253 (2002).

    CAS  PubMed  Google Scholar 

  22. Smith, N. J. et al. The human urothelial tight junction: claudin 3 and the ZO-1α+ switch. Bladder 2, e9 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Hu, P. et al. Role of membrane proteins in permeability barrier function: uroplakin ablation elevates urothelial permeability. Am. J. Physiol. Renal Physiol. 283, F1200–F1207 (2002).

    CAS  PubMed  Google Scholar 

  24. Mathai, J. C. et al. Hypercompliant apical membranes of bladder umbrella cells. Biophys. J. 107, 1273–1279 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Truschel, S. T. et al. Stretch-regulated exocytosis/endocytosis in bladder umbrella cells. Mol. Biol. Cell 13, 830–846 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Merrill, L., Gonzalez, E. J., Girard, B. M. & Vizzard, M. A. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat. Rev. Urol. 13, 193–204 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bohnenpoll, T. et al. Diversification of cell lineages in ureter development. J. Am. Soc. Nephrol. 28, 1792–1801 (2017).

    CAS  PubMed  Google Scholar 

  28. Jackson, A. R. et al. Krt5+ urothelial cells are developmental and tissue repair progenitors in the kidney. Am. J. Physiol. Renal Physiol. 317, F757–F766 (2019).

    CAS  PubMed  Google Scholar 

  29. Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R. & Francis-West, P. H. Larsen’s Human Embryology 5th edn (Elsevier/Churchill Livingstone, 2015).

  30. Gandhi, D. et al. Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev. Cell 26, 469–482 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mysorekar, I. U., Isaacson-Schmid, M., Walker, J. N., Mills, J. C. & Hultgren, S. J. Bone morphogenetic protein 4 signaling regulates epithelial renewal in the urinary tract in response to uropathogenic infection. Cell Host Microbe 5, 463–475 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tash, J. A., David, S. G., Vaughan, E. E. & Herzlinger, D. A. Fibroblast growth factor-7 regulates stratification of the bladder urothelium. J. Urol. 166, 2536–2541 (2001).

    CAS  PubMed  Google Scholar 

  33. Papafotiou, G. et al. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat. Commun. 7, 11914 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Faa, G. et al. Morphogenesis and molecular mechanisms involved in human kidney development. J. Cell. Physiol. 227, 1257–1268 (2012).

    CAS  PubMed  Google Scholar 

  35. Michos, O. Kidney development: from ureteric bud formation to branching morphogenesis. Curr. Opin. Genet. Dev. 19, 484–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Baskin, L. S., Hayward, S. W., Young, P. & Cunha, G. R. Role of mesenchymal-epithelial interactions in normal bladder development. J. Urol. 156, 1820–1827 (1996).

    CAS  PubMed  Google Scholar 

  37. Cao, M., Liu, B., Cunha, G. & Baskin, L. Urothelium patterns bladder smooth muscle location. Pediatr. Res. 64, 352–357 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Shiroyanagi, Y. et al. Urothelial sonic hedgehog signaling plays an important role in bladder smooth muscle formation. Differentiation 75, 968–977 (2007).

    CAS  PubMed  Google Scholar 

  39. Jenkins, D., Winyard, P. J. & Woolf, A. S. Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development. J. Anat. 211, 620–629 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao, M. et al. Urothelium-derived Sonic hedgehog promotes mesenchymal proliferation and induces bladder smooth muscle differentiation. Differentiation 9, 244–250 (2010).

    Google Scholar 

  41. DeSouza, K. R., Saha, M., Carpenter, A. R., Scott, M. & McHugh, K. M. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development. PLoS One 8, e53675 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng, W. et al. Sonic Hedgehog mediator Gli2 regulates bladder mesenchymal patterning. J. Urol. 180, 1543–1550 (2008).

    CAS  PubMed  Google Scholar 

  43. Yu, J., Carroll, T. J. & McMahon, A. P. Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129, 5301–5312 (2002).

    CAS  PubMed  Google Scholar 

  44. Bohnenpoll, T. et al. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet. 13, e1006951 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Mamo, T. M. et al. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum. Mol. Genet. 26, 3553–3563 (2017).

    CAS  PubMed  Google Scholar 

  46. Cain, J. E., Islam, E., Haxho, F., Blake, J. & Rosenblum, N. D. GLI3 repressor controls functional development of the mouse ureter. J. Clin. Invest. 121, 1199–1206 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. David, S. G., Cebrian, C., Vaughan, E. D. Jr & Herzlinger, D. c-kit and ureteral peristalsis. J. Urol. 173, 292–295 (2005).

    CAS  PubMed  Google Scholar 

  48. Iskander, S. M., Feeney, M. M., Yee, K. & Rosenblum, N. D. Protein kinase 2β is expressed in neural crest-derived urinary pacemaker cells and required for pyeloureteric contraction. J. Am. Soc. Nephrol. 29, 1198–1209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Feeney, M. M. & Rosenblum, N. D. Urinary tract pacemaker cells: current knowledge and insights from nonrenal pacemaker cells provide a basis for future discovery. Pediatr. Nephrol. 29, 629–635 (2014).

    PubMed  Google Scholar 

  50. Sheybani-Deloui, S. et al. Activated hedgehog-GLI signaling causes congenital ureteropelvic junction obstruction. J. Am. Soc. Nephrol. 29, 532–544 (2018).

    PubMed  Google Scholar 

  51. Trowe, M. O. et al. Canonical Wnt signaling regulates smooth muscle precursor development in the mouse ureter. Development 139, 3099–3108 (2012).

    CAS  PubMed  Google Scholar 

  52. Aydogdu, N. et al. TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development 145, dev171827 (2018).

    PubMed  Google Scholar 

  53. Zupancic, D. & Romih, R. Heterogeneity of uroplakin localization in human normal urothelium, papilloma and papillary carcinoma. Radiol. Oncol. 47, 338–345 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Jenkins, D. et al. De novo uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J. Am. Soc. Nephrol. 16, 2141–2149 (2005).

    CAS  PubMed  Google Scholar 

  55. Riedel, I. et al. Urothelial umbrella cells of human ureter are heterogeneous with respect to their uroplakin composition: different degrees of urothelial maturity in ureter and bladder? Eur. J. Cell Biol. 84, 393–405 (2005).

    CAS  PubMed  Google Scholar 

  56. Haraguchi, R. et al. Molecular analysis of coordinated bladder and urogenital organ formation by Hedgehog signaling. Development 134, 525–533 (2007).

    CAS  PubMed  Google Scholar 

  57. Haraguchi, R. et al. The hedgehog signal induced modulation of bone morphogenetic protein signaling: an essential signaling relay for urinary tract morphogenesis. PLoS One 7, e42245 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. He, J. L. et al. Mutation screening of BMP4 and Id2 genes in Chinese patients with congenital ureteropelvic junction obstruction. Eur. J. Pediatr. 171, 451–456 (2012).

    CAS  PubMed  Google Scholar 

  59. Reis, G. S. et al. Study of the association between the BMP4 gene and congenital anomalies of the kidney and urinary tract. J. Pediatr. 90, 58–64 (2014).

    Google Scholar 

  60. Weber, S. et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J. Am. Soc. Nephrol. 19, 891–903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dubourg, C. et al. Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: mutation review and genotype-phenotype correlations. Hum. Mutat. 24, 43–51 (2004).

    CAS  PubMed  Google Scholar 

  62. Hilger, A. C. et al. Targeted resequencing of 29 candidate genes and mouse expression studies implicate ZIC3 and FOXF1 in human VATER/VACTERL association. Hum. Mutat. 36, 1150–1154 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348–2361 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Kolvenbach, C. M. et al. Rare variants in BNC2 are implicated in autosomal-dominant congenital lower urinary-tract obstruction. Am. J. Hum. Genet. 104, 994–1006 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhoj, E. J. et al. Human balanced translocation and mouse gene inactivation implicate basonuclin 2 in distal urethral development. Eur. J. Hum. Genet. 19, 540–546 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang, A. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2, 305–316 (1998).

    CAS  PubMed  Google Scholar 

  67. Cheng, W. et al. DeltaNp63 plays an anti-apoptotic role in ventral bladder development. Development 133, 4783–4792 (2006).

    CAS  PubMed  Google Scholar 

  68. Ching, B. J. et al. p63 (TP73L) a key player in embryonic urogenital development with significant dysregulation in human bladder exstrophy tissue. Int. J. Mol. Med. 26, 861–867 (2010).

    CAS  PubMed  Google Scholar 

  69. Wilkins, S. et al. Insertion/deletion polymorphisms in the DeltaNp63 promoter are a risk factor for bladder exstrophy epispadias complex. PLoS Genet. 8, e1003070 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. Kong, X. T. et al. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J. Cell Biol. 167, 1195–1204 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Carpenter, A. R. et al. Uroplakin 1b is critical in urinary tract development and urothelial differentiation and homeostasis. Kidney Int. 89, 612–624 (2016).

    CAS  PubMed  Google Scholar 

  72. Carpenter, A. R. & McHugh, K. M. Role of renal urothelium in the development and progression of kidney disease. Pediatr. Nephrol. 32, 557–564 (2017).

    PubMed  Google Scholar 

  73. Hu, P. et al. Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J. Cell Biol. 151, 961–972 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Deng, F. M. et al. Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. J. Cell Biol. 159, 685–694 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rudat, C. et al. Upk3b is dispensable for development and integrity of urothelium and mesothelium. PLoS One 9, e112112 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Liao, Y. et al. Uroplakins play conserved roles in egg fertilization and acquired additional urothelial functions during mammalian divergence. Mol. Biol. Cell. 29, 3128–3143 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mahbub Hasan, A. K. et al. The egg membrane microdomain-associated uroplakin III-Src system becomes functional during oocyte maturation and is required for bidirectional gamete signaling at fertilization in Xenopus laevis. Development 141, 1705–1714 (2014).

    CAS  PubMed  Google Scholar 

  78. Mahbub Hasan, A. K. et al. Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization. Dev. Biol. 286, 483–492 (2005).

    CAS  PubMed  Google Scholar 

  79. Sakakibara, K. et al. Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. J. Biol. Chem. 280, 15029–15037 (2005).

    CAS  PubMed  Google Scholar 

  80. Mitra, S. et al. Requirement for a uroplakin 3a-like protein in the development of zebrafish pronephric tubule epithelial cell function, morphogenesis, and polarity. PLoS One 7, e41816 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Thumbikat, P. et al. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog. 5, e1000415 (2009).

    PubMed  PubMed Central  Google Scholar 

  82. Schonfelder, E. M. et al. Mutations in uroplakin IIIA are a rare cause of renal hypodysplasia in humans. Am. J. Kidney Dis. 47, 1004–1012 (2006).

    PubMed  Google Scholar 

  83. Jiang, S. et al. Lack of major involvement of human uroplakin genes in vesicoureteral reflux: implications for disease heterogeneity. Kidney Int. 66, 10–19 (2004).

    CAS  PubMed  Google Scholar 

  84. Kelly, H. et al. Uroplakin III is not a major candidate gene for primary vesicoureteral reflux. Eur. J. Hum. Genet. 13, 500–502 (2005).

    CAS  PubMed  Google Scholar 

  85. Jenkins, D. et al. Mutation analyses of uroplakin II in children with renal tract malformations. Nephrol. Dial. Transplant. 21, 3415–3421 (2006).

    CAS  PubMed  Google Scholar 

  86. Fujita, H., Hamazaki, Y., Noda, Y., Oshima, M. & Minato, N. Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PLoS One 7, e52272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fogelgren, B. et al. Urothelial defects from targeted inactivation of exocyst Sec10 in mice cause ureteropelvic junction obstructions. PLoS One 10, e0129346 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Martin-Urdiroz, M., Deeks, M. J., Horton, C. G., Dawe, H. R. & Jourdain, I. The Exocyst complex in health and disease. Front. Cell Dev. Biol. 4, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. Lee, A. J. et al. Fibroproliferative response to urothelial failure obliterates the ureter lumen in a mouse model of prenatal congenital obstructive nephropathy. Sci. Rep. 6, 31137 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hou, T. et al. Aberrant differentiation of urothelial cells in patients with ureteropelvic junction obstruction. Int. J. Clin. Exp. Pathol. 7, 5837–5845 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Chiou, Y. Y., Shieh, C. C., Cheng, H. L. & Tang, M. J. Intrinsic expression of Th2 cytokines in urothelium of congenital ureteropelvic junction obstruction. Kidney Int. 67, 638–646 (2005).

    CAS  PubMed  Google Scholar 

  92. Huang, W. Y., Olumi, A. F. & Rosen, S. Urothelial mucosal malformation: a rare cause for ureteropelvic junction obstruction. Pediatr. Dev. Pathol. 9, 72–74 (2006).

    PubMed  Google Scholar 

  93. Romih, R., Korosec, P., de Mello, W. Jr & Jezernik, K. Differentiation of epithelial cells in the urinary tract. Cell Tissue Res. 320, 259–268 (2005).

    PubMed  Google Scholar 

  94. Becknell, B. et al. Molecular basis of renal adaptation in a murine model of congenital obstructive nephropathy. PLoS One 8, e72762 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Jackson, A. R. et al. The uroplakin plaque promotes renal structural integrity during congenital and acquired urinary tract obstruction. Am. J. Physiol. Renal Physiol. 315, F1019–F1031 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Girshovich, A. et al. Ureteral obstruction promotes proliferation and differentiation of the renal urothelium into a bladder-like phenotype. Kidney Int. 82, 428–435 (2012).

    CAS  PubMed  Google Scholar 

  97. Chen, W. Y. et al. IL-33/ST2 axis mediates hyperplasia of intrarenal urothelium in obstructive renal injury. Exp. Mol. Med. 50, 36 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Sorantin, E., Fotter, R., Aigner, R., Ring, E. & Riccabona, M. The sonographically thickened wall of the upper urinary tract system: correlation with other imaging methods. Pediatr. Radiol. 27, 667–671 (1997).

    CAS  PubMed  Google Scholar 

  99. Tain, Y. L. Renal pelvic wall thickening in childhood urinary tract infections — evidence of acute pyelitis or vesicoureteral reflux? Scand. J. Urol. Nephrol. 37, 28–30 (2003).

    PubMed  Google Scholar 

  100. Nicolet, V. et al. Thickening of the renal collecting system: a nonspecific finding at US. Radiology 168, 411–413 (1988).

    CAS  PubMed  Google Scholar 

  101. Birnholz, J. C. & Merkel, F. K. Submucosal edema of the collecting system: a new ultrasonic sign of severe, acute renal allograft rejection. A clinical note. Radiology 154, 190 (1985).

    CAS  PubMed  Google Scholar 

  102. Avni, E. F. et al. US demonstration of pyelitis and ureteritis in children. Pediatr. Radiol. 18, 134–139 (1988).

    CAS  PubMed  Google Scholar 

  103. Gordon, Z. N. et al. Uroepithelial thickening improves detection of vesicoureteral reflux in infants with prenatal hydronephrosis. J. Pediatr. Urol. 12, 257 e251–e257 (2016).

    Google Scholar 

  104. Gordon, Z. N., McLeod, D. J., Becknell, B., Bates, D. G. & Alpert, S. A. Uroepithelial thickening on sonography improves detection of vesicoureteral reflux in children with first febrile urinary tract infection. J. Urol. 194, 1074–1079 (2015).

    PubMed  Google Scholar 

  105. Wallace, S. S. et al. Renal ultrasound for infants younger than 2 months with a febrile urinary tract infection. AJR Am. J. Roentgenol. 205, 894–898 (2015).

    PubMed  Google Scholar 

  106. Li, B. et al. Inflammation drives renal scarring in experimental pyelonephritis. Am. J. Physiol. Renal Physiol. 312, F43–F53 (2017).

    CAS  PubMed  Google Scholar 

  107. Gupta, S. et al. Urinary antimicrobial peptides: potential novel biomarkers of obstructive uropathy. J. Pediatr. Urol. 14, 238e231–238e236 (2018).

    Google Scholar 

  108. Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641 (2006).

    CAS  PubMed  Google Scholar 

  109. Makino, T., Kawashima, H., Konishi, H., Nakatani, T. & Kiyama, H. Elevated urinary levels and urothelial expression of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein in patients with interstitial cystitis. Urology 75, 933–937 (2010).

    PubMed  Google Scholar 

  110. Spencer, J. D. et al. Expression and significance of the HIP/PAP and RegIIIγ antimicrobial peptides during mammalian urinary tract infection. PLoS One 10, e0144024 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research work is supported by National Institutes of Health grants F32DK115085 (A.R.J.), K08-DK122119 (C.B.C.), R01DK085242 (K.M.M.), K08-DK102594 (B.B.) and R01-DK125469 (B.B.). B.B. is also supported by a Norman Siegel Research Scholar Grant from the American Society of Nephrology Foundation for Kidney Research.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the draft, participated in discussions of its content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Brian Becknell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks C. Mendelsohn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, A.R., Ching, C.B., McHugh, K.M. et al. Roles for urothelium in normal and aberrant urinary tract development. Nat Rev Urol 17, 459–468 (2020). https://doi.org/10.1038/s41585-020-0348-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0348-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing