Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing the mesenchymal stem cell secretome for regenerative urology

Abstract

The extensive arsenal of bioactive molecules secreted by mesenchymal stem cells (MSCs), known as the secretome, has demonstrated considerable therapeutic benefit in regenerative medicine. Investigation into the therapeutic potential of the secretome has enabled researchers to replicate the anti-inflammatory, pro-angiogenic and trophic effects of stem cells without the need for the cells themselves. Furthermore, treatment with the MSC secretome could circumvent hurdles associated with cellular therapy, including oncogenic transformation, immunoreactivity and cost. Thus, a clear rationale exists for investigating the therapeutic potential of the MSC secretome in regenerative urology. Indeed, preclinical studies have demonstrated the therapeutic benefits of the MSC secretome in models of stress urinary incontinence, renal disease, bladder dysfunction and erectile dysfunction. However, the specific mechanisms underpinning therapeutic activity are unclear and require further research before clinical translation. Improvements in current proteomic methods used to characterize the secretome will be necessary to provide further insight into stem cells and their secretome in regenerative urology.

Key points

  • Stem cells possess anti-inflammatory, pro-angiogenic and anti-apoptotic properties that might have therapeutic benefit in urological diseases for which conventional therapies are lacking.

  • The acellular secretome of mesenchymal stem cells (MSCs) exerts similar therapeutic benefits to that of traditional cell-based therapy.

  • The MSC secretome avoids problems associated with traditional stem cell therapy, including oncogenic transformation, immunoreactivity and cost.

  • The MSC secretome exerts therapeutic benefits in preclinical models of stress urinary incontinence, acute and chronic renal disease, bladder dysfunction and erectile dysfunction.

  • The specific mechanisms through which the MSC secretome exerts its therapeutic effects require further investigation, but they probably involve multiple MSC-derived bioactive cytokines that function synergistically.

  • Proteomic strategies have been used to characterize the active components of the MSC secretome, which probably include MSC-derived extracellular vesicles in addition to bioactive cytokines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MSC mechanisms of action.
Fig. 2: The MSC secretome in regenerative urology.
Fig. 3: Characterizing the MSC secretome.

Similar content being viewed by others

References

  1. Wu, J. & Belmonte, J. C. I. Stem cells: a renaissance in human biology research. Cell 165, 1572–1585 (2016).

    CAS  PubMed  Google Scholar 

  2. Dissaranan, C. et al. Rat mesenchymal stem cell secretome promotes elastogenesis and facilitates recovery from simulated childbirth injury. Cell Transplant. 23, 1395–1406 (2014).

    PubMed  Google Scholar 

  3. Deng, K. et al. Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am. J. Physiol. Renal Physiol. 308, F92–F100 (2015).

    CAS  PubMed  Google Scholar 

  4. van Koppen, A. et al. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. PLOS ONE 7, e38746 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Da Silva, A. F., Silva, K., Reis, L. A., Teixeira, V. P. & Schor, N. Bone marrow-derived mesenchymal stem cells and their conditioned medium attenuate fibrosis in an irreversible model of unilateral ureteral obstruction. Cell Transplant. 24, 2657–2666 (2015).

    PubMed  Google Scholar 

  6. Damaser, M. S. & Sievert, K.-D. Reviving regenerative urology. Nat. Rev. Urol. 108, 1046 (2018).

    Google Scholar 

  7. Thomson, J. A. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  8. Ilic, D. & Ogilvie, C. Concise review: Human embryonic stem cells—what have we done? What are we doing? Where are we going? Stem Cells 35, 17–25 (2017).

    CAS  PubMed  Google Scholar 

  9. Odorico, J. S., Kaufman, D. S. & Thomson, J. A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204 (2001).

    CAS  PubMed  Google Scholar 

  10. Cananzi, M., Atala, A. & De Coppi, P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod. Biomed. Online 18 (Suppl. 1), 17–27 (2009).

    PubMed  Google Scholar 

  11. Hipp, J. & Atala, A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 4, 3–11 (2008).

    PubMed  Google Scholar 

  12. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Google Scholar 

  13. Wezel, F. & Southgate, J. Reprogramming stromal cells from the urinary tract and prostate: a trip to pluripotency and back? Eur. Urol. 64, 762–764 (2013).

    PubMed  Google Scholar 

  14. Wagers, A. J. & Weissman, I. L. Plasticity of adult stem cells. Cell 116, 639–648 (2004).

    CAS  PubMed  Google Scholar 

  15. Gunsilius, E., Gastl, G. & Petzer, A. L. Hematopoietic stem cells. Biomed. Pharmacother. 55, 186–194 (2001).

    CAS  PubMed  Google Scholar 

  16. Copelan, E. A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 354, 1813–1826 (2009).

    Google Scholar 

  17. Bianco, P. et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sadeghi, Z. et al. Mesenchymal stem cell therapy in a rat model of birth-trauma injury: functional improvements and biodistribution. Int. Urogynecol. J. 27, 291–300 (2016).

    PubMed  Google Scholar 

  19. Song, M. et al. The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactive bladder. Stem Cells Dev. 23, 654–663 (2013).

    PubMed  Google Scholar 

  20. Shabbir, A., Zisa, D., Suzuki, G. & Lee, T. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: a noninvasive therapeutic regimen. Am. J. Physiol. Heart Circ. Physiol. 296, H1888–H1897 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bruno, S. et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20, 1053–1067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gatti, S. et al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant. 26, 1474–1483 (2011).

    CAS  PubMed  Google Scholar 

  23. Zhou, Y. et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther. 4, 34 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, S., Ju, G.-Q., Du, T., Zhu, Y.-J. & Liu, G.-H. Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLOS ONE 8, e61366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F. & Keiliss-Borok, I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17, 331–340 (1974).

    CAS  PubMed  Google Scholar 

  26. Ding, D.-C., Shyu, W.-C. & Lin, S.-Z. Mesenchymal stem cells. Cell Transplant. 20, 5–14 (2011).

    PubMed  Google Scholar 

  27. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9, 641–650 (1991).

    CAS  PubMed  Google Scholar 

  28. Jackson, W. M., Nesti, L. J. & Tuan, R. S. Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells. Expert Opin. Biol. Ther. 10, 505–517 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Caplan, A. I. All MSCs are pericytes? Cell Stem Cell 3, 229–230 (2008).

    CAS  PubMed  Google Scholar 

  30. Lv, F.-J., Tuan, R. S., Cheung, K. M. C. & Leung, V. Y. L. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32, 1408–1419 (2014).

    CAS  PubMed  Google Scholar 

  31. Covas, D. T. et al. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp. Hematol. 36, 642–654 (2008).

    CAS  PubMed  Google Scholar 

  32. Carr, L. K. et al. 1-Year follow-up of autologous muscle-derived stem cell injection pilot study to treat stress urinary incontinence. Int. Urogynecol. J. 19, 881–883 (2008).

    CAS  Google Scholar 

  33. Stangel-Wojcikiewicz, K., Piwowar, M., Jach, R., Majka, M. & Basta, A. Quality of life assessment in female patients 2 and 4 years after muscle-derived cell transplants for stress urinary incontinence treatment. Ginekol. Pol. 87, 183–189 (2016).

    PubMed  Google Scholar 

  34. Sèbe, P. et al. Intrasphincteric injections of autologous muscular cells in women with refractory stress urinary incontinence: a prospective study. Int. Urogynecol. J. 22, 183–189 (2011).

    PubMed  Google Scholar 

  35. Usas, A. & Huard, J. Muscle-derived stem cells for tissue engineering and regenerative therapy. Biomaterials 28, 5401–5406 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, T. et al. Generation of induced pluripotent stem cells from urine. J. Am. Soc. Nephrol. 22, 1221–1228 (2011).

    PubMed  PubMed Central  Google Scholar 

  37. Karp, J. M. & Leng Teo, G. S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4, 206–216 (2009).

    CAS  PubMed  Google Scholar 

  38. Zhuang, Y., Chen, X., Xu, M., Zhang, L.-Y. & Xiang, F. Chemokine stromal cell-derived factor 1/CXCL12 increases homing of mesenchymal stem cells to injured myocardium and neovascularization following myocardial infarction. Chin. Med. J. 122, 183–187 (2009).

    PubMed  Google Scholar 

  39. Zhang, D. et al. Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium. J. Mol. Cell. Cardiol. 44, 281–292 (2008).

    CAS  PubMed  Google Scholar 

  40. Lin, G. et al. Treatment of stress urinary incontinence with adipose tissue-derived stem cells. Cytotherapy 12, 88–95 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Honczarenko, M. et al. Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24, 1030–1041 (2006).

    CAS  PubMed  Google Scholar 

  42. Baek, S. J., Kang, S. K. & Ra, J. C. In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors. Exp. Mol. Med. 43, 596–603 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sohni, A. & Verfaillie, C. M. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 130, 63 (2013).

    Google Scholar 

  44. Krabbe, C., Zimmer, J. & Meyer, M. Neural transdifferentiation of mesenchymal stem cells – a critical review. APMIS 113, 831–844 (2005).

    PubMed  Google Scholar 

  45. Chermansky, C. J. et al. Intraurethral muscle-derived cell injections increase leak point pressure in a rat model of intrinsic sphincter deficiency. Urology 63, 780–785 (2004).

    PubMed  Google Scholar 

  46. Huard, J. et al. Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction. Gene Ther. 9, 1617 (2002).

    CAS  PubMed  Google Scholar 

  47. Iso, Y. et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem. Biophys. Res. Commun. 354, 700–706 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Y. et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59, 514–523 (2002).

    CAS  PubMed  Google Scholar 

  49. Lin, C.-S., Xin, Z.-C., Dai, J. & Lue, T. F. Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histol. Histopathol. 28, 1109–1116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jensen, E. C. Use of fluorescent probes: their effect on cell biology and limitations. Anat. Rec. 295, 2031–2036 (2012).

    CAS  Google Scholar 

  51. Ranganath, S. H., Levy, O., Inamdar, M. S. & Karp, J. M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10, 244–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Breitbach, M. et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110, 1362–1369 (2007).

    CAS  PubMed  Google Scholar 

  53. Kunter, U. et al. Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J. Am. Soc. Nephrol. 18, 1754–1764 (2007).

    CAS  PubMed  Google Scholar 

  54. Foudah, D. et al. Monitoring the genomic stability of in vitro cultured rat bone-marrow-derived mesenchymal stem cells. Chromosome Res. 17, 1025–1039 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeong, J.-O. et al. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ. Res. 108, 1340–1347 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Annane, D., Bellissant, E. & Cavaillon, J.-M. Septic shock. Lancet 365, 63–78 (2005).

    CAS  PubMed  Google Scholar 

  57. Choi, H., Lee, R. H., Bazhanov, N., Oh, J. Y. & Prockop, D. J. Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood 118, 330–338 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Maggini, J. et al. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLOS ONE 5, e9252 (2010).

    PubMed  PubMed Central  Google Scholar 

  59. Spaggiari, G. M. et al. Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111, 1327–1333 (2008).

    CAS  PubMed  Google Scholar 

  60. Chiesa, S. et al. Mesenchymal stem cells impair in vivo T cell priming by dendritic cells. Proc. Natl Acad. Sci. USA 108, 17384–17389 (2011).

    CAS  PubMed  Google Scholar 

  61. Bai, L. et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57, 1192–1203 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. Duffy, M. M. et al. Mesenchymal stem cell inhibition of T-helper 17 cell- differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor. Eur. J. Immunol. 41, 2840–2851 (2011).

    CAS  PubMed  Google Scholar 

  63. Luz-Crawford, P. et al. Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res. Ther. 4, 65 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. English, K. et al. Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25Highforkhead box P3+ regulatory T cells. Clin. Exp. Immunol. 156, 149–160 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ren, G. et al. Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med. 1, 51–58 (2011).

    PubMed  PubMed Central  Google Scholar 

  66. Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R. & Fibbe, W. E. Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J. Immunol. 177, 2080–2087 (2006).

    CAS  PubMed  Google Scholar 

  67. Jiang, Y.-H., Peng, C.-H., Liu, H.-T. & Kuo, H.-C. Increased pro-inflammatory cytokines, C-reactive protein and nerve growth factor expressions in serum of patients with interstitial cystitis/bladder pain syndrome. PLOS ONE 8, e76779 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Khadra, A., Fletcher, P., Luzzi, G., Shattock, R. & Hay, P. Interleukin-8 levels in seminal plasma in chronic prostatitis/chronic pelvic pain syndrome and nonspecific urethritis. BJU Int. 97, 1043–1046 (2006).

    CAS  PubMed  Google Scholar 

  69. Gurtner, G. C., Callaghan, M. J. & Longaker, M. T. Progress and potential for regenerative medicine. Annu Rev. Med. 58, 299–312 (2007).

    CAS  PubMed  Google Scholar 

  70. Colwell, A. S., Longaker, M. T. & Lorenz, H. P. Fetal wound healing. Front. Biosci. 8, S1240–S1248 (2003).

    CAS  PubMed  Google Scholar 

  71. Thorgeirsson, S. S. Hepatic stem cells in liver regeneration. FASEB J. 10, 1249–1256 (1996).

    CAS  PubMed  Google Scholar 

  72. Levy, V., Lindon, C., Harfe, B. D. & Morgan, B. A. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev. Cell 9, 855–861 (2005).

    CAS  PubMed  Google Scholar 

  73. Anthony, D. F. & Shiels, P. G. Exploiting paracrine mechanisms of tissue regeneration to repair damaged organs. Transplant. Res. 2, 10 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, L., Tredget, E. E., Wu, P. Y. & Wu, Y. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLOS ONE 3, e1886 (2008).

    PubMed  PubMed Central  Google Scholar 

  75. Meng, X.-M., Nikolic-Paterson, D. J. & Lan, H. Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 10, 493–503 (2014).

    CAS  PubMed  Google Scholar 

  76. Alfarano, C. et al. Intraparenchymal injection of bone marrow mesenchymal stem cells reduces kidney fibrosis after ischemia-reperfusion in cyclosporine-immunosuppressed rats. Cell Transplant. 21, 2009–2019 (2012).

    CAS  PubMed  Google Scholar 

  77. Semedo, P. et al. Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. Stem Cells 27, 3063–3073 (2009).

    CAS  PubMed  Google Scholar 

  78. van Buul, G. M. et al. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthritis Cartilage 20, 1186–1196 (2018).

    Google Scholar 

  79. Roddy, G. W. et al. Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells 29, 1572–1579 (2011).

    CAS  PubMed  Google Scholar 

  80. Yagi, H. et al. Reactive bone marrow stromal cells attenuate systemic inflammation via sTNFR1. Mol. Ther. 18, 1857–1864 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989).

    CAS  PubMed  Google Scholar 

  82. Kinnaird, T. et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543–1549 (2004).

    CAS  PubMed  Google Scholar 

  83. Kinnaird, T. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678–685 (2004).

    CAS  PubMed  Google Scholar 

  84. Togel, F. et al. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am. J. Physiol. Renal Physiol. 292, F1626–F1635 (2007).

    CAS  PubMed  Google Scholar 

  85. Zhang, T. et al. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res. Ther. 4, 70 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Takahashi, M. et al. Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am. J. Physiol. Heart Circ. Physiol. 291, H886–H893 (2006).

    CAS  PubMed  Google Scholar 

  87. Li, B. et al. Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharide-induced apoptosis partially by inhibiting the Wnt/β-catenin pathway. Cell Biol. Int. 39, 192–200 (2015).

    CAS  PubMed  Google Scholar 

  88. Fall, P. A. et al. Apoptosis and effects of intracavernous bone marrow cell injection in a rat model of postprostatectomy erectile dysfunction. Eur. Urol. 56, 716–726 (2009).

    PubMed  Google Scholar 

  89. Bonegio, R. & Lieberthal, W. Role of apoptosis in the pathogenesis of acute renal failure. Curr. Opin. Nephrol. Hypertension 11, 301–308 (2002).

    Google Scholar 

  90. Imberti, B. et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J. Am. Soc. Nephrol. 18, 2921–2928 (2007).

    CAS  PubMed  Google Scholar 

  91. Morigi, M. et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells 26, 2075–2082 (2008).

    CAS  PubMed  Google Scholar 

  92. Chong, E. C., Khan, A. A. & Anger, J. T. The financial burden of stress urinary incontinence among women in the United States. Curr. Urol. Rep. 12, 358–362 (2011).

    PubMed  Google Scholar 

  93. Brubaker, L. et al. Adverse events over two years after retropubic or transobturator midurethral sling surgery: findings from the Trial of Midurethral Slings (TOMUS) study. Am. J. Obstet. Gynecol. 205, 498 (2011).

    PubMed  PubMed Central  Google Scholar 

  94. Smith, A. R., Hosker, G. L. & Warrell, D. W. The role of pudendal nerve damage in the aetiology of genuine stress incontinence in women. Br. J. Obstet. Gynaecol. 96, 29–32 (1989).

    CAS  PubMed  Google Scholar 

  95. Saran, R. et al. US Renal Data System 2016 Annual Data Report: epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 69, A7–A8 (2018).

    Google Scholar 

  96. Collins, A. J., Foley, R. N., Gilbertson, D. T. & Chen, S.-C. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int. Suppl. 5, 2–7 (2015).

    Google Scholar 

  97. Gnecchi, M., Zhang, Z., Ni, A. & Dzau, V. J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 103, 1204–1219 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Tögel, F. et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am. J. Physiol. Renal Physiol. 289, F31–F42 (2005).

    PubMed  Google Scholar 

  99. Bi, B., Schmitt, R., Israilova, M., Nishio, H. & Cantley, L. G. Stromal cells protect against acute tubular injury via an endocrine effect. J. Am. Soc. Nephrol. 18, 2486–2496 (2007).

    PubMed  Google Scholar 

  100. Venkatachalam, M. A. et al. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Renal Physiol. 298, F1078–F1094 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Tögel, F. E. & Westenfelder, C. Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am. J. Kidney Dis. 60, 1012–1022 (2012).

    PubMed  Google Scholar 

  102. Makhlough, A. et al. Bone marrow-mesenchymal stromal cell infusion in patients with chronic kidney disease: a safety study with 18 months of follow-up. Cytotherapy 20, 660–669 (2018).

    PubMed  Google Scholar 

  103. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02195323 (2014).

  104. El-Ansary, M., Saadi, G. & Abd El-Hamid, S. M. Mesenchymal stem cells are a rescue approach for recovery of deteriorating kidney function. Nephrology 17, 650–657 (2012).

    PubMed  Google Scholar 

  105. Zhang, H. et al. Adipose tissue-derived stem cells ameliorate diabetic bladder dysfunction in a type II diabetic rat model. Stem Cells Dev. 21, 1391–1400 (2011).

    PubMed  PubMed Central  Google Scholar 

  106. Golbidi, S. & Laher, I. Bladder dysfunction in diabetes mellitus. Front. Pharmacol. 1, 136 (2010).

    PubMed  PubMed Central  Google Scholar 

  107. Burnett, A. L. et al. Erectile dysfunction: AUA guideline. J. Urol. 200, 633–641 (2018).

    PubMed  Google Scholar 

  108. Trost, L. W., McCaslin, R., Linder, B. & Hellstrom, W. J. Long-term outcomes of penile prostheses for the treatment of erectile dysfunction. Expert Rev. Med. Devices 10, 353–366 (2014).

    Google Scholar 

  109. Albersen, M. et al. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury. J. Sex. Med. 7, 3331–3340 (2010).

    PubMed  Google Scholar 

  110. Sun, C. et al. Neurotrophic effect of bone marrow mesenchymal stem cells for erectile dysfunction in diabetic rats. Int. J. Androl. 35, 601–607 (2012).

    CAS  PubMed  Google Scholar 

  111. Wagih, A. et al. Stem cells for neuro-regeneration: state of the art. Am. J. Biosci. Bioeng. 3, 56–70 (2015).

    Google Scholar 

  112. Hu, S.-L. et al. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Crit. Care Med. 38, 2181–2189 (2010).

    PubMed  Google Scholar 

  113. Drago, D. et al. The stem cell secretome and its role in brain repair. Biochimie 95, 2271–2285 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Levy, J. A., Marchand, M., Iorio, L., Cassini, W. & Zahalsky, M. P. Determining the feasibility of managing erectile dysfunction in humans with placental-derived stem cells. J. Am. Osteopath. Assoc. 116, e1–e5 (2016).

    PubMed  Google Scholar 

  115. Bahk, J. Y., Jung, J. H., Han, H., Min, S. K. & Lee, Y. S. Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: preliminary report of 7 cases. Exp. Clin. Transplant. 8, 150–160 (2010).

    PubMed  Google Scholar 

  116. Haahr, M. K. et al. Safety and potential effect of a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: an open-label phase I clinical trial. EBioMedicine 5, 204–210 (2016).

    PubMed  PubMed Central  Google Scholar 

  117. Yiou, R. et al. Safety of intracavernous bone marrow-mononuclear cells for postradical prostatectomy erectile dysfunction: an open dose-escalation pilot study. Eur. Urol. 69, 988–991 (2016).

    PubMed  Google Scholar 

  118. Tran, C. & Damaser, M. S. Stem cells as drug delivery methods: application of stem cell secretome for regeneration. Adv. Drug Deliv. Rev. 82–83, 1–11 (2015).

    PubMed  Google Scholar 

  119. Park, C. W. et al. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int. J. Stem Cells 2, 59–68 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu, Y., Chen, L., Scott, P. G. & Tredget, E. E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25, 2648–2659 (2007).

    CAS  PubMed  Google Scholar 

  121. Choi, Y.-A. et al. Secretome analysis of human BMSCs and identification of SMOC1 as an important ECM protein in osteoblast differentiation. J. Proteome Res. 9, 2946–2956 (2010).

    CAS  PubMed  Google Scholar 

  122. Lee, M. J. et al. Proteomic analysis of tumor necrosis factor-α-induced secretome of human adipose tissue-derived mesenchymal stem cells. J. Proteome Res. 9, 1754–1762 (2010).

    CAS  PubMed  Google Scholar 

  123. Grebe, S. K. & Singh, R. J. LC-MS/MS in the clinical laboratory — where to from here? Clin. Biochem. Rev. 32, 5–31 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. Sarojini, W. et al. PEDF from mouse mesenchymal stem cell secretome attracts fibroblasts. J. Cell. Biochem. 104, 1793–1802 (2008).

    CAS  PubMed  Google Scholar 

  125. Estrada, R. et al. Secretome from mesenchymal stem cells induces angiogenesis via Cyr61. J. Cell. Physiol. 219, 563–571 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sze, S. K. et al. Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Mol. Cell. Proteomics 6, 1680–1689 (2007).

    CAS  PubMed  Google Scholar 

  127. Lai, R. C. et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4, 214–222 (2010).

    CAS  PubMed  Google Scholar 

  128. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature 9, 654 (2007).

    CAS  Google Scholar 

  129. Mathivanan, S., Ji, H. & Simpson, R. J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics 73, 1907–1920 (2010).

    CAS  PubMed  Google Scholar 

  130. Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A. & Ratajczak, M. Z. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20, 1487 (2006).

    CAS  PubMed  Google Scholar 

  131. Baglio, S. R., Pegtel, D. M. & Baldini, N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front. Physiol. 3, 359 (2012).

    PubMed  PubMed Central  Google Scholar 

  132. Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V. & Biancone, L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78, 838–848 (2010).

    CAS  PubMed  Google Scholar 

  133. Reis, L. A. et al. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLOS ONE 7, e44092 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Tomasoni, S. et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev. 22, 772–780 (2012).

    PubMed  PubMed Central  Google Scholar 

  135. Collino, F. et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLOS ONE 5, e11803 (2010).

    PubMed  PubMed Central  Google Scholar 

  136. Li, T. et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 22, 845–854 (2013).

    CAS  PubMed  Google Scholar 

  137. Timmers, L. et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res. 1, 129–137 (2008).

    Google Scholar 

  138. Zhu, L. L. et al. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia 50, e12871 (2018).

    Google Scholar 

  139. Nassar, W. et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater. Res. 20, 21 (2016).

    PubMed  PubMed Central  Google Scholar 

  140. Carr, L. K. et al. Autologous muscle derived cell therapy for stress urinary incontinence: a prospective, dose ranging study. J. Urol. 189, 595–601 (2013).

    PubMed  Google Scholar 

  141. Caplan, A. I. Mesenchymal stem cells: time to change the name! Stem Cells Transl. Med. 6, 1445–1451 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Zhang, Y. et al. Urine derived cells are a potential source for urological tissue reconstruction. J. Urol. 180, 2226–2233 (2008).

    CAS  PubMed  Google Scholar 

  143. Bharadwaj, S. et al. Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 31, 1840–1856 (2013).

    CAS  PubMed  Google Scholar 

  144. Bharadwaj, S. et al. Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng. A 17, 2123–2132 (2011).

    Google Scholar 

  145. Lang, R. et al. Self-renewal and differentiation capacity of urine-derived stem cells after urine preservation for 24 hours. PLOS ONE 8, e53980 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Ouyang, B. et al. Human urine-derived stem cells alone or genetically-modified with FGF2 improve type 2 diabetic erectile dysfunction in a rat model. PLOS ONE 9, e92825 (2014).

    PubMed  PubMed Central  Google Scholar 

  147. Jiang, Z.-Z. et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res. Ther. 7, 24 (2016).

    PubMed  PubMed Central  Google Scholar 

  148. Castiglione, F. et al. Adipose-derived stem cells counteract urethral stricture formation in rats. Eur. Urol. 70, 1032–1041 (2016).

    PubMed  Google Scholar 

  149. Gokce, A. et al. Adipose tissue-derived stem cell therapy for prevention and treatment of erectile dysfunction in a rat model of Peyronie’s disease. Andrology 2, 244–251 (2014).

    CAS  PubMed  Google Scholar 

  150. Castiglione, F. et al. Intratunical injection of human adipose tissue–derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie’s disease. Eur. Urol. 63, 551–560 (2013).

    CAS  PubMed  Google Scholar 

  151. Kim, H.-S. et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J. Proteome Res. 11, 839–849 (2011).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.Z.S. researched data for the article. D.Z.S. and M.S.D. made substantial contributions to discussion of the article contents. D.Z.S., B.A. and P.B. wrote the manuscript. D.Z.S. and M.S.D. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Daniel Z. Sun.

Ethics declarations

Competing interests

M.S.D. declares an option to license her patent on the mesenchymal stem cell secretome in genitourinary disorders. The other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Transdifferentiation

The conversion of a cell of one tissue lineage into a cell of a different lineage.

Engraftment

The process by which stem cells integrate into host tissue.

Maldifferentiation

The formation of unwanted ectopic tissue (for example, tumour cells).

MSC-conditioned culture medium

(MSC-CCM). Culture medium containing biologically active components that are secreted by mesenchymal stem cells (MSCs).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D.Z., Abelson, B., Babbar, P. et al. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat Rev Urol 16, 363–375 (2019). https://doi.org/10.1038/s41585-019-0169-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-019-0169-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing