Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug resistance in papillary RCC: from putative mechanisms to clinical practicalities

Abstract

Papillary renal cell carcinoma (pRCC) is the second most common renal cell carcinoma (RCC) subtype and accounts for 10–15% of all RCCs. Despite clinical need, few pharmacogenomics studies in pRCC have been performed. Moreover, current research fails to adequately include pRCC laboratory models, such as the ACHN or Caki-2 pRCC cell lines. The molecular mechanisms involved in pRCC development and drug resistance are more diverse than in clear-cell RCC, in which inactivation of VHL occurs in the majority of tumours. Drug resistance to multiple therapies in pRCC occurs via genetic alteration (such as mutations resulting in abnormal receptor tyrosine kinase activation or RALBP1 inhibition), dysregulation of signalling pathways (such as GSK3β–EIF4EBP1, PI3K–AKT and the MAPK or interleukin signalling pathways), deregulation of cellular processes (such as resistance to apoptosis or epithelial-to-mesenchymal transition) and interactions between the cell and its environment (for example, through activation of matrix metalloproteinases). Improved understanding of resistance mechanisms will facilitate drug discovery and provide new effective therapies. Further studies on novel resistance biomarkers are needed to improve patient prognosis and stratification as well as drug development.

Key points

  • Papillary renal cell carcinoma (pRCC) can be classified into two subtypes on the basis of genetic background: type 1 pRCC is characterized by MET alterations and type 2 pRCC has alterations in CDKN2A, SETD2, BAP1, PBRM1, FH, NF2, TFE3, NFE2L2 and ARE.

  • Current pRCC treatment options include tyrosine kinase inhibitors (TKIs), such as sunitinib, sorafenib and axitinib, and the mammalian target of rapamycin (mTOR) inhibitor everolimus; however, response rates and survival are low, and most patients develop acquired drug resistance.

  • Drug resistance has been modelled in vivo and in vitro in the two most commonly used pRCC cell lines, ACHN and Caki-2, and these cells are frequently used to investigate resistance mechanisms. However, new tools such as organoids and patient-derived xenografts are promising for studying resistance mechanisms.

  • Resistance to TKIs is mediated by aberrant phosphorylation of tyrosine kinases, dysregulation of PI3K–AKT–MAPK signalling pathway, hypoxia, microRNAs, deregulation of apoptosis and cancer stem cells, among others.

  • Dysregulation of the mTOR, GSK3β–EIF4EBP1 and PI3K–AKT–MAPK signalling pathways, deregulation of apoptosis, and promotion of epithelial-to-mesenchymal transition are the key mechanisms of resistance to mTOR inhibitors.

  • Several therapeutic options for overcoming drug resistance in pRCC are being investigated in vitro, in vivo and in clinical trials, but none of them have been applied in clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of intrinsic and acquired resistance to TKIs.
Fig. 2: Molecular mechanisms of resistance to TKIs in pRCCs.
Fig. 3: Pathways involved in pRCC resistance.
Fig. 4: Changes in proapoptotic and antiapoptotic factors associated with resistance to TKIs, mTORis and chemotherapy.
Fig. 5: Mechanisms of intrinsic and acquired resistance to mTORis.
Fig. 6: Mechanisms of action of targeted therapies in pRCCs and possible drug-resistance-development mechanisms at a cellular level.
Fig. 7: Potential applications of TKI resistance markers in clinical practice.

Similar content being viewed by others

References

  1. Linehan, W. M. Genetic basis of kidney cancer: role of genomics for the development of disease-based therapeutics. Genome Res. 22, 2089–2100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Patard, J. J. et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J. Clin. Oncol. 23, 2763–2771 (2005).

    Article  PubMed  Google Scholar 

  4. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO Classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).

    Article  PubMed  Google Scholar 

  5. Upton, M. P., Parker, R. A., Youmans, A., McDermott, D. F. & Atkins, M. B. Histologic predictors of renal cell carcinoma response to interleukin-2-based therapy. J. Immunother. 28, 488–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Motzer, R. J., Bander, N. H. & Nanus, D. M. Renal-cell carcinoma. N. Engl. J. Med. 335, 865–875 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Amin, M. B. et al. Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience of 405 cases. Am. J. Surg. Pathol. 26, 281–291 (2002).

    Article  PubMed  Google Scholar 

  8. Steffens, S. et al. Incidence and long-term prognosis of papillary compared to clear cell renal cell carcinoma — a multicentre study. Eur. J. Cancer 48, 2347–2352 (2012).

    Article  PubMed  Google Scholar 

  9. Liddell, H., Mare, A., Heywood, S., Bennett, G. & Chan, H. F. Clear cell papillary renal cell carcinoma: a potential mimic of conventional clear cell renal carcinoma on core biopsy. Case Rep. Urol. 2015, 423908 (2015).

    Google Scholar 

  10. Delahunt, B. & Eble, J. N. Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod. Pathol. 10, 537–544 (1997).

    CAS  PubMed  Google Scholar 

  11. Zbar, B. et al. Hereditary papillary renal cell carcinoma. J. Urol. 151, 561–566 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Cancer Genome Atlas Research Network. et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N. Engl. J. Med. 374, 135–145 (2016).

    Article  CAS  Google Scholar 

  13. Pal, S. K. et al. Characterization of clinical cases of advanced papillary renal cell carcinoma via comprehensive genomic profiling. Eur. Urol. 73, 71–78 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Motzer, R. J. et al. Treatment outcome and survival associated with metastatic renal cell carcinoma of non-clear-cell histology. J. Clin. Oncol. 20, 2376–2381 (2002).

    Article  PubMed  Google Scholar 

  15. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Escudier, B. et al. Renal cell carcinoma: esmo clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 27, v58–v68 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Motzer, R. J. et al. Kidney Cancer, Version 2.2017, NCCN clinical practice guidelines in oncology. J. Natl Compr. Canc. Netw. 15, 804–834 (2017).

    Article  PubMed  Google Scholar 

  18. Escudier, B. et al. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30, 706–720 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Brodaczewska, K. K., Szczylik, C., Fiedorowicz, M., Porta, C. & Czarnecka, A. M. Choosing the right cell line for renal cell cancer research. Mol. Cancer 15, 83 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hakimi, A. A., Chevinsky, M., Hsieh, J. J., Sander, C. & Sinha, R. MP23-11 Genomic comparison of renal cell carcinoma cell lines to human tumORS. J. Urol. 191, e247 (2014).

    Google Scholar 

  21. Sinha, R. et al. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection. Nat. Commun. 8, 15165 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Furge, K. A. et al. Detection of DNA copy number changes and oncogenic signaling abnormalities from gene expression data reveals MYC activation in high-grade papillary renal cell carcinoma. Cancer Res. 67, 3171–3176 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Looyenga, B. D. et al. Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for oncogenic MET signaling in papillary renal and thyroid carcinomas. Proc. Natl Acad. Sci. USA 108, 1439–1444 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pulkkanen, K. J. et al. HSV-tk gene therapy for human renal cell carcinoma in nude mice. Cancer Gene Ther. 8, 529–536 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Anglard, P. et al. Molecular and cellular characterization of human renal cell carcinoma cell lines. Cancer Res. 52, 348–356 (1992).

    CAS  PubMed  Google Scholar 

  26. Yu, C. et al. The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 24, 6861–6869 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bairlein, M. Characterization of the small molecule kinase inhibitor SU11248 (Sunitinib/SUTENT) in vitro and in vivo – Towards response prediction in cancer therapy with kinase inhibitors. Thesis, Technische Univ. München (2010).

  28. Jeon, T. Y. et al. Assessment of early therapeutic response to sorafenib in renal cell carcinoma xenografts by dynamic contrast-enhanced and diffusion-weighted MR imaging. Br. J. Radiol. 88, 20150163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tochizawa, S. et al. Antitumor effects of a combination of interferon-alpha and sorafenib on human renal carcinoma cell lines. Biomed. Res. 29, 271–278 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Korhonen, M., Sariola, H., Gould, V. E., Kangas, L. & Virtanen, I. Integrins and laminins in human renal carcinoma cells and tumors grown in nude mice. Cancer Res. 54, 4532–4538 (1994).

    CAS  PubMed  Google Scholar 

  31. Delahunt, B. & Eble, J. N. History of the development of the classification of renal cell neoplasia. Clin. Lab. Med. 25, 231–246, v (2005).

    Article  PubMed  Google Scholar 

  32. Shinojima, T. et al. Renal cancer cells lacking hypoxia inducible factor (HIF)-1alpha expression maintain vascular endothelial growth factor expression through HIF-2alpha. Carcinogenesis 28, 529–536 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt, L. et al. Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene 18, 2343–2350 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. de Aguirre, I. et al. c-Met mutational analysis in the Sema and juxtamembrane domains in small-cell-lung-cancer. Transl Oncogenomics 1, 11–18 (2006).

    PubMed  PubMed Central  Google Scholar 

  36. Kovacs, G., Fuzesi, L., Emanual, A. & Kung, H. F. Cytogenetics of papillary renal cell tumors. Genes Chromosomes Cancer 3, 249–255 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, Z.-Q. et al. Molecular cytogenetic analysis of 17 renal cancer cell lines: increased copy number at 5q31-33 in cell lines from nonpapillary carcinomas. Jpn J. Cancer Res. 91, 156–163 (2000).

    Article  CAS  Google Scholar 

  38. Lee, Y. H., Morrison, B. L. & Bottaro, D. P. Synergistic signaling of tumor cell invasiveness by hepatocyte growth factor and hypoxia. J. Biol. Chem. 289, 20448–20461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Peak, T. C., Su, Y., Chapple, A. G., Chyr, J. & Deep, G. Syntaxin 6: a novel predictive and prognostic biomarker in papillary renal cell carcinoma. Sci. Rep. 9, 3146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sakai, I., Miyake, H. & Fujisawa, M. Acquired resistance to sunitinib in human renal cell carcinoma cells is mediated by constitutive activation of signal transduction pathways associated with tumour cell proliferation. BJU Int. 112, E211–E220 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Harada, K., Miyake, H., Kumano, M. & Fujisawa, M. Acquired resistance to temsirolimus in human renal cell carcinoma cells is mediated by the constitutive activation of signal transduction pathways through mTORC2. Br. J. Cancer 109, 2389–2395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pulkkanen, K. J. et al. Characterization of a new animal model for human renal cell carcinoma. In Vivo 14, 393–400 (2000).

    CAS  Google Scholar 

  43. Mancilla-Jimenez, R., Stanley, R. J. & Blath, R. A. Papillary renal cell carcinoma: a clinical, radiologic, and pathologic study of 34 cases. Cancer 38, 2469–2480 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. Kucejova, B. et al. Interplay between pVHL and mTORC1 pathways in clear-cell renal cell carcinoma. Mol. Cancer. Res. 9, 1255–1265 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Whaley JM, N. J. et al. Germ-line mutations in the von Hippel–Lindau tumor-suppressor gene are similar to somatic von Hippel–Lindau aberrations in sporadic renal cell carcinoma. Am. J. Hum. Genet. 55, 1092–1102 (1994).

    PubMed  PubMed Central  Google Scholar 

  46. Saleeb, R. M. et al. Modulating ATP binding cassette transporters in papillary renal cell carcinoma type 2 enhances its response to targeted molecular therapy. Mol. Oncol. 12, 1673–1688 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Furge, K. A. et al. Combining differential expression, chromosomal and pathway analyses for the molecular characterization of renal cell carcinoma. Can. Urol. Assoc. J. 1, S21–S27 (2007).

    PubMed  PubMed Central  Google Scholar 

  48. Matak, D. et al. Functional significance of CD105-positive cells in papillary renal cell carcinoma. BMC Cancer 17, 21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sourbier, C. et al. Targeting loss of the Hippo signaling pathway in NF2-deficient papillary kidney cancers. Oncotarget 9, 10723–10733 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Perrier-Trudova, V. et al. Fumarate hydratase-deficient cell line NCCFH1 as a new in vitro model of hereditary papillary renal cell carcinoma Type 2. Anticancer Res. 35, 6639–6653 (2015).

    CAS  PubMed  Google Scholar 

  51. Yang, Y. et al. A novel fumarate hydratase-deficient HLRCC kidney cancer cell line, UOK268: a model of the Warburg effect in cancer. Cancer Genet. 205, 377–390 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang, Y. et al. UOK 262 cell line, fumarate hydratase deficient (FH-/FH-) hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an aberrant energy metabolic pathway in human cancer. Cancer Genet. Cytogenet. 196, 45–55 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, D. et al. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma. Cancer Res. 70, 1053–1062 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, L., Park, P., La Marca, F., Than, K. D. & Lin, C. Y. BMP-2 inhibits tumor-initiating ability in human renal cancer stem cells and induces bone formation. J. Cancer Res. Clin. Oncol. 141, 1013–1024 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Miyazaki, A., Miyake, H. & Fujisawa, M. Molecular mechanism mediating cytotoxic activity of axitinib in sunitinib-resistant human renal cell carcinoma cells. Clin. Transl Oncol. 18, 893–900 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Papaetis, G. S. & Syrigos, K. N. Sunitinib: a multitargeted receptor tyrosine kinase inhibitor in the era of molecular cancer therapies. BioDrugs 23, 377–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Joosten, S. C. et al. Resistance to sunitinib in renal cell carcinoma: From molecular mechanisms to predictive markers and future perspectives. Biochim. Biophys. Acta 1855, 1–16 (2015).

    CAS  PubMed  Google Scholar 

  58. Behbahani, T. E. et al. Tyrosine kinase expression profile in clear cell renal cell carcinoma. World J. Urol. 30, 559–565 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, J. et al. Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. J. Natl Cancer Inst. 100, 926–939 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mano, H. Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev. 10, 267–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Zhuang, J. et al. The expression and role of tyrosine kinase ETK/BMX in renal cell carcinoma. J. Exp. Clin. Cancer Res. 33, 25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xue, L. Y., Qiu, Y., He, J., Kung, H. J. & Oleinick, N. L. Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 18, 3391–3398 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Wang, L. et al. Prognostic and predictive values of subcellular localisation of ret in renal clear-cell carcinoma. Dis. Markers 2016, 6870470 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Lin, C. et al. Elevated RET expression enhances EGFR activation and mediates EGFR inhibitor resistance in head and neck squamous cell carcinoma. Cancer Lett. 377, 1–10 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Abdullah, S. E. & Perez-Soler, R. Mechanisms of resistance to vascular endothelial growth factor blockade. Cancer 118, 3455–3467 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Gao, H. & Deng, L. Sphingosine kinase-1 activation causes acquired resistance against Sunitinib in renal cell carcinoma cells. Cell Biochem. Biophys. 68, 419–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Awasthi, S. et al. RLIP76 and cancer. Clin. Cancer Res. 14, 4372–4377 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Singhal, S. S. et al. Rlip76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int. J. Cancer 126, 1327–1338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Singhal, S. S. et al. RLIP76: a target for kidney cancer therapy. Cancer Res. 69, 4244–4251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Singhal, S. S., Awasthi, Y. C. & Awasthi, S. Regression of melanoma in a murine model by RLIP76 depletion. Cancer Res. 66, 2354–2360 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Singhal, S. S. et al. Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (Ral-binding protein 1). Cancer Res. 67, 4382–4389 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Singhal, S. S., Singhal, J., Figarola, J., Horne, D. & Awasthi, S. RLIP76 targeted therapy for kidney cancer. Pharm. Res. 32, 3123–3136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shayesteh, L. et al. PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21, 99–102 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Guo, H. et al. The PI3K/AKT pathway and renal cell carcinoma. J. Genet. Genomics 42, 343–353 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hager, M. et al. Increased activated Akt expression in renal cell carcinomas and prognosis. J. Cell Mol. Med. 13, 2181–2188 (2009).

    Article  PubMed  Google Scholar 

  78. Downward, J. PI 3-kinase, Akt and cell survival. Semin. Cell Dev. Biol. 15, 177–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Panigrahi, A. R. et al. The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. J. Pathol. 204, 93–100 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Cantley, L. C. & Neel, B. G. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc. Natl Acad. Sci. 96, 4240–4245 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tei, H., Miyake, H. & Fujisawa, M. Enhanced sensitivity to sorafenib by inhibition of Akt1 expression in human renal cell carcinoma ACHN cells both in vitro and in vivo. Hum. Cell 28, 114–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Harada, K., Miyake, H., Kusuda, Y. & Fujisawa, M. Characterization of mechanism involved in acquired resistance to sorafenib in a mouse renal cell cancer RenCa model. Clin. Transl Oncol. 16, 801–806 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Rommel, C. Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286, 1738–1741 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Ho, J. Y. et al. Ovatodiolide targets beta -catenin signaling in suppressing tumorigenesis and overcoming drug resistance in renal cell carcinoma. Evid. Based Complement. Alternat. Med. 2013, 2013).

  86. Biswas, S. et al. Effects of HIF-1alpha and HIF2alpha on growth and metabolism of clear-cell renal cell carcinoma 786-0 xenografts. J. Oncol. 2010, 757908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang, S., Ren, Y. & Qiu, J. Dauricine inhibits viability and induces cell cycle arrest and apoptosis via inhibiting the PI3K/Akt signaling pathway in renal cell carcinoma cells. Mol. Med. Rep. 17, 7403–7408 (2018).

    CAS  PubMed  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01239342 (2017).

  89. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01480154 (2019).

  90. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03673787 (2018).

  91. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02019693 (2019).

  92. Dorevic, G. et al. Hypoxia inducible factor-1alpha correlates with vascular endothelial growth factor A and C indicating worse prognosis in clear cell renal cell carcinoma. J. Exp. Clin. Cancer Res. 28, 40 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117–1133 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A. & Simon, M. C. HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Koh, M. Y. & Powis, G. HAF: the new player in oxygen-independent HIF-1alpha degradation. Cell Cycle 8, 1359–1366 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Lai, X. M. et al. HAF mediates the evasive resistance of anti-angiogenesis TKI through disrupting HIF-1alpha and HIF-2alpha balance in renal cell carcinoma. Oncotarget 8, 49713–49724 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Bielecka, Z. F. et al. Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells. Cell Biosci. 7, 71 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhu, Y. et al. p21-activated kinase 1 determines stem-like phenotype and sunitinib resistance via NF-kappaB/IL-6 activation in renal cell carcinoma. Cell Death Dis. 6, e1637 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02293980 (2008).

  100. Courtney, K. D. et al. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2alpha antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36, 867–874 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Yoshino, H. et al. PHGDH as a key enzyme for serine biosynthesis in HIF2alpha-targeting therapy for renal cell carcinoma. Cancer Res. 77, 6321–6329 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hu, X. et al. Heparanase released from mesenchymal stem cells activates integrin beta1/HIF-2alpha/Flk-1 signaling and promotes endothelial cell migration and angiogenesis. Stem Cells 33, 1850–1862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Horiguchi, A., Oya, M., Marumo, K. & Murai, M. STAT3, but not ERKs, mediates the IL-6-induced proliferation of renal cancer cells, ACHN and 769P. Kidney Int. 61, 926–938 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Mizutani, Y. et al. Sensitization of human renal cell carcinoma cells to cis-diamminedichloroplatinum(II) by anti-interleukin 6 monoclonal antibody or anti-interleukin 6 receptor monoclonal antibody. Cancer Res. 55, 590–596 (1995).

    CAS  PubMed  Google Scholar 

  105. Chen, Y. et al. IL-6 is involved in malignancy and doxorubicin sensitivity of renal carcinoma cells. Cell Adh. Migr. 12, 28–36 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kamli, H., Glenda, G. C., Li, L., Vesey, D. A. & Morais, C. Characterisation of the morphological, functional and molecular changes in sunitinib-resistant renal cell carcinoma cells. J. Kidney Cancer VHL 5, 1–9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Huang, D. et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 70, 1063–1071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bi, L. K. et al. Kidney cancer cells secrete IL-8 to activate Akt and promote migration of mesenchymal stem cells. Urol. Oncol. 32, 607–612 (2014).

    Article  CAS  Google Scholar 

  109. Yang, Z., Xie, H., He, D. & Li, L. Infiltrating macrophages increase RCC epithelial mesenchymal transition (EMT) and stem cell-like populations via AKT and mTOR signaling. Oncotarget 7, 44478–44491 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. Cai, Y., Yu, X., Hu, S. & Yu, J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics. Bioinformatics 7, 147–154 (2009).

    CAS  Google Scholar 

  111. Prior, C. et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLOS ONE 9, e86263 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yamaguchi, N. et al. Identification of microRNAs involved in resistance to sunitinib in renal cell carcinoma cells. Anticancer Res. 37, 2985–2992 (2017).

    CAS  PubMed  Google Scholar 

  113. Chou, C. H. et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 44, D239–D247 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Paraskevopoulou, M. D. et al. DIANA-microT web serverv5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 41, W169–W173 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tran, T. A. et al. Fibroblast growth factor receptor-dependent and -independent paracrine signaling by sunitinib-resistant renal cell carcinoma. Mol. Cell Biol. 36, 1836–1855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vlachos, I. S. et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 40, W498–W504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lin, Y. W. et al. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-kappaB DNA-binding activity. J. Pineal. Res. 60, 277–290 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Sato, A. et al. Inhibition of MMP-9 using a pyrrole-imidazole polyamide reduces cell invasion in renal cell carcinoma. Int. J. Oncol. 43, 1441–1446 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gobe, G. C. et al. Decreased apoptosis repressor with caspase recruitment domain confers resistance to sunitinib in renal cell carcinoma through alternate angiogenesis pathways. Biochem. Biophys. Res. Commun. 473, 47–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Nam, Y. J. et al. Inhibition of both the extrinsic and intrinsic death pathways through nonhomotypic death-fold interactions. Mol. Cell 15, 901–912 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Auffinger, B. et al. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ. 21, 1119–1131 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hamerlik, P. et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J. Exp. Med. 209, 507–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nagler, C., Zanker, K. S. & Dittmar, T. Cell fusion, drug resistance and recurrence CSCs. Adv. Exp. Med. Biol. 714, 173–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Jiang, F. et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol. Cancer Res. 7, 330–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Balicki, D. Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell 1, 485–487 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Zhou, W. et al. ALDH1 activity identifies tumor-initiating cells and links to chromosomal instability signatures in multiple myeloma. Leukemia 28, 1155–1158 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Pearce, D. J. et al. Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23, 752–760 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Rabinovich, I. et al. Cancer stem cell markers ALDH1 and CD44+/CD24- phenotype and their prognosis impact in invasive ductal carcinoma. Eur. J. Histochem. 62, (2018).

  130. Mohamed, S. Y. et al. The prognostic value of cancer stem cell markers (Notch1, ALDH1, and CD44) in primary colorectal carcinoma. J. Gastrointest. Cancer https://doi.org/10.1007/s12029-018-0156-6 (2018).

  131. Kim, M. J. et al. Correlation of ALDH1 and Notch3 expression: clinical implication in ovarian carcinomas. J. Cancer 8, 3331–3342 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Khan, M. I. et al. Comparative gene expression profiling of primary and metastatic renal cell carcinoma stem cell-like cancer cells. PLOS ONE 11, e0165718 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ueda, K. et al. Aldehyde dehydrogenase 1 identifies cells with cancer stem cell-like properties in a human renal cell carcinoma cell line. PLOS ONE 8, e75463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Conley, S. J. et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl Acad. Sci. USA 109, 2784–2789 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kumar, R., Gururaj, A. E. & Barnes, C. J. p21-activated kinases in cancer. Nat. Rev. Cancer 6, 459–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. O’Sullivan, G. C. et al. Modulation of p21-activated kinase 1 alters the behavior of renal cell carcinoma. Int. J. Cancer 121, 1930–1940 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Gurova, K. V. et al. Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-kappaB-dependent mechanism of p53 suppression in tumors. Proc. Natl Acad. Sci. USA 102, 17448–17453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Menard, R. E. & Mattingly, R. R. Cell surface receptors activate p21-activated kinase 1 via multiple Ras and PI3-kinase-dependent pathways. Cell. Signal. 15, 1099–1109 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Gotink, K. J. et al. Cross-resistance to clinically used tyrosine kinase inhibitors sunitinib, sorafenib and pazopanib. Cell Oncol. 38, 119–129 (2015).

    Article  CAS  Google Scholar 

  140. Rosa, R. et al. Angiogenic and signalling proteins correlate with sensitivity to sequential treatment in renal cell cancer. Br. J. Cancer 109, 686–693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yumioka, T. et al. Lysosome-associated membrane protein 2 (LAMP-2) expression induced by miR-194-5p downregulation contributes to sunitinib resistance in human renal cell carcinoma cells. Oncol. Lett. 15, 893–900 (2018).

    PubMed  Google Scholar 

  142. Porta, C. et al. Sequential use of sorafenib and sunitinib in advanced renal-cell carcinoma (RCC): an Italian multicentre retrospective analysis of 189 patient cases. BJU Int. 108, E250–E257 (2011).

    Article  PubMed  Google Scholar 

  143. Eichelberg, C. et al. SWITCH: a randomised, sequential, open-label study to evaluate the efficacy and safety of sorafenib-sunitinib versus sunitinib-sorafenib in the treatment of metastatic renal cell cancer. Eur. Urol. 68, 837–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Iacovelli, R. et al. Clinical outcomes in patients receiving three lines of targeted therapy for metastatic renal cell carcinoma: results from a large patient cohort. Eur. J. Cancer 49, 2134–2142 (2013).

    Article  PubMed  Google Scholar 

  145. Faes, S., Demartines, N. & Dormond, O. Resistance to mTORC1 inhibitors in cancer therapy: from kinase mutations to intratumoral heterogeneity of kinase activity. Oxid. Med. Cell Longev. 2017, 1726078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Loewith, R. et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Showkat, M., Beigh, M. A. & Andrabi, K. I. mTOR signaling in protein translation regulation: implications in cancer genesis and therapeutic interventions. Mol. Biol. Int. 2014, 686984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sparks, C. A. & Guertin, D. A. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 29, 3733–3744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Carew, J. S., Kelly, K. R. & Nawrocki, S. T. Mechanisms of mTOR inhibitor resistance in cancer therapy. Target Oncol. 6, 17–27 (2011).

    Article  PubMed  Google Scholar 

  150. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest. 118, 3065–3074 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Cho, D. C. et al. The efficacy of the novel dual PI3-kinase/mTOR inhibitor NVP-BEZ235 compared with rapamycin in renal cell carcinoma. Clin. Cancer Res. 16, 3628–3638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wallin, J. J. et al. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol. Cancer Ther. 10, 2426–2436 (2011).

    Article  CAS  PubMed  Google Scholar 

  153. Carlo, M. I. et al. A Phase Ib Study of BEZ235, a dual inhibitor of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (MTOR), in patients with advanced renal cell carcinoma. Oncologist 21, 787–788 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Powles, T. et al. Randomized open-label phase II trial of apitolisib (GDC-0980), a novel inhibitor of the PI3K/mammalian target of rapamycin pathway, versus everolimus in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 34, 1660–1668 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Powles, T. et al. A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur. Urol. 69, 450–456 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Vlachostergios, P. J. & Molina, A. M. PI3K/AKT inhibitors in patients with refractory renal cell carcinoma: what have we learnt so far? Ann. Oncol. 28, 914–916 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Lin, A. et al. FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor growth in response to pharmacologic inhibition of the PI3K-AKT pathway. Cancer Res. 74, 1682–1693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Beurel, E., Grieco, S. F. & Jope, R. S. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148, 114–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Doble, B. W. & Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116, 1175–1186 (2003).

    Article  CAS  PubMed  Google Scholar 

  160. Ito, H. et al. GSK-3 directly regulates phospho-4EBP1 in renal cell carcinoma cell-line: an intrinsic subcellular mechanism for resistance to mTORC1 inhibition. BMC Cancer 16, 393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bhat, R. et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J. Biol. Chem. 278, 45937–45945 (2003).

    Article  CAS  PubMed  Google Scholar 

  162. Kawazoe, H. et al. GSK-3 inhibition in vitro and in vivo enhances antitumor effect of sorafenib in renal cell carcinoma (RCC). Biochem. Biophys. Res. Commun. 423, 490–495 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Bilim, V. et al. Glycogen synthase kinase-3: a new therapeutic target in renal cell carcinoma. Br. J. Cancer 101, 2005–2014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. McCubrey, J. A. et al. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 5, 2881–2911 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Holder, A. M. et al. Epithelial to mesenchymal transition is associated with rapamycin resistance. Oncotarget 6, 19500–19513 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Le Tourneau, C., Faivre, S., Serova, M. & Raymond, E. mTORC1 inhibitors: is temsirolimus in renal cancer telling us how they really work? Br. J. Cancer 99, 1197–1203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gilmartin, A. G. et al. GSK1120212 (JTP-74057) is an inhibitor of MEK activity and activation with favorable pharmacokinetic properties for sustained in vivo pathway inhibition. Clin. Cancer Res. 17, 989–1000 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Diamond, J. R. et al. Initial clinical sensitivity and acquired resistance to MET inhibition in MET-mutated papillary renal cell carcinoma. J. Clin. Oncol. 31, e254–e258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Schuller, A. G. et al. The MET inhibitor AZD6094 (savolitinib, HMPL-504) induces regression in papillary renal cell carcinoma patient-derived xenograft models. Clin. Cancer Res. 21, 2811–2819 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Stenger, M. Cabozantinib in advanced renal cell carcinoma. ASCO Post http://www.ascopost.com/issues/march-10-2018/cabozantinib-in-advanced-renal-cell-carcinoma/ (2018).

  171. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02127710 (2019).

  172. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03091192 (2019).

  173. Choi, Y. H. & Yu, A. M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des. 20, 793–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhu, H. et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem. Pharmacol. 76, 582–588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Fu, X. et al. Exosomal microRNA-32-5p induces multidrug resistance in hepatocellular carcinoma via the PI3K/Akt pathway. J. Exp. Clin. Cancer Res. 37, 52 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chakravarthi, B. V. et al. The miR-124-prolyl hydroxylase P4HA1-MMP1 axis plays a critical role in prostate cancer progression. Oncotarget 5, 6654–6669 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Jinushi, T. et al. Low expression levels of microRNA-124-5p correlated with poor prognosis in colorectal cancer via targeting of SMC4. Cancer Med. 3, 1544–1552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wan, H. Y. et al. MiR-124 represses vasculogenic mimicry and cell motility by targeting amotL1 in cervical cancer cells. Cancer Lett. 355, 148–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  179. Gebauer, K. et al. Hsa-mir-124-3 CpG island methylation is associated with advanced tumours and disease recurrence of patients with clear cell renal cell carcinoma. Br. J. Cancer 108, 131–138 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Long, Q. Z., Du, Y. F., Liu, X. G., Li, X. & He, D. L. miR-124 represses FZD5 to attenuate P-glycoprotein-mediated chemo-resistance in renal cell carcinoma. Tumour Biol. 36, 7017–7026 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Walsh, N. et al. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma. BMC Urol. 9, 6 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Correa, S. et al. Wnt/beta-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer 12, 303 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pinzon-Daza, M. L. et al. The cross-talk between canonical and non-canonical Wnt-dependent pathways regulates P-glycoprotein expression in human blood-brain barrier cells. J. Cereb. Blood Flow Metab. 34, 1258–1269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Juliano, R. L. & Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455, 152–162 (1976).

    Article  CAS  PubMed  Google Scholar 

  185. Nishii, Y. et al. CROP/Luc7A, a novel serine/arginine-rich nuclear protein, isolated from cisplatin-resistant cell line. FEBS Lett. 465, 153–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Hara, S., Miyake, H., Arakawa, S., Kamidono, S. & Hara, I. Over expression of inhibitor of caspase 3 activated deoxyribonuclease in human renal cell carcinoma cells enhances their resistance to cytotoxic chemotherapy in vivo. J. Urol. 166, 2491–2494 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Hueber, P. A., Iglesias, D., Chu, L. L., Eccles, M. & Goodyer, P. In vivo validation of PAX2 as a target for renal cancer therapy. Cancer Lett. 265, 148–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  188. Hueber, P. A., Waters, P., Clark, P., Eccles, M. & Goodyer, P. PAX2 inactivation enhances cisplatin-induced apoptosis in renal carcinoma cells. Kidney Int. 69, 1139–1145 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Ge, N. et al. Impact of O6-methylguanine-DNA methyltransferase expression on the drug resistance of clear cell renal cell carcinoma. Jpn J. Clin. Oncol. 45, 860–866 (2015).

    Article  PubMed  Google Scholar 

  190. Chen, J. et al. Low expression of phosphatase and tensin homolog in clearcell renal cell carcinoma contributes to chemoresistance through activating the Akt/HDM2 signaling pathway. Mol. Med. Rep. 12, 2622–2628 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lin, P. Y. et al. Attenuation of PTEN increases p21 stability and cytosolic localization in kidney cancer cells: a potential mechanism of apoptosis resistance. Mol. Cancer 6, 16 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Fan, Y., Borowsky, A. D. & Weiss, R. H. An antisense oligodeoxynucleotide to p21(Waf1/Cip1) causes apoptosis in human breast cancer cells. Mol. Cancer Ther. 2, 773–782 (2003).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Centre (NCN, Poland) OPUS grant no. UMO-2014/13/B/NZ1/04010.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to discussions of content and edited and reviewed the manuscript before submission. A.M.C., A.B., P.S. and M.F. researched data and wrote the article.

Corresponding author

Correspondence to Anna M. Czarnecka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks E. Jonasch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodziak, A., Sobczuk, P., Bartnik, E. et al. Drug resistance in papillary RCC: from putative mechanisms to clinical practicalities. Nat Rev Urol 16, 655–673 (2019). https://doi.org/10.1038/s41585-019-0233-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0233-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer