Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in laser technology and fibre-optic delivery systems in lithotripsy

Abstract

The flashlamp-pumped, solid-state holmium:yttrium–aluminium–garnet (YAG) laser has been the laser of choice for use in ureteroscopic lithotripsy for the past 20 years. However, although the holmium laser works well on all stone compositions and is cost-effective, this technology still has several fundamental limitations. Newer laser technologies, including the frequency-doubled, double-pulse YAG (FREDDY), erbium:YAG, femtosecond, and thulium fibre lasers, have all been explored as potential alternatives to the holmium:YAG laser for lithotripsy. Each of these laser technologies is associated with technical advantages and disadvantages, and the search continues for the next generation of laser lithotripsy systems that can provide rapid, safe, and efficient stone ablation. New fibre-optic approaches for safer and more efficient delivery of the laser energy inside the urinary tract include the use of smaller-core fibres and fibres that are tapered, spherical, detachable or hollow steel, or have muzzle brake distal fibre-optic tips. These specialty fibres might provide advantages, including improved flexibility for maximal ureteroscope deflection, reduced cross section for increased saline irrigation rates through the working channel of the ureteroscope, reduced stone retropulsion for improved stone ablation efficiency, and reduced fibre degradation and burnback for longer fibre life.

Key points

  • The holmium:yttrium–aluminium–garnet (YAG) laser is currently the gold standard for laser lithotripsy during flexible ureteroscopy because it can be used to effectively treat all stone compositions.

  • The frequency-doubled, double-pulse YAG (FREDDY) laser has been tested as a more compact and efficient solid-state laser than the initial dye lasers for short-pulse lithotripsy, but the FREDDY laser is not effective for all stone compositions.

  • The erbium:YAG laser has been tested for efficient ablation of urinary stones, but a suitable mid-infrared optical fibre delivery system is not available for this procedure.

  • The thulium fibre laser (TFL) is the most promising alternative to holmium for lithotripsy owing to its use of a more suitable TFL wavelength, smaller fibres, and potential for using a smaller, less expensive laser system; however, clinical studies are needed to assess this new technology.

  • TFL promotes the development of novel miniature fibre-optic delivery systems, including tapered, ball tip, hollow steel tip fibres, and muzzle brake fibre-optic tips, which can reduce both fibre burnback or degradation and stone retropulsion without sacrificing laser ablation rates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Water absorption coefficient as a function of laser wavelength in the mid-infrared spectrum.
Fig. 2: Comparison of lasers for lithotripsy.
Fig. 3: Fibre-optic tip designs.

Similar content being viewed by others

References

  1. Fernstrom, I. & Johansson, B. Percutaneous pyelolithotomy. A new extraction technique. Scand. J. Urol. Nephrol. 10, 257–259 (1976).

    Article  PubMed  CAS  Google Scholar 

  2. Alken, P., Hutschenreiter, G., Gunther, R. & Marberger, M. Percutaneous stone manipulation. J. Urol. 125, 463–466 (1981).

    Article  PubMed  CAS  Google Scholar 

  3. Segura, J. W. et al. Percutaneous removal of kidney stones: review of 1,000 cases. J. Urol. 134, 1077–1081 (1985).

    Article  PubMed  CAS  Google Scholar 

  4. Ghani, K. R. et al. Trends in percutaneous nephrolithotomy and outcomes in the United States. J. Urol. 190, 558–564 (2013).

    Article  PubMed  Google Scholar 

  5. Chaussy, C. et al. The use of shock waves for the destruction of renal calculi without direct contact. Urol. Res. 4, 175 (1976).

    Article  Google Scholar 

  6. Chaussy, C. et al. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J. Urol. 127, 417–420 (1982).

    Article  PubMed  CAS  Google Scholar 

  7. Assimos, D. et al. Surgical management of stones: AUA/Endourological Society Guideline. American Urological Association http://auanet.org/guidelines/surgical-management-of-stones-(aua/endourological-society-guideline-2016) (2016).

  8. Lee, F. J. & Yeh, H. T. in Smith’s Textbook of Endourology (ed. Smith, A.) 612–623 (Wiley, 2012).

  9. Matlaga, B. R., Jansen, P., Meckley, L. M., Byrne, T. W. & Lingeman, J. E. Treatment of ureteral and renal stones: a systematic review and meta-analysis of randomized, controlled trials. J. Urol. 188, 130–137 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grasso, M. & Bagley, D. A 7.5/8.2 F actively deflectable, flexible ureteroscope: a new device for both diagnostic and therapeutic upper urinary tract endoscopy. Urology 43, 435–441 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. Scales, C. D. et al. Comparative effectiveness of shock wave lithotripsy and ureteroscopy for treating patients with kidney stones. JAMA Surg. 149, 648–653 (2014).

    Article  PubMed  Google Scholar 

  12. Denstedt, J. D. & Clayman, R. V. Electrohydraulic lithotripsy of renal and ureteral calculi. J. Urol. 143, 13–17 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. Sun, Y. et al. Pneumatic lithotripsy versus laser lithotripsy in the endoscopic treatment of ureteral calculi. J. Endourol. 15, 587–590 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. Sofer, M. et al. Holmium: YAG laser lithotripsy for upper urinary tract calculi in 598 patients. J. Urol. 167, 31–34 (2002).

    Article  PubMed  Google Scholar 

  15. Oberlin, D. T., Flum, A. S., Bachrach, L., Matulewicz, R. S. & Flury, S. C. Contemporary surgical trends in the management of upper tract calculi. J. Urol. 193, 880–884 (2015).

    Article  PubMed  Google Scholar 

  16. Dretler, S. P. Laser lithotripsy: a review of 20 years of research and clinical applications. Lasers Surg. Med. 8, 341–356 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. Dretler, S. P., Watson, G., Parrish, J. A. & Murray, S. Pulsed dye laser fragmentation of ureteral calculi: initial clinical experience. J. Urol. 137, 386–389 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. Johnson, J. P., Oz, M. C., Chuck, R. S. & Treat, M. R. Comparison of methods for transcatheter fragmentation of gallstones. Surg. Endosc. 3, 7–10 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. Spindel, M. L. et al. Comparison of holmium and flashlamp pumped dye lasers for use in lithotripsy of biliary calculi. Lasers Surg. Med. 12, 482–489 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Bagley, D. & Erhard, M. Use of the holmium laser in the upper urinary tract. Tech. Urol. 1, 25–30 (1995).

    PubMed  CAS  Google Scholar 

  21. Matlaga, B. R. Contemporary surgical management of upper urinary tract calculi. J. Urol. 181, 2152–2156 (2009).

    Article  PubMed  Google Scholar 

  22. Scales, C. D. et al. Practice variation in the surgical management of urinary lithiasis. J. Urol. 186, 146–150 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hardy, L. A., Irby, P. B. & Fried, N. M. Scanning electron microscopy of real and artificial kidney stones before and after Thulium fibre laser ablation in air and water. Proc. SPIE 10468 Therapeutics and Diagnostics in Urology. 10468 https://doi.org/10.1117/12.2285069 (2018).

  24. Chan, K. F. et al. Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg. Med. 25, 22–37 (1999).

    Article  PubMed  CAS  Google Scholar 

  25. Roggan, A., Bindig, U., Wäsche, W. & Zgoda, F. Action Mechanisms of Laser Radiation in Biological Tissues (eds Berlien, H. P. & Muller, G. J.) 87 (Springer, 2003).

  26. Hale, G. M. & Querry, M. R. Optical constants of water in the 200 nm to 200 μm wavelength region. Appl. Opt. 12, 555–563 (1973).

    Article  PubMed  CAS  Google Scholar 

  27. Razvi, H. H., Chun, S. S., Denstedt, J. D. & Sales, J. L. Soft-tissue applications of the holmium:YAG laser in urology. J. Endourol. 9, 387–390 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. Welch, A. J., van Gemert, M. J. C., Star, W. M. & Wilson, B. C. in Optical-Thermal Response of Laser-Irradiated Tissue (eds Welch, A. J. & van Gemert, M. J. C.) 27–64 (Springer, 1995).

  29. Harrington, J. A. Infrared Fibers and their Applications (SPIE, 2004).

  30. Scholle, K., Lamrini, S., Koopmann, P. & Fuhrber, P. in Frontiers in Guided Wave Optics & Optoelectronics (ed. Pal, B.) 471–500 (IntechOpen, 2010).

  31. Dauw, C. A. et al. Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey. J. Endourol. 29, 1221–1230 (2015).

    Article  PubMed  Google Scholar 

  32. Molina, W. R. et al. Influence of saline on temperature profile of laser lithotripsy activation. J. Endourol. 29, 235–239 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buttice, S. et al. Temperature changes inside the kidney: what happens during holmium:yttrium-aluminum-garnet laser usage? J. Endourol. 30, 574–579 (2016).

    Article  PubMed  Google Scholar 

  34. Aldoukhi, A. H., Ghani, K., Hall, T. L. & Roberts, W. W. Thermal response to high-power holmium laser lithotripsy. J. Endourol. 31, 1308–1312 (2017).

    Article  PubMed  Google Scholar 

  35. Wollin, D. A. et al. Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model. J. Endourol. 32, 59–63 (2018).

    Article  PubMed  Google Scholar 

  36. Finley, D. S. et al. Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro. J. Endourol 19, 1041–1044 (2005).

    Article  PubMed  Google Scholar 

  37. Kang, H. W. et al. Dependence of calculus retropulsion on pulse duration during Ho:YAG laser lithotripsy. Lasers Surg. Med. 38, 762–772 (2006).

    Article  PubMed  Google Scholar 

  38. Kalra, P., Le, N. & Bagley, D. Effect of pulse width on object movement in vitro using Ho:YAG laser. J. Endourol. 21, 228–231 (2007).

    Article  PubMed  Google Scholar 

  39. Bader, M. J. et al. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World J. Urol. 33, 471–477 (2015).

    Article  PubMed  Google Scholar 

  40. Wollin, D. A. et al. Variable pulse duration from a new Holmium:YAG laser: the effect on stone comminution, fibre tip degradation, and retropulsion dusting model. Urology 103, 47–51 (2017).

    Article  PubMed  Google Scholar 

  41. Trost, D. U. S. Laser pulse format for penetrating an absorbing fluid. US Patent US5321715A (1994).

  42. Elhilali, M. M., Badaan, S., Ibrahim, A. & Andonian, S. Use of the Moses technology to improve holmium laser lithotripsy outcomes: a preclinical study. J. Endourol. 31, 598–604 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vogel, A. & Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. Zorcher, T., Hochberger, J., Schrott, K. M., Kuhn, R. & Schafhauser, W. In vitro study concerning the efficiency of the frequency-doubled double-pulse Neodymium:YAG laser (FREDDY) for lithotripsy of calculi in the urinary tract. Lasers Surg. Med. 25, 38–42 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. Delvecchio, F. C. et al. In vitro analysis of stone fragmentation ability of the FREDDY laser. J. Endourol. 17, 177–179 (2003).

    Article  PubMed  Google Scholar 

  46. Ebert, A., Stangle, J., Kuhn, R. & Schafhauser, W. The frequency-doubled double-pulse Neodym:YAG laser lithotripter (FREDDY) in lithotripsy of urinary stones. First clinical experience. Urologe A. 42, 825–833 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. Marguet, C. G. et al. In vitro comparison of stone retropulsion and fragmentation of the frequency doubled, double pulse nd:yag laser and the holmium:yag laser. J. Urol. 173, 1797–1800 (2005).

    Article  PubMed  Google Scholar 

  48. Dubosq, F. et al. Endoscopic lithotripsy and the FREDDY laser: initial experience. J. Endourol. 20, 296–299 (2006).

    Article  PubMed  Google Scholar 

  49. Yates, J., Zabbo, A. & Pareek, G. A comparison of the FREDDY and holmium lasers during ureteroscopic lithotripsy. Lasers Surg. Med. 39, 637–640 (2007).

    Article  PubMed  Google Scholar 

  50. Santa-Cruz, R. W., Leveillee, R. J. & Krongrad, A. Ex vivo comparison of four lithotripters commonly used in the ureter: what does it take to perforate? J. Endourol. 12, 417–422 (1998).

    Article  PubMed  CAS  Google Scholar 

  51. Althunayan, A. M., Elkoushy, M. A., Elhilali, M. M. & Andonian, S. Adverse events resulting from lasers used in urology. J. Endourol. 28, 256–260 (2014).

    Article  PubMed  Google Scholar 

  52. Cordes, J., Lange, B., Jocham, D. & Kausch, I. Destruction of stone extraction basket during an in vitro lithotripsy—a comparison of four lithotripters. J. Endourol. 25, 1359–1362 (2011).

    Article  PubMed  Google Scholar 

  53. Cordes, J., Nguyen, F., Lange, B., Brinkmann, R. & Jocham, D. Damage of stone baskets by endourologic lithotripters: a laboratory study of 5 lithotripters and 4 basket types. Adv. Urol. 632790, 1–6 (2013).

    Article  Google Scholar 

  54. Bader, M. J. et al. Impact of collateral damage to endourologic tools during laser lithotripsy—in vitro comparison of three different clinical laser systems. J. Endourol. 25, 667–672 (2011).

    Article  PubMed  Google Scholar 

  55. Freiha, G. S., Glickman, R. D. & Teichman, J. M. Holmium:YAG laser-induced damage to guidewires: experimental study. J. Endourol. 11, 331–336 (1997).

    Article  PubMed  CAS  Google Scholar 

  56. Honeck, P., Wendt-Nordahl, G., Hacker, A., Alken, P. & Knoll, T. Risk of collateral damage to endourologic tools by holmium:YAG laser energy. J. Endourol. 20, 495–497 (2006).

    Article  PubMed  Google Scholar 

  57. Teichman, J. M. et al. Erbium:YAG versus holmium:YAG lithotripsy. J. Urol. 165, 876–879 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. Fried, N. M. Potential applications of the erbium:YAG laser in endourology. J. Endourol. 15, 889–894 (2001).

    Article  PubMed  CAS  Google Scholar 

  59. Chan, K. F. et al. Erbium:YAG laser lithotripsy mechanism. J. Urol. 168, 436–441 (2002).

    Article  PubMed  Google Scholar 

  60. Lee, H., Kang, H. W., Teichman, J. M., Oh, J. & Welch, A. J. Urinary calculus fragmentation during Ho:YAG and Er:YAG lithotripsy. Lasers Surg. Med. 38, 39–51 (2006).

    Article  PubMed  Google Scholar 

  61. Iwai, K. et al. Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap. Appl. Opt. 42, 2431–2435 (2003).

    Article  PubMed  Google Scholar 

  62. Yang, Y., Chaney, C. A. & Fried, N. M. Erbium:YAG laser lithotripsy using hybrid germanium/silica optical fibres. J. Endourol. 18, 830–835 (2004).

    Article  PubMed  Google Scholar 

  63. Raif, J., Vardi, M., Nahlieli, O. & Gannot, I. An Er:YAG laser endoscopic fibre delivery system for lithotripsy of salivary gland stones. Lasers Surg. Med. 38, 580–587 (2006).

    Article  PubMed  Google Scholar 

  64. Qiu, J. et al. Comparison of fluoride and sapphire optical fibres for Er:YAG laser lithotripsy. J. Biophotonics 3, 277–283 (2010).

    Article  PubMed  Google Scholar 

  65. Qui, J. et al. Femtosecond laser lithotripsy: feasibility and ablation mechanism. J. Biomed. Opt. 15, 028001 (2010).

    Article  CAS  Google Scholar 

  66. Niemz, M. H. ed., Laser-tissue Interactions: Fundamentals and Applications 3rd Edition (Springer, 2007).

  67. Xia, S. J. et al. Thulium laser versus standard transurethral resection of the prostate: a randomized prospective trial. Eur. Urol. 53, 382–389 (2008).

    Article  PubMed  Google Scholar 

  68. Jackson, S. D. & Lauto, A. Diode-pumped fibre lasers: a new clinical tool? Lasers Surg. Med. 30, 184–190 (2002).

    Article  PubMed  Google Scholar 

  69. Pierce, M. C., Jackson, S. D., Dickinson, M. R. & King, T. A. Laser-tissue interaction with a high-power 2 μm fibre laser: preliminary studies with soft tissue. Lasers Surg. Med. 25, 407–413 (1999).

    Article  PubMed  CAS  Google Scholar 

  70. Sumiyoshi, T. et al. High-power continuous-wave 3- and 2 μm cascade Ho3+:ZBLAN fibre laser and its medical applications. IEEE J. Sel. Top. Quantum. Electron. 5, 936–943 (1999).

    Article  CAS  Google Scholar 

  71. Pierce, M. C., Jackson, S. D., Dickinson, M. R., King, T. A. & Sloan, P. Laser-tissue interaction with a continuous wave 3 μm fibre laser: preliminary studies with soft tissue. Lasers Surg. Med. 26, 491–495 (2000).

    Article  PubMed  CAS  Google Scholar 

  72. El-Sherif, A. F. & King, T. A. Soft and hard tissue ablation with short-pulse high peak power and continuous thulium-silica fibre lasers. Lasers Med. Sci. 18, 139–147 (2003).

    Article  PubMed  CAS  Google Scholar 

  73. Fried, N. M. High-power laser vaporization of the canine prostate using a 110watt Thulium fibre laser at 1.91 μm. Lasers Surg. Med. 36, 52–56 (2005).

    Article  PubMed  Google Scholar 

  74. Fried, N. M. & Murray, K. E. High-power thulium fibre laser ablation of urological tissues at 1.94 μm. J. Endourol. 19, 25–31 (2005).

    Article  PubMed  Google Scholar 

  75. Fried, N. M. Thulium fibre laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110W Thulium fibre laser at 1.94 μm. Lasers Surg. Med. 37, 53–58 (2005).

    Article  PubMed  Google Scholar 

  76. Polder, K. D., Harrison, A., Eubanks, L. E. & Bruce, S. 1,927 fractional thulium fibre laser for treatment of nonfacial photodamage: a pilot study. Dermatol. Surg. 37, 342–348 (2011).

    Article  PubMed  CAS  Google Scholar 

  77. Weiss, E. T. et al. 1927nm fractional resurfacing of facial actinic keratosis: a promising new therapeutic option. J. Am. Acad. Dermatol. 68, 98–102 (2013).

    Article  PubMed  Google Scholar 

  78. Tunc, B. & Gulsoy, M. Tm:Fibre laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain. Lasers Surg. Med. 45, 48–56 (2013).

    Article  PubMed  Google Scholar 

  79. Guney, M., Tunc, B. & Gulsoy, M. Investigating the ablation efficiency of a 1940nm thulium fibre laser for intraoral surgery. Int. J. Oral Maxillofac. Surg. 43, 1015–1021 (2014).

    Article  PubMed  CAS  Google Scholar 

  80. Gesierich, W., Reichenberger, F., Fertl, A., Haeussinger, K. & Sroka, R. Endobronchial therapy with a thulium fibre laser (1940 nm). J. Thorac. Cardiovasc. Surg. 147, 1827–1832 (2014).

    Article  PubMed  Google Scholar 

  81. Alagha, H. Z. & Gulsoy, M. Photothermal ablation of liver tissue with 1940nm thulium fibre laser: an ex vivo study on lamb liver. J. Biomed. Opt. 21, 015007 (2016).

    Article  Google Scholar 

  82. Demirkan, I., Sarp, A. S. K. & Gulsoy, M. Ceramic bracket debonding with Tm:fibre laser. J. Biomed. Opt. 21, 065007 (2016).

    Article  Google Scholar 

  83. Pal, D., Ghosh, A., Sen, R. & Pal, A. Continuous-wave and quasi-continuous wave thulium-doped all-fibre laser: implementation on kidney stone fragmentation. Appl. Opt. 55, 6151–6155 (2016).

    Article  PubMed  CAS  Google Scholar 

  84. Jansen, E. D., van Leeuwen, T. G., Motamedi, M., Borst, C. & Welch, A. J. Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Lasers Surg. Med. 14, 258–268 (1994).

    Article  PubMed  CAS  Google Scholar 

  85. Lange, B. I., Brendel, T. & Huttmann, G. Temperature dependence of light absorption in water at holmium and thulium laser wavelengths. Appl. Opt. 41, 5797–5803 (2002).

    Article  PubMed  CAS  Google Scholar 

  86. Schomacker, K. T., Domankevitz, Y., Flotte, T. J. & Deutsch, T. F. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage. Lasers Surg. Med. 11, 141–151 (1991).

    Article  PubMed  CAS  Google Scholar 

  87. Blackmon, R. L., Irby, P. B. & Fried, N. M. Comparison of holmium:YAG and thulium fibre laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J. Biomed. Opt. 16, 071403 (2011).

    Article  PubMed  CAS  Google Scholar 

  88. Blackmon, R. L. Thulium Fibre Laser Lithotripsy. Thesis, UNC Charlotte (2013).

  89. Hardy, L. A., Kennedy, J. D., Wilson, C. R., Irby, P. B. & Fried, N. M. Analysis of Thulium fibre laser induced vapor bubbles for ablation of kidney stones. J. Biophotonics 10, 1240–1249 (2017).

    Article  PubMed  CAS  Google Scholar 

  90. Wilson, C. R., Hardy, L. A., Irby, P. B. & Fried, N. M. Collateral damage to the ureter and nitinol stone baskets during thulium fibre laser lithotripsy. Lasers Surg. Med. 47, 403–410 (2015).

    Article  PubMed  Google Scholar 

  91. Griffin, S. Fibre optics for destroying kidney stones. Biophotonics International 11, 44–47 (2004).

    Google Scholar 

  92. Nazif, O. A., Teichman, J. M. H., Glickman, R. D. & Welch, A. J. Review of laser fibres: a practical guide for urologists. J. Endourol. 18, 818–829 (2004).

    Article  PubMed  Google Scholar 

  93. Marks, A. J., Mues, A. C., Knudsen, B. E. & Teichman, J. M. H. Holmium:YAG lithotripsy proximal fibre failures from laser and fibre mismatch. Urology 71, 1049–1051 (2008).

    Article  PubMed  Google Scholar 

  94. Knudsen, B. E. et al. Performance and safety of holmium:YAG laser optical fibres. J. Endourol. 19, 1092–1097 (2005).

    Article  PubMed  Google Scholar 

  95. Mues, A. C., Teichman, J. M. & Knudsen, B. E. Evaluation of 24 holmium:YAG laser optical fibres for flexible ureteroscopy. J. Urol 182, 348–354 (2009).

    Article  PubMed  Google Scholar 

  96. Akar, E. C. & Knudsen, B. E. Evaluation of 16 new Holmium:Yttrium-Aluminum-Garnet laser optical fibres for ureteroscopy. Urology 86, 230–235 (2015).

    Article  PubMed  Google Scholar 

  97. Lee, H. et al. Effect of lithotripsy on holmium: YAG optical beam profile. J. Endourol. 17, 63–67 (2003).

    Article  PubMed  Google Scholar 

  98. Mues, A. C., Teichman, J. M. H. & Knudsen, B. E. Quantification of holmium:yttrium aluminum garnet optical tip degradation. J. Endourol. 23, 1425–1428 (2009).

    Article  PubMed  Google Scholar 

  99. Knudsen, B. E., Pedro, R., Hinck, B. & Monga, M. Durability of reusable holmium:YAG laser fibres: a multicenter study. J. Urol. 185, 160–163 (2011).

    Article  PubMed  Google Scholar 

  100. Wilson, C. R., Hardy, L. A., Irby, P. M. & Fried, N. M. Microscopic analysis of laser-induced proximal fibre tip damage during Holmium:YAG and Thulium fibre laser lithotripsy. Opt. Eng. 55, 046102 (2016).

    Article  Google Scholar 

  101. Scott, N. J., Cilip, C. M. & Fried, N. M. Thulium fibre laser ablation of urinary stones through small-core optical fibres. IEEE J. Sel. Top. Quantum Electron. 15, 435–440 (2009).

    Article  CAS  Google Scholar 

  102. Blackmon, R. L., Irby, P. B. & Fried, N. M. Thulium fibre laser lithotripsy using tapered fibres. Lasers Surg. Med. 42, 45–50 (2010).

    Article  PubMed  Google Scholar 

  103. Blackmon, R. L. et al. Thulium fibre laser ablation of kidney stones using a 50μmcore silica optical fibre. Opt. Eng. 54, 011004 (2015).

    Article  CAS  Google Scholar 

  104. Wilson, C. R., Hutchens, T. C., Hardy, L. A., Irby, P. B. & Fried, N. M. A miniaturized, 1.9F integrated optical fibre and stone basket for use in thulium fibre laser lithotripsy. J. Endourol. 29, 1110–1114 (2015).

    Article  PubMed  Google Scholar 

  105. Kennedy, J. D., Wilson, C. R., Irby, P. B. & Fried, N. M. Miniature ureteroscope tip designs for use in Thulium fibre laser lithotripsy. Proc. SPIE 10038, Therapeutics and Diagnostics in Urology. https://doi.org/10.1117/12.2247822 (2017).

    Article  Google Scholar 

  106. White, M. D., Moran, M. E., Calvano, C. J., Borhan-Manesh, A. & Mehlhaff, B. A. Evaluation of retropulsion caused by holmium:YAG laser with various power settings and fibres. J. Endourol. 12, 183–186 (1998).

    Article  PubMed  CAS  Google Scholar 

  107. Lee, H. et al. Stone retropulsion during holmium:YAG lithotripsy. J. Urol. 169, 881–885 (2003).

    Article  PubMed  Google Scholar 

  108. Lee, H. et al. Dependence of calculus retropulsion dynamics on fibre size and radiant exposure during Ho:YAG lithotripsy. J. Biomechan. Eng. 126, 506–515 (2004).

    Article  Google Scholar 

  109. Sea, J. et al. Optimal power settings for holmium:YAG lithotripsy. J. Urol. 187, 914–919 (2012).

    Article  PubMed  Google Scholar 

  110. Struve, B. & Huber, G. Properties and medical applications of nearIR solid-state lasers. J. Phys. IV 1, C7-3–C7-6 (1991).

    Google Scholar 

  111. Hardy, L. A., Wilson, C. R., Irby, P. B. & Fried, N. M. Rapid thulium fibre laser lithotripsy at pulse rates up to 500 Hz using a stone basket. IEEE J. Sel. Top. Quantum Electron. 20, 138–141 (2014).

    Article  CAS  Google Scholar 

  112. Zamyatina, V. et al. Super pulse thulium fibre laser for lithotripsy (abstract 28). Lasers Surg. Med. 48, 10 (2016).

    Google Scholar 

  113. Glybochko, P. et al. Comparison between the possibilities of holmium and thulium laser in lithotripsy in vitro. Eur. Urol. 16, e391–e392 (2017).

    Article  Google Scholar 

  114. Dymov, A. et al. Thulium lithotripsy: from experiment to clinical practice. J. Urol. 197, e1285 (2017).

    Article  Google Scholar 

  115. Hardy, L. A., Gonzalez, D. A., Irby, P. B. & Fried, N. M. Fragmentation and dusting of large kidney stones using a compact, air-cooled, high peak power, 1940nm, Thulium fiber laser. Proc. SPIE 10468, Therapeutics and Diagnostics in Urology 2018 10468 https://doi.org/10.1117/12.2285082 (2018).

  116. Clarkin, J. P., Timmerman, R. J. & Shannon, J. H. Shaped fibre tips for medical and industrial applications. Proc. SPIE 5317, Optical Fibers and Sensors for Medical Applications IV 5317 https://doi.org/10.1117/12.540734 (2004).

  117. Shin, R. H. et al. Evaluation of a novel ball tip holmium laser fibre: impact on ureteroscope performance and fragmentation efficiency. J. Endourol 30, 189–194 (2016).

    Article  PubMed  Google Scholar 

  118. Wilson, C. R., Hardy, L. A., Kennedy, J. D., Irby, P. B. & Fried, N. M. Miniature ball tip optical fibres for use in Thulium fibre laser ablation of kidney stones. J. Biomed. Opt. 21, 18003 (2016).

    Article  PubMed  Google Scholar 

  119. Hutchens, T. C., Blackmon, R. L., Irby, P. B. & Fried, N. M. Detachable fibre optic tips for use in thulium fibre laser lithotripsy. J. Biomed. Opt. 18, 38001 (2013).

    Article  Google Scholar 

  120. Hutchens, T. C., Blackmon, R. L., Irby, P. B. & Fried, N. M. Hollow steel tips for reducing fibre burnback during Thulium fibre laser lithotripsy. J. Biomed. Opt. 18, 78001 (2013).

    Article  Google Scholar 

  121. Hutchens, T. C., Gonzalez, D. A., Irby, P. B. & Fried, N. M. Fibre optic muzzle brake tip for reducing fibre burnback and stone retropulsion during Thulium fibre laser lithotripsy. J. Biomed. Opt. 22, 18001 (2017).

    Article  PubMed  Google Scholar 

  122. Martov, A. G. et al. Initial experience in clinical application of thulium laser contact lithotripsy for transurethral treatment of urolithiasis. Urologiia https://doi.org/10.18565/urology.2018.1.112-120 (2018).

    Article  PubMed  Google Scholar 

  123. Blackmon, R. L., Irby, P. B. & Fried, N. M. Holmium:YAG (λ = 2120 nm) versus thulium fibre laser (λ = 1908 nm) lithotripsy. Lasers Surg. Med. 42, 232–236 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.M.F. researched data for the article and wrote the manuscript. P.B.I. contributed to the discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Nathaniel M. Fried.

Ethics declarations

Competing interests

N.M.F. is a consultant for IPG Medical Corporation (Marlborough, Massachusetts, USA) and is currently funded by a research grant from the National Institutes of Health (Bethesda, Maryland, USA). P.B.I. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fried, N.M., Irby, P.B. Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat Rev Urol 15, 563–573 (2018). https://doi.org/10.1038/s41585-018-0035-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0035-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing