Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organ preservation in bladder cancer: an opportunity for truly personalized treatment

Abstract

Radical treatment of many solid tumours has moved from surgery to multimodal organ preservation strategies combining systemic and local treatments. Trimodality bladder-preserving treatment (TMT) comprises maximal transurethral resection of the bladder tumour followed by radiotherapy and concurrent radiosensitizing treatment, thereby sparing the urinary bladder. From the patient’s perspective, the choice of maintaining quality of life without a negative effect on the chances of cure and long-term survival is attractive. In muscle-invasive bladder cancer (MIBC), the evidence shows comparable clinical outcomes between patients undergoing radical cystectomy and TMT. Despite this evidence, many patients continue to be offered radical surgery as the standard-of-care treatment. Improvements in radiotherapy techniques with adaptive radiotherapy and advances in imaging translate to increases in the accuracy of treatment delivery and reductions in long-term toxicities. With the advent of novel biomarkers promising improved prediction of treatment response, stratification of patients for different treatments on the basis of tumour biology could soon be a reality. The future of oncological treatment lies in personalized medicine with the combination of technological and biological advances leading to truly bespoke management for patients with MIBC.

Key points

  • Retrospective analyses show that appropriately selected patients with muscle-invasive bladder cancer undergoing trimodality bladder-preserving treatment and radical cystectomy have comparable treatment outcomes.

  • Advancements in adaptive and image-guided radiotherapy techniques have improved the accuracy of treatment delivery.

  • Biomarkers have the potential to aid treatment decisions; prognostic biomarkers might help to inform the need for treatment intensification whereas predictive biomarkers might have a role in specific treatment selection.

  • A scientific approach to treatment stratification will enable truly bespoke management plans, empowering patients to make informed decisions, and could influence long-term outcomes and quality of life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adaptive radiotherapy with the POD strategy.
Fig. 2: Comparison of CBCT and MRI images of the pelvis.
Fig. 3: Putative algorithm for personalized treatment with validated biomarkers.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019).

    Article  PubMed  Google Scholar 

  2. Cancer Research UK. Bladder cancer statistics. Cancer Research UK https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer (2019).

  3. Mak, R. H. et al. Long-term outcomes in patients with muscle-invasive bladder cancer after selective bladder-preserving combined-modality therapy: a pooled analysis of Radiation Therapy Oncology Group protocols 8802, 8903, 9506, 9706, 9906, and 0233. J. Clin. Oncol. 32, 3801–3809 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bohle, A. Prevention and management of complications following radical cystectomy for bladder cancer. Int. Braz. J. Urol. 36, 642–643 (2010).

    Article  Google Scholar 

  5. Mason, S. J. et al. Health-related quality of life after treatment for bladder cancer in England. Br. J. Cancer 118, 1518–1528 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kulkarni, G. S. et al. Propensity score analysis of radical cystectomy versus bladder-sparing trimodal therapy in the setting of a multidisciplinary bladder cancer clinic. J. Clin. Oncol. 35, 2299–2305 (2017).

    Article  PubMed  Google Scholar 

  7. Booth, C. M. et al. Curative therapy for bladder cancer in routine clinical practice: a population-based outcomes study. Clin. Oncol. 26, 506–514 (2014).

    Article  CAS  Google Scholar 

  8. Lee, R. K. et al. Urinary diversion after radical cystectomy for bladder cancer: options, patient selection, and outcomes. BJU Int. 113, 11–23 (2014).

    Article  PubMed  Google Scholar 

  9. Premo, C., Apolo, A. B., Agarwal, P. K. & Citrin, D. E. Trimodality therapy in bladder cancer: who, what, and when? Urol. Clin. North Am. 42, 169–180 (2015).

    Google Scholar 

  10. Ploussard, G. et al. Critical analysis of bladder sparing with trimodal therapy in muscle-invasive bladder cancer: a systematic review. Eur. Urol. 66, 120–137 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Efstathiou, J. A. et al. Late pelvic toxicity after bladder-sparing therapy in patients with invasive bladder cancer: RTOG 89-03, 95-06, 97-06, 99-06. J. Clin. Oncol. 27, 4055–4061 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. James, N. D. et al. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer. N. Engl. J. Med. 366, 1477–1488 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Rödel, C. et al. Combined-modality treatment and selective organ preservation in invasive bladder cancer: long-term results. J. Clin. Oncol. 20, 3061–3071 (2002).

    Article  PubMed  Google Scholar 

  14. Hoskin, P. J., Rojas, A. M., Bentzen, S. M. & Saunders, M. I. Radiotherapy with concurrent carbogen and nicotinamide in bladder carcinoma. J. Clin. Oncol. 28, 4912–4918 (2010).

    Article  PubMed  Google Scholar 

  15. Sanchez, A. et al. Incidence, clinicopathological risk factors, management and outcomes of nonmuscle invasive recurrence after complete response to trimodality therapy for muscle invasive bladder cancer. J. Urol. 199, 407–415 (2018).

    Article  PubMed  Google Scholar 

  16. Huddart, R. A. et al. Clinical and patient-reported outcomes of SPARE - a randomised feasibility study of selective bladder preservation versus radical cystectomy. BJU Int. 120, 639–650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pichler, R. et al. Gender-related outcome in bladder cancer patients undergoing radical cystectomy. J. Cancer 8, 3567–3574 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Takahashi, A. et al. Radical cystectomy for invasive bladder cancer: results of multi-institutional pooled analysis. Jpn J. Clin. Oncol. 34, 14–19 (2004).

    Article  PubMed  Google Scholar 

  19. Hautmann, R. E., de Petriconi, R. C., Pfeiffer, C. & Volkmer, B. G. Radical cystectomy for urothelial carcinoma of the bladder without neoadjuvant or adjuvant therapy: long-term results in 1100 patients. Eur. Urol. 61, 1039–1047 (2012).

    Article  PubMed  Google Scholar 

  20. Arcangeli, G., Arcangeli, S. & Strigari, L. A systematic review and meta-analysis of clinical trials of bladder-sparing trimodality treatment for muscle-invasive bladder cancer (MIBC). Crit. Rev. Oncol. Hematol. 94, 105–115 (2015).

    Article  PubMed  Google Scholar 

  21. Arcangeli, G., Strigari, L. & Arcangeli, S. Radical cystectomy versus organ-sparing trimodality treatment in muscle-invasive bladder cancer: a systematic review of clinical trials. Crit. Rev. Oncol. Hematol. 95, 387–396 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Williams, S. B. et al. Comparing survival outcomes and costs associated with radical cystectomy and trimodal therapy for older adults with muscle-invasive bladder cancer. JAMA Surg. 153, 881–889 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mak, K. S. et al. Quality of life in long-term survivors of muscle-invasive bladder cancer. Int. J. Radiat. Oncol. 96, 1028–1036 (2016).

    Article  Google Scholar 

  24. National Institute for Health and Care Excellence. Bladder cancer: diagnosis and management. NICE https://www.nice.org.uk/guidance/ng2 (2015).

  25. Chang, S. S. et al. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO guideline. AUA https://www.astro.org/uploadedFiles/_MAIN_SITE/Patient_Care/Clinical_Practice_Statements/Content_Pieces/MuscleInvasiveBladderCancer.pdf (2017).

  26. Witjes, J. A. et al. Muscle-invasive and metastatic bladder cancer. EAU https://uroweb.org/guideline/bladder-cancer-muscle-invasive-and-metastatic (2019).

  27. Solanki, A. A. et al. Bladder-preserving therapy patterns of care: a survey of US radiation oncologists. Int. J. Radiat. Oncol. 99, 383–387 (2017).

    Article  Google Scholar 

  28. Jereczek-Fossa, B. A. et al. Urinary bladder preservation for muscle-invasive bladder cancer: a survey among radiation oncologists of Lombardy, Italy. Tumori 101, 174–178 (2015).

    Article  PubMed  Google Scholar 

  29. Yafi, F. A. et al. Surveillance guidelines based on recurrence patterns after radical cystectomy for bladder cancer: the Canadian Bladder Cancer Network experience. BJU Int. 110, 1317–1323 (2012).

    Article  PubMed  Google Scholar 

  30. Vale, C. L. Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data. Eur. Urol. 48, 202–206 (2005).

    Article  Google Scholar 

  31. Grossman, H. B. et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 349, 859–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. International Collaboration of Trialists. International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J. Clin. Oncol. 29, 2171–2177 (2011).

    Article  PubMed Central  Google Scholar 

  33. Shipley, W. U. et al. Phase III trial of neoadjuvant chemotherapy in patients with invasive bladder cancer treated with selective bladder preservation by combined radiation therapy and chemotherapy: initial results of Radiation Therapy Oncology Group 89–03. J. Clin. Oncol. 16, 3576–3583 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. von der Maase, H. et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 23, 4602–4608 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. Fairey, A. S. et al. Neoadjuvant chemotherapy with gemcitabine/cisplatin versus methotrexate/vinblastine/doxorubicin/cisplatin for muscle-invasive urothelial carcinoma of the bladder: a retrospective analysis from the University of Southern California. Urol. Oncol. 31, 1737–1743 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. van de Putte, E. E. F. et al. Neoadjuvant induction dose-dense MVAC for muscle invasive bladder cancer: efficacy and safety compared with classic MVAC and gemcitabine/cisplatin. World J. Urol. 34, 157–162 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. Zargar, H. et al. Neoadjuvant dose dense MVAC versus gemcitabine and cisplatin in patients with cT3-4aN0M0 bladder cancer treated with radical cystectomy. J. Urol. 199, 1452–1458 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Thompson, C. et al. Tolerability of concurrent chemoradiation therapy with gemcitabine (GemX), with and without prior neoadjuvant chemotherapy, in muscle invasive bladder cancer. Int. J. Radiat. Oncol. 97, 732–739 (2017).

    Article  Google Scholar 

  39. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Teo, M. Y. & Rosenberg, J. E. Perioperative immunotherapy in muscle-invasive bladder cancer and upper tract urothelial carcinoma. Urol. Clin. North Am. 45, 287–295 (2018).

    Article  PubMed  Google Scholar 

  41. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 36, 3353–3360 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Cognetti, F. et al. Adjuvant chemotherapy with cisplatin and gemcitabine versus chemotherapy at relapse in patients with muscle-invasive bladder cancer submitted to radical cystectomy: an Italian, multicenter, randomized phase III trial. Ann. Oncol. 23, 695–700 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Paz-Ares, L. G. et al. Randomized phase III trial comparing adjuvant paclitaxel/gemcitabine/cisplatin (PGC) to observation in patients with resected invasive bladder cancer: results of the Spanish Oncology Genitourinary Group (SOGUG) 99/01 study [abstract]. J. Clin. Oncol. 28 (Suppl. 18), LBA4518 (2016).

    Google Scholar 

  44. Sternberg, C. N. et al. Immediate versus deferred chemotherapy after radical cystectomy in patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder (EORTC 30994): an intergroup, open-label, randomised phase 3 trial. Lancet. Oncol. 16, 76–86 (2015).

    Article  PubMed  Google Scholar 

  45. Vale, C. L. Adjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis of individual patient data. Eur. Urol. 48, 189–201 (2005).

    Article  Google Scholar 

  46. Leow, J. J. et al. Adjuvant chemotherapy for invasive bladder cancer: A 2013 updated systematic review and meta-analysis of randomized trials. Eur. Urol. 66, 42–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Lawrence, T. S., Blackstock, A. W. & McGinn, C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin. Radiat. Oncol. 13, 13–21 (2003).

    Article  PubMed  Google Scholar 

  48. Kaufman, D. S. et al. The initial results in muscle-invading bladder cancer of RTOG 95-06: phase I/II trial of transurethral surgery plus radiation therapy with concurrent cisplatin and 5-fluorouracil followed by selective bladder preservation or cystectomy depending on the initial response. Oncologist 5, 471–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Hagan, M. P. et al. RTOG 9706: initial report of a phase I/II trial of bladder-conservation employing TURB, accelerated irradiation sensitized with cisplatin followed by adjuvant MCV. chemotherapy. Int. J. Radiat. Oncol. 51, 14 (2001).

    Article  Google Scholar 

  50. Tester, W. et al. Neoadjuvant combined modality program with selective organ preservation for invasive bladder cancer: results of Radiation Therapy Oncology Group phase II trial 8802. J. Clin. Oncol. 14, 119–126 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Kaufman, D. S. et al. Phase I-II RTOG study (99–06) of patients with muscle-invasive bladder cancer undergoing transurethral surgery, paclitaxel, cisplatin, and twice-daily radiotherapy followed by selective bladder preservation or radical cystectomy and adjuvant chemotherapy. Urology 73, 833–837 (2009).

    Article  PubMed  Google Scholar 

  52. Coppin, C. M. et al. Improved local control of invasive bladder cancer by concurrent cisplatin and preoperative or definitive radiation. The National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 14, 2901–2907 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Miller, R. P., Tadagavadi, R. K., Ramesh, G. & Reeves, W. B. Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2, 2490–2518 (2010).

    Google Scholar 

  54. Choudhury, A. et al. Phase II study of conformal hypofractionated radiotherapy with concurrent gemcitabine in muscle-invasive bladder cancer. J. Clin. Oncol. 29, 733–738 (2011).

    Article  PubMed  Google Scholar 

  55. Caffo, O. et al. Concurrent gemcitabine and radiotherapy for the treatment of muscle-invasive bladder cancer: a pooled individual data analysis of eight phase I–II trials. Radiother. Oncol. 121, 193–198 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Coen, J. J. et al. Bladder preservation with twice-a-day radiation plus fluorouracil/cisplatin or once daily radiation plus gemcitabine for muscle-invasive bladder cancer: NRG/RTOG 0712-A randomized phase II trial. J. Clin. Oncol. 37, 44–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Giacalone, N. J. et al. Long-term outcomes after bladder-preserving tri-modality therapy for patients with muscle-invasive bladder cancer: an updated analysis of the Massachusetts General Hospital experience. Eur. Urol. 71, 952–960 (2017).

    Article  PubMed  Google Scholar 

  58. Nishioka, K. et al. Analysis of inter- and intra fractional partial bladder wall movement using implanted fiducial markers. Radiat. Oncol. 12, 44 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meijer, G. J., Rasch, C., Remeijer, P. & Lebesque, J. V. Three-dimensional analysis of delineation errors, setup errors, and organ motion during radiotherapy of bladder cancer. Int. J. Radiat. Oncol. 55, 1277–1287 (2003).

    Article  Google Scholar 

  60. Dees-Ribbers, H. M. et al. Inter- and intra-fractional bladder motion during radiotherapy for bladder cancer: a comparison of full and empty bladders. Radiother. Oncol. 113, 254–259 (2014).

    Article  PubMed  Google Scholar 

  61. Foroudi, F., Pham, D., Bressel, M., Gill, S. & Kron, T. Intrafraction bladder motion in radiation therapy estimated from pretreatment and posttreatment volumetric imaging. Int. J. Radiat. Oncol. 86, 77–82 (2013).

    Article  Google Scholar 

  62. McBain, C. A. et al. Assessment of bladder motion for clinical radiotherapy practice using cine–magnetic resonance imaging. Int. J. Radiat. Oncol. 75, 664–671 (2009).

    Article  Google Scholar 

  63. Fokdal, L. et al. Impact of changes in bladder and rectal filling volume on organ motion and dose distribution of the bladder in radiotherapy for urinary bladder cancer. Int. J. Radiat. Oncol. 59, 436–444 (2004).

    Article  Google Scholar 

  64. Murthy, V. et al. ‘Plan of the day’ adaptive radiotherapy for bladder cancer using helical tomotherapy. Radiother. Oncol. 99, 55–60 (2011).

    Article  PubMed  Google Scholar 

  65. Hafeez, S. et al. Clinical outcomes of image guided adaptive hypofractionated weekly radiation therapy for bladder cancer in patients unsuitable for radical treatment. Int. J. Radiat. Oncol. 98, 115–122 (2017).

    Article  Google Scholar 

  66. Vestergaard, A. et al. Normal tissue sparing in a phase II trial on daily adaptive plan selection in radiotherapy for urinary bladder cancer. Acta Oncol. 53, 997–1004 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Kibrom, A. Z. & Knight, K. A. Adaptive radiation therapy for bladder cancer: a review of adaptive techniques used in clinical practice. J. Med. Radiat. Sci. 62, 277–285 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Webster, G. J. et al. Comparison of adaptive radiotherapy techniques for the treatment of bladder cancer. Br. J. Radiol. 86, 20120433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02447549 (2017).

  70. Laval-Jeantet, M., Vadrot, D., Arrive, L. & Buy, J. N. MRI of the pelvis in comparison with CT scan. Arch. Int. Physiol. Biochim. 93, 61–66 (1985).

    CAS  PubMed  Google Scholar 

  71. Kerkmeijer, L. G. W. et al. The MRI-linear accelerator consortium: evidence-based clinical introduction of an innovation in radiation oncology connecting researchers, methodology, data collection, quality assurance, and technical development. Front. Oncol. 6, 215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shi, Z. et al. Characterization of texture features of bladder carcinoma and the bladder wall on MRI: initial experience. Acad. Radiol. 20, 930–938 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vestergaard, A. et al. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother. Oncol. 118, 154–159 (2016).

    Article  PubMed  Google Scholar 

  74. McPartlin, A. J. et al. MRI-guided prostate adaptive radiotherapy – a systematic review. Radiother. Oncol. 119, 371–380 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Padgett, K. R., Simpson, G. N., Llorente, R., Samuels, M. A. & Dogan, N. Feasibility of adaptive MR-guided Stereotactic Body Radiotherapy (SBRT) of lung tumors. Cureus 10, e2423 (2018).

    PubMed  PubMed Central  Google Scholar 

  76. Chen, A. M. et al. Magnetic resonance imaging guided reirradiation of recurrent and second primary head and neck cancer. Adv. Radiat. Oncol. 2, 167–175 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hafeez, S. & Huddart, R. Advances in bladder cancer imaging. BMC Med. 11, 104 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Kobayashi, S. et al. Diagnostic performance of diffusion-weighted magnetic resonance imaging in bladder cancer: potential utility of apparent diffusion coefficient values as a biomarker to predict clinical aggressiveness. Eur. Radiol. 21, 2178–2186 (2011).

    Article  PubMed  Google Scholar 

  79. Yoshida, S. et al. Role of diffusion-weighted magnetic resonance imaging in predicting sensitivity to chemoradiotherapy in muscle-invasive bladder cancer. Int. J. Radiat. Oncol. Biol. Phys. 83, e21–e27 (2012).

    Article  PubMed  Google Scholar 

  80. Lin, W.-C. & Chen, J.-H. Pitfalls and limitations of diffusion-weighted magnetic resonance imaging in the diagnosis of urinary bladder cancer. Transl Oncol. 8, 217–230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Taylor, N. J. et al. BOLD MRI of human tumor oxygenation during carbogen breathing. J. Magn. Reson. Imaging 14, 156–163 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Netto, G. J. Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet? Nat. Rev. Urol. 9, 41–51 (2012).

    Article  CAS  Google Scholar 

  83. Wu, X.-R. Urothelial tumorigenesis: a tale of divergent pathways. Nat. Rev. Cancer 5, 713–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Solomon, J. P. & Hansel, D. E. The emerging molecular landscape of urothelial carcinoma. Surg. Pathol. Clin. 9, 391–404 (2016).

    Article  PubMed  Google Scholar 

  85. Mitra, A. P., Birkhahn, M. & Cote, R. J. p53 and retinoblastoma pathways in bladder cancer. World J. Urol. 25, 563–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Cordon-Cardo, C. Cell cycle regulators as prognostic factors for bladder cancer. Eur. Urol. 33 (Suppl. 4), 11–12 (1998).

    Article  PubMed  Google Scholar 

  88. Masters, J. R. W. et al. Can p53 staining be used to identify patients with aggressive superficial bladder cancer? J. Pathol. 200, 74–81 (2003).

    Article  PubMed  Google Scholar 

  89. George, B. et al. p53 gene and protein status: the role of p53 alterations in predicting outcome in patients with bladder cancer. J. Clin. Oncol. 25, 5352–5358 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Chatterjee, S. J. et al. Combined effects of p53, p21, and pRb expression in the progression of bladder transitional cell carcinoma. J. Clin. Oncol. 22, 1007–1013 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Mitra, A. P., Datar, R. H. & Cote, R. J. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J. Clin. Oncol. 24, 5552–5564 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Sanchez-Carbayo, M., Socci, N. D., Lozano, J., Saint, F. & Cordon-Cardo, C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J. Clin. Oncol. 24, 778–789 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, L. et al. A gene signature for selecting benefit from hypoxia modification of radiotherapy for high-risk bladder cancer patients. Clin. Cancer Res. 23, 4761–4768 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Smith, S. C. et al. A 20-gene model for molecular nodal staging of bladder cancer: development and prospective assessment. Lancet Oncol. 12, 137–143 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. International Bladder Cancer Nomogram Consortium, Bochner, B. H., Kattan, M. W. & Vora, K. C. Postoperative nomogram predicting risk of recurrence after radical cystectomy for bladder cancer. J. Clin. Oncol. 24, 3967–3972 (2006).

    Article  Google Scholar 

  96. Fridman, W. H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Joseph, N. et al. Pre-treatment lymphocytopaenia is an adverse prognostic biomarker in muscle-invasive and advanced bladder cancer. Ann. Oncol. 27, 294–299 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Sharpe, A. H., Wherry, E. J., Ahmed, R. & Freeman, G. J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Inman, B. A. et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata. Cancer 109, 1499–1505 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Boorjian, S. A. et al. T cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin. Cancer Res. 14, 4800–4808 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Nakanishi, J. et al. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol. Immunother. 56, 1173–1182 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Powles, T. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 391, 748–757 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Siefker-Radtke, A. & Curti, B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat. Rev. Urol. 15, 112–124 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Lemmon, M. A. & Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bolenz, C. et al. Human epidermal growth factor receptor 2 expression status provides independent prognostic information in patients with urothelial carcinoma of the urinary bladder. BJU Int. 106, 1216–1222 (2010).

    Article  PubMed  Google Scholar 

  106. Jimenez, R. E. et al. Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clin. Cancer Res. 7, 2440–2447 (2001).

    CAS  PubMed  Google Scholar 

  107. Lamarche, B. J., Orazio, N. I. & Weitzman, M. D. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett. 584, 3682–3695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Choudhury, A. et al. MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res. 70, 7017–7026 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Laurberg, J. R. et al. Expression of TIP60 (tat-interactive protein) and MRE11 (meiotic recombination 11 homolog) predict treatment-specific outcome of localised invasive bladder cancer. BJU Int. 110, E1228–E1236 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Walker, A. K. et al. MRE11 as a predictive biomarker of outcome following radiotherapy in bladder cancer. Int. J. Radiat. Oncol. https://doi.org/10.1016/j.ijrobp.2019.03.015 (2019).

    Article  Google Scholar 

  111. Chakravarti, A. et al. Expression of the epidermal growth factor receptor and Her-2 are predictors of favorable outcome and reduced complete response rates, respectively, in patients with muscle-invading bladder cancers treated by concurrent radiation and cisplatin-based chemotherapy: a report from the Radiation Therapy Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 62, 309–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Michaelson, M. D. et al. A phase 1/2 trial of a combination of paclitaxel and trastuzumab with daily irradiation or paclitaxel alone with daily irradiation after transurethral surgery for noncystectomy candidates with muscle-invasive bladder cancer (Trial NRG Oncology RTOG 0524). Int. J. Radiat. Oncol. Biol. Phys. 97, 995–1001 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Eustace, A. et al. Necrosis predicts benefit from hypoxia-modifying therapy in patients with high risk bladder cancer enrolled in a phase III randomised trial. Radiother. Oncol. 108, 40–47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hunter, B. A. et al. Expression of hypoxia-inducible factor-1α predicts benefit from hypoxia modification in invasive bladder cancer. Br. J. Cancer 111, 437–443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Haque, W., Verma, V., Butler, E. B. & Teh, B. S. Radical cystectomy versus chemoradiation for muscle-invasive bladder cancer: impact of treatment facility and sociodemographics. Anticancer Res. 37, 5603–5608 (2017).

    PubMed  Google Scholar 

  116. Lawrence, T. S., Eisbruch, A., Mcginn, C. J., Fields, M. T. & Shewach, D. S. Radiosensitization by gemcitabine. Oncology 13 (Suppl. 5), 55–60 (1999).

    CAS  PubMed  Google Scholar 

  117. Marcu, L., Van Doorn, T. & Olver, I. Cisplatin and radiotherapy in the treatment of locally advanced head and neck cancer – a review of their cooperation. Acta Oncol. 42, 315–325 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Wilson, G. D. & Bentzen, S. M. Biologic basis for combining drugs with radiation. Semin. Radiat. Oncol. 16, 2–9 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

A.C. and P.J.H. are supported by the NIHR Manchester Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

Y.P.S. researched data for the article. All authors made substantial contributions to discussion of the article contents, wrote the manuscript and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Yee Pei Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., McWilliam, A., Hoskin, P. et al. Organ preservation in bladder cancer: an opportunity for truly personalized treatment. Nat Rev Urol 16, 511–522 (2019). https://doi.org/10.1038/s41585-019-0199-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0199-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer