Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shared and distinct mechanisms of fibrosis

Abstract

Fibrosis is defined as an excessive deposition of connective tissue components and can affect virtually every organ system, including the skin, lungs, liver and kidney. Fibrotic tissue remodelling often leads to organ malfunction and is commonly associated with high morbidity and mortality. The medical need for effective antifibrotic therapies is thus very high. However, the extraordinarily high costs of drug development and the rare incidence of many fibrotic disorders hinder the development of targeted therapies for individual fibrotic diseases. A potential strategy to overcome this challenge is to target common mechanisms and core pathways that are of central pathophysiological relevance across different fibrotic diseases. The factors influencing susceptibility to and initiation of these diseases are often distinct, with disease-specific and organ-specific risk factors, triggers and sites of first injury. Fibrotic remodelling programmes with shared fibrotic signalling responses such as transforming growth factor-β (TGFβ), platelet-derived growth factor (PDGF), WNT and hedgehog signalling drive disease progression in later stages of fibrotic diseases. The convergence towards shared responses has consequences for drug development as it might enable the development of general antifibrotic compounds that are effective across different disease entities and organs. Technological advances, including new models, single-cell technologies and gene editing, could provide new insights into the pathogenesis of fibrotic diseases and the development of drugs for their treatment.

Key points

  • In fibrotic diseases, disease-specific triggers initiate site-specific injuries, which activate distinct cells that drive fibrosis in a genetically susceptible individual.

  • The inflammatory responses vary across different fibrotic conditions but share polarization towards a T helper 2 cell–M2 macrophage-mediated response, with abundant release of profibrotic mediators as a common feature.

  • Although myofibroblasts are a heterogeneous population of cells that are derived from various cellular precursors, they are activated by a shared set of core pathways, including transforming growth factor-β, platelet-derived growth factor, WNT and hedgehog signalling.

  • Structural changes in fibrotic tissues, such as tissue stiffness and hypoxia, generate an important feed-forward loop that leads to chronicity of tissue-repair responses in fibrotic diseases.

  • The chronic profibrotic milieu induces epigenetic imprinting in myofibroblasts, which serves as a self-amplifying loop to consolidate fibroblast activation in the later stages of fibrotic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common and distinct mechanisms in different stages of fibrotic tissue remodelling.
Fig. 2: Macrophage activation and differentiation in tissue repair and fibrosis.
Fig. 3: T cell subpopulations in fibrotic tissue remodelling.
Fig. 4: Schematic representation of interactions of TGFβ signalling with other profibrotic signalling pathways.
Fig. 5: Schematic representation of the role of nuclear receptors as downstream mediators of TGFβ signalling in fibrosis.
Fig. 6: Schematic representation of developmental signalling pathways and their interactions with TGFβ signalling.

Similar content being viewed by others

References

  1. Thannickal, V. J., Zhou, Y., Gaggar, A. & Duncan, S. R. Fibrosis: ultimate and proximate causes. J. Clin. Invest. 124, 4673–4677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wynn, T. A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nanthakumar, C. B. et al. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat. Rev. Drug Discov. 14, 693–720 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. McAnulty, R. J. Fibroblasts and myofibroblasts: their source, function and role in disease. Int. J. Biochem. Cell Biol. 39, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Micallef, L. et al. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue Repair 5, S5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

    Article  PubMed  CAS  Google Scholar 

  9. Lokmic, Z., Musyoka, J., Hewitson, T. D. & Darby, I. A. Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int. Rev. Cell Mol. Biol. 296, 139–185 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Beyer, C., Schett, G., Gay, S., Distler, O. & Distler, J. H. Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res. Ther. 11, 220 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Watson, C. J. et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum. Mol. Genet. 23, 2176–2188 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Parker, M. W. et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124, 1622–1635 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Varone, F., Sgalla, G., Iovene, B., Bruni, T. & Richeldi, L. Nintedanib for the treatment of idiopathic pulmonary fibrosis. Expert Opin. Pharmacother. 19, 167–175 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Roth, G. J. et al. Nintedanib: from discovery to the clinic. J. Med. Chem. 58, 1053–1063 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Conte, E. et al. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur. J. Pharm. Sci. 58, 13–19 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Antoniou, K. M., Wuyts, W., Wijsenbeek, M. & Wells, A. U. Medical therapy in idiopathic pulmonary fibrosis. Semin. Respir. Crit. Care Med. 37, 368–377 (2016).

    Article  PubMed  Google Scholar 

  17. US Food and Drug Administration. FDA approves first treatment for patients with rare type of lung disease (FDA, 2019).

  18. Angiolilli, C. et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat. Rev. Rheumatol. 14, 657–673 (2018).

    Article  PubMed  Google Scholar 

  19. Kaur, A., Mathai, S. K. & Schwartz, D. A. Genetics in idiopathic pulmonary fibrosis pathogenesis, prognosis, and treatment. Front. Med. 4, 154 (2017).

    Article  Google Scholar 

  20. Barbara, M., Scott, A. & Alkhouri, N. New insights into genetic predisposition and novel therapeutic targets for nonalcoholic fatty liver disease. Hepatobiliary Surg. Nutr. 7, 372–381 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tampe, B. & Zeisberg, M. Contribution of genetics and epigenetics to progression of kidney fibrosis. Nephrol. Dial. Transpl. 29, iv72–iv79 (2014).

    Article  CAS  Google Scholar 

  22. Fingerlin, T. E. et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet. 45, 613–620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Allen, R. J. et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. Lancet Respir. Med. 5, 869–880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sgalla, G. et al. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir. Res. 19, 32 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Heukels, P., Moor, C. C., von der Thusen, J. H., Wijsenbeek, M. S. & Kool, M. Inflammation and immunity in IPF pathogenesis and treatment. Respir. Med. 147, 79–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Hoffman, T. W., van Moorsel, C. H. M., Borie, R. & Crestani, B. Pulmonary phenotypes associated with genetic variation in telomere-related genes. Curr. Opin. Pulm. Med. 24, 269–280 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Waters, D. W. et al. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 315, L162–L172 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lehmann, M. et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur. Respir. J. 50, 1602367 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gulati, S. & Thannickal, V. J. The aging lung and idiopathic pulmonary fibrosis. Am. J. Med. Sci. 357, 384–389 (2019).

    Article  PubMed  Google Scholar 

  30. Povedano, J. M., Martinez, P., Flores, J. M., Mulero, F. & Blasco, M. A. Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep. 12, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Al-Issa, K., Tolle, L. B., Purysko, A. S. & Hanouneh, I. A. Short telomere syndrome and fibrosis. QJM 109, 125–126 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Alder, J. K. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl Acad. Sci. USA 105, 13051–13056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Donati, B. & Valenti, L. Telomeres, NAFLD and chronic liver disease. Int. J. Mol. Sci. 17, 383 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lakota, K. et al. Short lymphocyte, but not granulocyte, telomere length in a subset of patients with systemic sclerosis. Ann. Rheum. Dis. 78, 1142–1144 (2019).

    Article  PubMed  Google Scholar 

  36. Raschenberger, J. et al. Association of relative telomere length with progression of chronic kidney disease in two cohorts: effect modification by smoking and diabetes. Sci. Rep. 5, 11887 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ameh, O. I., Okpechi, I. G., Dandara, C. & Kengne, A. P. Association between telomere length, chronic kidney disease, and renal traits: a systematic review. OMICS 21, 143–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Asano, Y. Systemic sclerosis. J. Dermatol. 45, 128–138 (2018).

    Article  PubMed  Google Scholar 

  39. Matucci-Cerinic, M., Kahaleh, B. & Wigley, F. M. Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 65, 1953–1962 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Lunardi, C. et al. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat. Med. 6, 1183–1186 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Abraham, D. & Distler, O. How does endothelial cell injury start? The role of endothelin in systemic sclerosis. Arthritis Res. Ther. 9, S2 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Winters, N. I., Burman, A., Kropski, J. A. & Blackwell, T. S. Epithelial injury and dysfunction in the pathogenesis of idiopathic pulmonary fibrosis. Am. J. Med. Sci. 357, 374–378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mora, A. L., Rojas, M., Pardo, A. & Selman, M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat. Rev. Drug Discov. 16, 810 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wells, A. U., Margaritopoulos, G. A., Antoniou, K. M. & Denton, C. Interstitial lung disease in systemic sclerosis. Semin. Respir. Crit. Care Med. 35, 213–221 (2014).

    Article  PubMed  Google Scholar 

  45. Bataller, R. & Brenner, D. A. Liver fibrosis. J. Clin. Invest. 115, 209–218 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qi, R. & Yang, C. Renal tubular epithelial cells: the neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 9, 1126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trahtemberg, U. & Mevorach, D. Apoptotic cells induced signaling for immune homeostasis in macrophages and dendritic cells. Front. Immunol. 8, 1356 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yu, X., Guo, C., Fisher, P. B., Subjeck, J. R. & Wang, X. Y. Scavenger receptors: emerging roles in cancer biology and immunology. Adv. Cancer Res. 128, 309–364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wynn, T. A. & Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Malyshev, I. & Malyshev, Y. Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage "switch" phenotype. Biomed. Res. Int. 2015, 341308 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Eming, S. A., Krieg, T. & Davidson, J. M. Inflammation in wound repair: molecular and cellular mechanisms. J. Invest. Dermatol. 127, 514–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Shook, B., Xiao, E., Kumamoto, Y., Iwasaki, A. & Horsley, V. CD301b+ macrophages are essential for effective skin wound healing. J. Invest. Dermatol. 136, 1885–1891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    Article  PubMed  Google Scholar 

  57. Belperio, J. A. et al. Interaction of IL-13 and C10 in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 27, 419–427 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Lee, C. G. et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor β1. J. Exp. Med. 194, 809–821 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaviratne, M. et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-β independent. J. Immunol. 173, 4020–4029 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Borthwick, L. A. et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol. 9, 38–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Weng, S. Y. et al. IL-4 receptor alpha signaling through macrophages differentially regulates liver fibrosis progression and reversal. EBioMedicine 29, 92–103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Perdiguero, E. G. & Geissmann, F. The development and maintenance of resident macrophages. Nat. Immunol. 17, 2–8 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lucas, T. et al. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184, 3964–3977 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Gundra, U. M. et al. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct. Blood 123, e110–e122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 1802441 (2019).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. Horsburgh, S., Todryk, S., Ramming, A., Distler, J. H. W. & O'Reilly, S. Innate lymphoid cells and fibrotic regulation. Immunol. Lett. 195, 38–44 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Zook, E. C. & Kee, B. L. Development of innate lymphoid cells. Nat. Immunol. 17, 775–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Vannella, K. M. et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci. Transl Med. 8, 337ra65 (2016).

    Article  PubMed  CAS  Google Scholar 

  70. Hams, E. et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc. Natl Acad. Sci. USA 111, 367–372 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Feghali, C. A. & Wright, T. M. Cytokines in acute and chronic inflammation. Front. Biosci. 2, d12–d26 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Scotton, C. J. & Chambers, R. C. Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132, 1311–1321 (2007).

    Article  PubMed  Google Scholar 

  73. Gustafsson, R., Totterman, T. H., Klareskog, L. & Hallgren, R. Increase in activated T cells and reduction in suppressor inducer T cells in systemic sclerosis. Ann. Rheum. Dis. 49, 40–45 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lech, M. & Anders, H. J. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim. Biophys. Acta 1832, 989–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Bhogal, R. K. & Bona, C. A. B cells: no longer bystanders in liver fibrosis. J. Clin. Invest. 115, 2962–2965 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Overed-Sayer, C., Rapley, L., Mustelin, T. & Clarke, D. L. Are mast cells instrumental for fibrotic diseases? Front. Pharmacol. 4, 174 (2013).

    PubMed  Google Scholar 

  77. Mikami, Y., Takada, Y., Hagihara, Y. & Kanai, T. Innate lymphoid cells in organ fibrosis. Cytokine Growth Factor Rev. 42, 27–36 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Bank, I. The role of γδ T cells in fibrotic diseases. Rambam Maimonides Med. J. 7, e0029 (2016).

    Article  PubMed Central  Google Scholar 

  79. Van Linthout, S., Miteva, K. & Tschope, C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc. Res. 102, 258–269 (2014).

    Article  PubMed  CAS  Google Scholar 

  80. Oriente, A. et al. Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J. Pharmacol. Exp. Ther. 292, 988–994 (2000).

    CAS  PubMed  Google Scholar 

  81. Hashimoto, S., Gon, Y., Takeshita, I., Maruoka, S. & Horie, T. IL-4 and IL-13 induce myofibroblastic phenotype of human lung fibroblasts through c-Jun NH2-terminal kinase-dependent pathway. J. Allergy Clin. Immunol. 107, 1001–1008 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, L. et al. CD4+ T lymphocytes, especially Th2 cells, contribute to the progress of renal fibrosis. Am. J. Nephrol. 36, 386–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Ayano, M. et al. Increased CD226 expression on CD8+ T cells is associated with upregulated cytokine production and endothelial cell injury in patients with systemic sclerosis. J. Immunol. 195, 892–900 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Li, G. et al. Skin-resident effector memory CD8+CD28 T cells exhibit a profibrotic phenotype in patients with systemic sclerosis. J. Invest. Dermatol. 137, 1042–1050 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Habiel, D. M. et al. Characterization of CD28null T cells in idiopathic pulmonary fibrosis. Mucosal Immunol. 12, 212–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Luzina, I. G., Todd, N. W., Iacono, A. T. & Atamas, S. P. Roles of T lymphocytes in pulmonary fibrosis. J. Leukoc. Biol. 83, 237–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Dong, Y. et al. Depletion of CD8+ T cells exacerbates CD4+ T cell-induced monocyte-to-fibroblast transition in renal fibrosis. J. Immunol. 196, 1874–1881 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Wen, Y. et al. Stimulating type 1 angiotensin receptors on T lymphocytes attenuates renal fibrosis. Am. J. Pathol. 189, 981–988 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Taylor, D. K. et al. T follicular helper-like cells contribute to skin fibrosis. Sci. Transl Med. 10, eaaf5307 (2018).

    Article  PubMed  CAS  Google Scholar 

  90. Brodeur, T. Y. et al. IL-21 promotes pulmonary fibrosis through the induction of profibrotic CD8+ T cells. J. Immunol. 195, 5251–5260 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Celada, L. J. et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci. Transl Med. 10, eaar8356 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Tsui, J. L. et al. Analysis of pulmonary features and treatment approaches in the COPA syndrome. ERJ Open Res. 4, 00017-2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Peng, X. et al. IL-17A produced by both γδ T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J. Pathol. 235, 79–89 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776.e3 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Majd, Z. et al. RORgt inhibition in the liver prevents hepatic fibrosis progression, a proof of concept study with a potent, first in class, hepatocentric RORgt inverse agonist. J. Hepatol. 64, S523 (2016).

    Article  Google Scholar 

  96. Todd, N. W. et al. Lymphocyte aggregates persist and accumulate in the lungs of patients with idiopathic pulmonary fibrosis. J. Inflamm. Res. 6, 63–70 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bosello, S. et al. Characterization of inflammatory cell infiltrate of scleroderma skin: B cells and skin score progression. Arthritis Res. Ther. 20, 75 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Matsushita, T. et al. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 54, 192–201 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Francois, A. et al. B lymphocytes and B-cell activating factor promote collagen and profibrotic markers expression by dermal fibroblasts in systemic sclerosis. Arthritis Res. Ther. 15, R168 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Lee, J. S. et al. Prevalence and clinical significance of circulating autoantibodies in idiopathic pulmonary fibrosis. Respir. Med. 107, 249–255 (2013).

    Article  PubMed  Google Scholar 

  101. Liaskos, C. et al. Disease-related autoantibody profile in patients with systemic sclerosis. Autoimmunity 50, 414–421 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Dumoitier, N. et al. Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor β and activate fibroblasts. Arthritis Rheumatol. 69, 1078–1089 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Xue, J. et al. Plasma B lymphocyte stimulator and B cell differentiation in idiopathic pulmonary fibrosis patients. J. Immunol. 191, 2089–2095 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Berger, M. & Steen, V. D. Role of anti-receptor autoantibodies in pathophysiology of scleroderma. Autoimmun. Rev. 16, 1029–1035 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Svegliati, S. et al. Agonistic anti-PDGF receptor autoantibodies from patients with systemic sclerosis impact human pulmonary artery smooth muscle cells function in vitro. Front. Immunol. 8, 75 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Baroni, S. S. et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N. Engl. J. Med. 354, 2667–2676 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Riemekasten, G. et al. Involvement of functional autoantibodies against vascular receptors in systemic sclerosis. Ann. Rheum. Dis. 70, 530–536 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Gunther, J., Rademacher, J., van Laar, J. M., Siegert, E. & Riemekasten, G. Functional autoantibodies in systemic sclerosis. Semin. Immunopathol. 37, 529–542 (2015).

    Article  PubMed  CAS  Google Scholar 

  109. Kim, D. et al. Induction of interferon-α by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-α activity with lung fibrosis. Arthritis Rheum. 58, 2163–2173 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Vuppalanchi, R. et al. Clinical significance of serum autoantibodies in patients with NAFLD: results from the nonalcoholic steatohepatitis clinical research network. Hepatol. Int. 6, 379–385 (2012).

    Article  PubMed  Google Scholar 

  111. Sutti, S. et al. BAFF neutralization ameliorates the evolution of experimental NASH. J. Hepatol. 68, S340 (2018).

    Article  Google Scholar 

  112. Han, H. et al. Renal recruitment of B lymphocytes exacerbates tubulointerstitial fibrosis by promoting monocyte mobilization and infiltration after unilateral ureteral obstruction. J. Pathol. 241, 80–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Raschi, E. et al. Immune complexes containing scleroderma-specific autoantibodies induce a profibrotic and proinflammatory phenotype in skin fibroblasts. Arthritis Res. Ther. 20, 187 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kahloon, R. A. et al. Patients with idiopathic pulmonary fibrosis with antibodies to heat shock protein 70 have poor prognoses. Am. J. Respir. Crit. Care Med. 187, 768–775 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li, F. J. et al. Autoimmunity to vimentin is associated with outcomes of patients with idiopathic pulmonary fibrosis. J. Immunol. 199, 1596–1605 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schiller, H. B. et al. Deep proteome profiling reveals common prevalence of MZB1-positive plasma B cells in human lung and skin fibrosis. Am. J. Respir. Crit. Care Med. 196, 1298–1310 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Smith, V. et al. Rituximab in diffuse cutaneous systemic sclerosis: an open-label clinical and histopathological study. Ann. Rheum. Dis. 69, 193–197 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Lafyatis, R. et al. B cell depletion with rituximab in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 60, 578–583 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  119. McGonagle, D. et al. Successful treatment of resistant scleroderma-associated interstitial lung disease with rituximab. Rheumatology 47, 552–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Daoussis, D. et al. Is there a role for B-cell depletion as therapy for scleroderma? A case report and review of the literature. Semin. Arthritis Rheum. 40, 127–136 (2010).

    Article  PubMed  Google Scholar 

  121. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03286556 (2019).

  122. Richeldi, L., Davies, H. R., Ferrara, G. & Franco, F. Corticosteroids for idiopathic pulmonary fibrosis. Cochrane Database Syst. Rev. 3, CD002880 (2003).

    Google Scholar 

  123. Raghu, G. et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 178, 948–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Idiopathic Pulmonary Fibrosis Clinical Research Network. et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med. 366, 1968–1977 (2012).

    Article  Google Scholar 

  125. Tashkin, D. P. et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 4, 708–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tashkin, D. P. et al. Cyclophosphamide versus placebo in scleroderma lung disease. N. Engl. J. Med. 354, 2655–2666 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378, 498–506 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Pope, J. E. et al. A randomized, controlled trial of methotrexate versus placebo in early diffuse scleroderma. Arthritis Rheum. 44, 1351–1358 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate). Ann. Rheum. Dis. 77, 212–220 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Koyama, Y. & Brenner, D. A. Liver inflammation and fibrosis. J. Clin. Invest. 127, 55–64 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol. 10, 493–503 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Willis, B. C., duBois, R. M. & Borok, Z. Epithelial origin of myofibroblasts during fibrosis in the lung. Proc. Am. Thorac. Soc. 3, 377–382 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kalluri, R. & Neilson, E. G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yao, L. et al. Paracrine signalling during ZEB1-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in lung fibrosis. Cell Death Differ. 26, 943–957 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Rognoni, E. & Watt, F. M. Skin cell heterogeneity in development, wound healing, and cancer. Trends Cell Biol. 28, 709–722 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Lim, C. P., Phan, T. T., Lim, I. J. & Cao, X. Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. J. Invest. Dermatol. 129, 851–861 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Marangoni, R. G. et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 67, 1062–1073 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mastrogiannaki, M. et al. β-Catenin stabilization in skin fibroblasts causes fibrotic lesions by preventing adipocyte differentiation of the reticular dermis. J. Invest. Dermatol. 136, 1130–1142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sun, C., Berry, W. L. & Olson, L. E. PDGFRα controls the balance of stromal and adipogenic cells during adipose tissue organogenesis. Development 144, 83–94 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. McGowan, S. E. & Torday, J. S. The pulmonary lipofibroblast (lipid interstitial cell) and its contributions to alveolar development. Annu. Rev. Physiol. 59, 43–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  142. El Agha, E. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 20, 261–273.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Torday, J. S. & Rehan, V. K. On the evolution of the pulmonary alveolar lipofibroblast. Exp. Cell Res. 340, 215–219 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. El Agha, E. et al. Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development 141, 296–306 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rehan, V. K. & Torday, J. S. PPARγ signaling mediates the evolution, development, homeostasis, and repair of the lung. PPAR Res. 2012, 289867 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Wei, J. et al. PPARγ downregulation by TGFβ in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLOS ONE 5, e13778 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Mehal, W. Z., Iredale, J. & Friedman, S. L. Scraping fibrosis: expressway to the core of fibrosis. Nat. Med. 17, 552–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pannu, J. & Trojanowska, M. Recent advances in fibroblast signaling and biology in scleroderma. Curr. Opin. Rheumatol. 16, 739–745 (2004).

    Article  CAS  PubMed  Google Scholar 

  149. Gyorfi, A. H., Matei, A. E. & Distler, J. H. W. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol. 68-69, 8–27 (2018).

    Article  PubMed  CAS  Google Scholar 

  150. Distler, J. H. et al. Review: Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis Rheumatol. 69, 257–267 (2017).

    Article  PubMed  Google Scholar 

  151. Sonnylal, S. et al. Postnatal induction of transforming growth factor β signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma. Arthritis Rheum. 56, 334–344 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Lafyatis, R. Transforming growth factor β–at the centre of systemic sclerosis. Nat. Rev. Rheumatol. 10, 706–719 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Li, M. et al. Epithelium-specific deletion of TGF-β receptor type II protects mice from bleomycin-induced pulmonary fibrosis. J. Clin. Invest. 121, 277–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Denton, C. P. et al. Recombinant human anti-transforming growth factor β1 antibody therapy in systemic sclerosis: a multicenter, randomized, placebo-controlled phase I/II trial of CAT-192. Arthritis Rheum. 56, 323–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Massague, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13, 616–630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Blobe, G. C., Schiemann, W. P. & Lodish, H. F. Role of transforming growth factor β in human disease. N. Engl. J. Med. 342, 1350–1358 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. Robertson, I. B. & Rifkin, D. B. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol. 8, a021907 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Kim, K. K., Sheppard, D. & Chapman, H. A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 10, a022293 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  161. Shi, M. et al. Latent TGF-β structure and activation. Nature 474, 343–349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Conroy, K. P., Kitto, L. J. & Henderson, N. C. αv integrins: key regulators of tissue fibrosis. Cell Tissue Res. 365, 511–519 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Reed, N. I. et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl Med. 7, 288ra79 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Patsenker, E. et al. Pharmacological inhibition of integrin αvβ3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 50, 1501–1511 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Horan, G. S. et al. Partial inhibition of integrin αvβ6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Resp. Crit. Care Med. 177, 56–65 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Hahm, K. et al. αvβ6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Reed, N. I. et al. Exploring N-arylsulfonyl-L-proline scaffold as a platform for potent and selective αvβ1 integrin inhibitors. ACS Med. Chem. Lett. 7, 902–907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01371305 (2018).

  170. Beyer, C. et al. Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Ann. Rheum. Dis. 71, 1019–1026 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Beyer, C. et al. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling. Ann. Rheum. Dis. 74, 1408–1416 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Matei, A. E. et al. Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Ann. Rheum. Dis. 77, 459 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Knorr, A. et al. Nitric oxide-independent activation of soluble guanylate cyclase by BAY 60-2770 in experimental liver fibrosis. Arzneimittelforschung 58, 71–80 (2008).

    CAS  PubMed  Google Scholar 

  174. Wang, Y. et al. Enhancing cGMP in experimental progressive renal fibrosis: soluble guanylate cyclase stimulation vs. phosphodiesterase inhibition. Am. J. Physiol. Ren. Physiol. 290, F167–F176 (2006).

    Article  CAS  Google Scholar 

  175. Dou, C. et al. P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology 154, 2209–2221.e14 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Ghosh, A. K. et al. Disruption of transforming growth factor β signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor γ. Arthritis Rheum. 50, 1305–1318 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Zhu, M. et al. Anti-inflammatory effects of thiazolidinediones in human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 45, 111–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  178. Wu, M. et al. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-γ. Am. J. Pathol. 174, 519–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Koo, J. B. et al. Anti-fibrogenic effect of PPAR-γ agonists in human intestinal myofibroblasts. BMC Gastroenterol. 17, 73 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Wei, J. et al. A synthetic PPAR-γ agonist triterpenoid ameliorates experimental fibrosis: PPAR-γ-independent suppression of fibrotic responses. Ann. Rheum. Dis. 73, 446–454 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Galli, A. et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 122, 1924–1940 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. Shiomi, T. et al. Pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 106, 3126–3132 (2002).

    Article  PubMed  Google Scholar 

  183. Kawai, T. et al. PPAR-γ agonist attenuates renal interstitial fibrosis and inflammation through reduction of TGF-β. Lab. Invest. 89, 47–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. Erdmann, E., Charbonnel, B. & Wilcox, R. Thiazolidinediones and cardiovascular risk–a question of balance. Curr. Cardiol. Rev. 5, 155–165 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Grey, A. et al. The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J. Clin. Endocrinol. Metab. 92, 1305–1310 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Schwartz, A. V. et al. Thiazolidinedione use and bone loss in older diabetic adults. J. Clin. Endocrinol. Metab. 91, 3349–3354 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Ruzehaji, N. et al. Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis. Ann. Rheum. Dis. 75, 2175–2183 (2016).

    Article  CAS  PubMed  Google Scholar 

  188. Avouac, J. et al. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann. Rheum. Dis. 76, 1931–1940 (2017).

    Article  CAS  PubMed  Google Scholar 

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02503644 (2019).

  190. Palumbo-Zerr, K. et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat. Med. 21, 62–70 (2015).

    Article  CAS  Google Scholar 

  191. Chen, H. Z. et al. The orphan receptor TR3 suppresses intestinal tumorigenesis in mice by downregulating Wnt signalling. Gut 61, 714–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Zerr, P. et al. Vitamin D receptor regulates TGF-β signalling in systemic sclerosis. Ann. Rheum. Dis. 74, e20 (2015).

    Article  PubMed  CAS  Google Scholar 

  193. Cutolo, M. Further emergent evidence for the vitamin D endocrine system involvement in autoimmune rheumatic disease risk and prognosis. Ann. Rheum. Dis. 72, 473–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  194. Belloli, L., Ughi, N. & Marasini, B. Vitamin D in systemic sclerosis. Clin. Rheumatol. 30, 145–146 (2011).

    Article  PubMed  Google Scholar 

  195. Calzolari, G., Data, V., Carignola, R. & Angeli, A. Hypovitaminosis D in systemic sclerosis. J. Rheumatol. 36, 2844 (2009).

    Article  PubMed  Google Scholar 

  196. Caramaschi, P. et al. Very low levels of vitamin D in systemic sclerosis patients. Clin. Rheumatol. 29, 1419–1425 (2010).

    Article  PubMed  Google Scholar 

  197. Gambichler, T., Chrobok, I., Hoxtermann, S. & Kreuter, A. Significantly decreased serum 25-hydroxyvitamin D levels in a large German systemic sclerosis cohort. J. Rheumatol. 38, 2492–2493 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Rios Fernandez, R., Fernandez Roldan, C., Callejas Rubio, J. L. & Ortego Centeno, N. Vitamin D deficiency in a cohort of patients with systemic scleroderma from the south of Spain. J. Rheumatol. 37, 1355 (2010).

    Article  PubMed  Google Scholar 

  199. Zhu, L. D. et al. Spontaneous liver fibrosis induced by long term dietary vitamin D deficiency in adult mice is related to chronic inflammation and enhanced apoptosis. Can. J. Physiol. Pharmacol. 93, 385–394 (2015).

    Article  CAS  PubMed  Google Scholar 

  200. Johnson, L. A., Sauder, K. L., Rodansky, E. S., Simpson, R. U. & Higgins, P. D. R. CARD-024, a vitamin D analog, attenuates the pro-fibrotic response to substrate stiffness in colonic myofibroblasts. Exp. Mol. Pathol. 93, 91–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yu, R. et al. Protective effects of calcitriol on diabetic nephropathy are mediated by down regulation of TGF-β 1 and CIP4 in diabetic nephropathy rat. Int. J. Clin. Exp. Pathol. 8, 3503–3512 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang, Z. M. et al. Preventive effects of vitamin D treatment on bleomycin-induced pulmonary fibrosis. Sci. Rep. 5, 17638 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Wahsh, E., Abu-Elsaad, N., El-Karef, A. & Ibrahim, T. The vitamin D receptor agonist, calcipotriol, modulates fibrogenic pathways mitigating liver fibrosis in-vivo: an experimental study. Eur. J. Pharmacol. 789, 362–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Horn, A. et al. Inhibition of hedgehog signalling prevents experimental fibrosis and induces regression of established fibrosis. Ann. Rheum. Dis. 71, 785–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  205. Lam, A. P. et al. Nuclear β-catenin is increased in systemic sclerosis pulmonary fibrosis and promotes lung fibroblast migration and proliferation. Am. J. Respir. Cell Mol. Biol. 45, 915–922 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Horn, A. et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum. 64, 2724–2733 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Dees, C. et al. Notch signalling regulates fibroblast activation and collagen release in systemic sclerosis. Ann. Rheum. Dis. 70, 1304–1310 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. He, W. et al. Wnt/β-catenin signaling promotes renal interstitial fibrosis. J. Am. Soc. Nephrol. 20, 765–776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Konigshoff, M. et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J. Clin. Invest. 119, 772–787 (2009).

    PubMed  PubMed Central  Google Scholar 

  210. Guan, S. & Zhou, J. Frizzled-7 mediates TGF-β-induced pulmonary fibrosis by transmitting non-canonical Wnt signaling. Exp. Cell Res. 359, 226–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Saito, A. & Nagase, T. Hippo and TGF-β interplay in the lung field. Am. J. Physiol. Lung Cell Mol. Physiol. 309, L756–L767 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Burgy, O. & Königshoff, M. The WNT signaling pathways in wound healing and fibrosis. Matrix Biol. 68-69, 67–80 (2018).

    Article  CAS  PubMed  Google Scholar 

  213. Beyer, C. & Distler, J. H. Morphogen pathways in systemic sclerosis. Curr. Rheumatol. Rep. 15, 299 (2013).

    Article  PubMed  CAS  Google Scholar 

  214. Bergmann, C. & Distler, J. H. Canonical Wnt signaling in systemic sclerosis. Lab. Invest. 96, 151–155 (2016).

    Article  CAS  PubMed  Google Scholar 

  215. Beyer, C. et al. Elevated serum levels of sonic hedgehog are associated with fibrotic and vascular manifestations in systemic sclerosis. Ann. Rheum. Dis. 77, 626–628 (2018).

    Article  CAS  PubMed  Google Scholar 

  216. Liang, R. et al. The transcription factor GLI2 as a downstream mediator of transforming growth factor-β-induced fibroblast activation in SSc. Ann. Rheum. Dis. 76, 756–764 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Hu, B. et al. Reemergence of hedgehog mediates epithelial-mesenchymal crosstalk in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 52, 418–428 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ding, H. et al. Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J. Am. Soc. Nephrol. 23, 801–813 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. El-Agroudy, N. N., El-Naga, R. N., El-Razeq, R. A. & El-Demerdash, E. Forskolin, a hedgehog signalling inhibitor, attenuates carbon tetrachloride-induced liver fibrosis in rats. Br. J. Pharmacol. 173, 3248–3260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Rimkus, T. K., Carpenter, R. L., Qasem, S., Chan, M. & Lo, H. W. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors. Cancers 8, 22 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  221. Wei, J. et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy a novel mouse model for scleroderma? Arthritis Rheum. 63, 1707–1717 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Königshoff, M. et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLOS ONE 3, e2142 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Cheng, J. H. et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G39–G49 (2008).

    Article  CAS  PubMed  Google Scholar 

  224. He, W. et al. Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction. Proc. Natl Acad. Sci. USA 107, 21110–21115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Trensz, F., Haroun, S., Cloutier, A., Richter, M. V. & Grenier, G. A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of mdx mice through the Wnt canonical pathway. Am. J. Physiol. Cell Physiol. 299, C939–C947 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Baarsma, H. A. & Konigshoff, M. 'WNT-er is coming': WNT signalling in chronic lung diseases. Thorax 72, 746–759 (2017).

    Article  CAS  PubMed  Google Scholar 

  227. Akhmetshina, A. et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat. Commun. 3, 735 (2012).

    Article  PubMed  CAS  Google Scholar 

  228. Dees, C. et al. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann. Rheum. Dis. 73, 1232–1239 (2014).

    Article  CAS  PubMed  Google Scholar 

  229. Chen, J. H., Chen, W. L. K., Sider, K. L., Yip, C. Y. Y. & Simmons, C. A. β-Catenin mediates mechanically regulated, transforming growth factor-β 1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler. Thromb. Vasc. Biol. 31, 590–597 (2011).

    Article  CAS  PubMed  Google Scholar 

  230. Sato, M. Upregulation of the Wnt/β-catenin pathway induced by transforming growth factor-β in hypertrophic scars and keloids. Acta Derm. Venereol. 86, 300–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  231. Chen, C. W. et al. Pharmacological inhibition of porcupine induces regression of experimental skin fibrosis by targeting Wnt signalling. Ann. Rheum. Dis. 76, 773–778 (2017).

    Article  CAS  PubMed  Google Scholar 

  232. Beyer, C. et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann. Rheum. Dis. 72, 1255–1258 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Beyer, C. et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann. Rheum. Dis. 71, 761–767 (2012).

    Article  CAS  PubMed  Google Scholar 

  234. Bergmann, C. et al. Inhibition of glycogen synthase kinase 3 β induces dermal fibrosis by activation of the canonical Wnt pathway. Ann. Rheum. Dis. 70, 2191–2198 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Brack, A. S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  236. Wei, J. et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 64, 2734–2745 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Martin-Medina, A. et al. Increased extracellular vesicles mediate Wnt-5a signaling in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. https://doi.org/10.1164/rccm.201708-1580OC (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Vuga, L. J. et al. WNT5A is a regulator of fibroblast proliferation and resistance to apoptosis. Am. J. Respir. Cell. Mol Biol. 41, 583–589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Baarsma, H. A. et al. Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. J. Exp. Med. 214, 143–163 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Blyszczuk, P. et al. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur. Heart J. 38, 1413–1425 (2017).

    CAS  PubMed  Google Scholar 

  241. Clevers, H., Loh, K. M. & Nusse, R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346, 1248012 (2014).

    Article  PubMed  CAS  Google Scholar 

  242. Abe, Y. & Tanaka, N. Roles of the hedgehog signaling pathway in epidermal and hair follicle development, homeostasis, and cancer. J. Dev. Biol. 5, 12 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  243. Konigshoff, M. & Eickelberg, O. WNT signaling in lung disease: a failure or a regeneration signal? Am. J. Respir. Cell Mol. Biol. 42, 21–31 (2010).

    Article  PubMed  CAS  Google Scholar 

  244. Rock, J. & Konigshoff, M. Endogenous lung regeneration: potential and limitations. Am. J. Respir. Crit. Care Med. 186, 1213–1219 (2012).

    Article  CAS  PubMed  Google Scholar 

  245. Zhang, J., Tian, X. J. & Xing, J. Signal transduction pathways of EMT induced by TGF-β, SHH, and WNT and their crosstalks. J. Clin. Med. 5, 41 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  246. Borggrefe, T. et al. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochim. Biophys. Acta 1863, 303–313 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Cigna, N. et al. The hedgehog system machinery controls transforming growth factor-β-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am. J. Pathol. 181, 2126–2137 (2012).

    Article  CAS  PubMed  Google Scholar 

  248. Reyhani, V. et al. PDGF-BB enhances collagen gel contraction through a PI3K-PLCγ-PKC-cofilin pathway. Sci. Rep. 7, 8924 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Klinkhammer, B. M., Floege, J. & Boor, P. PDGF in organ fibrosis. Mol. Asp. Med. 62, 44–62 (2018).

    Article  CAS  Google Scholar 

  250. Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Demoulin, J. B. & Essaghir, A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev. 25, 273–283 (2014).

    Article  CAS  PubMed  Google Scholar 

  252. Makino, K. et al. Blockade of PDGF receptors by crenolanib has therapeutic effect in patient fibroblasts and in preclinical models of systemic sclerosis. J. Invest. Dermatol. 137, 1671–1681 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Lee, J. I. et al. Role of Smad3 in platelet-derived growth factor-C-induced liver fibrosis. Am. J. Physiol. Cell. Physiol. 310, C436–C445 (2016).

    Article  PubMed  Google Scholar 

  254. Daniels, C. E. et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am. J. Respir. Crit. Care Med. 181, 604–610 (2010).

    Article  CAS  PubMed  Google Scholar 

  255. Gabrielli, A., Avvedimento, E. V. & Krieg, T. Scleroderma. N. Engl. J. Med. 360, 1989–2003 (2009).

    Article  CAS  PubMed  Google Scholar 

  256. Hernandez-Rodriguez, N. A. et al. Role of thrombin in pulmonary fibrosis. Lancet 346, 1071–1073 (1995).

    Article  CAS  PubMed  Google Scholar 

  257. Scherlinger, M. et al. Systemic lupus erythematosus and systemic sclerosis: all roads lead to platelets. Autoimmun. Rev. 17, 625–635 (2018).

    Article  CAS  PubMed  Google Scholar 

  258. Cloutier, N. et al. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc. Natl Acad. Sci. USA 115, E1550–E1559 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Stachow, A., Jablonska, S. & Skiendzielewska, A. Biogenic amines derived from tryptophan in systemic and cutaneous scleroderma. Acta Derm. Venereol. 59, 1–5 (1979).

    CAS  PubMed  Google Scholar 

  260. Dees, C. et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J. Exp. Med. 208, 961–972 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Lofdahl, A. et al. 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol. Rep. 4, e12873 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. El-Tanbouly, D. M., Wadie, W. & Sayed, R. H. Modulation of TGF-β/Smad and ERK signaling pathways mediates the anti-fibrotic effect of mirtazapine in mice. Toxicol. Appl. Pharmacol. 329, 224–230 (2017).

    Article  CAS  PubMed  Google Scholar 

  263. Chen, C. et al. Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-β1/Smad3-mediated fibrotic responses through 5-HT2A receptors. Mol. Cell. Biochem. 397, 267–276 (2014).

    Article  CAS  PubMed  Google Scholar 

  264. Hutcheson, J. D., Ryzhova, L. M., Setola, V. & Merryman, W. D. 5-HT2B antagonism arrests non-canonical TGF-β1-induced valvular myofibroblast differentiation. J. Mol. Cell. Cardiol. 53, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Rouzaud-Laborde, C. et al. Platelet activation and arterial peripheral serotonin turnover in cardiac remodeling associated to aortic stenosis. Am. J. Hematol. 90, 15–19 (2015).

    Article  CAS  PubMed  Google Scholar 

  266. Tu, X. et al. Anti-inflammatory renoprotective effect of clopidogrel and irbesartan in chronic renal injury. J. Am. Soc. Nephrol. 19, 77–83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Nurden, A. T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 105, S13–S33 (2011).

    Article  CAS  PubMed  Google Scholar 

  268. Walther, D. J. et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet α-granule release. Cell 115, 851–862 (2003).

    Article  CAS  PubMed  Google Scholar 

  269. Yabanoglu, S. et al. Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J. Mol. Cell. Cardiol. 46, 518–525 (2009).

    Article  CAS  PubMed  Google Scholar 

  270. Distler, O. et al. The serotonin receptor 2 inhibitor terguride has beneficial effects on skin fibrosis: results from a phase 2 proof of concept study [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 970 (2016).

    Google Scholar 

  271. Ebrahimkhani, M. R. et al. Stimulating healthy tissue regeneration by targeting the 5-HT(2)B receptor in chronic liver disease. Nat. Med. 17, 1668–1673 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Konigshoff, M. et al. Increased expression of 5-hydroxytryptamine2A/B receptors in idiopathic pulmonary fibrosis: a rationale for therapeutic intervention. Thorax 65, 949–955 (2010).

    Article  PubMed  Google Scholar 

  273. Kim, D. C. et al. 5-HT2A receptor antagonists inhibit hepatic stellate cell activation and facilitate apoptosis. Liver Int. 33, 535–543 (2013).

    Article  CAS  PubMed  Google Scholar 

  274. Ohba, T. et al. Scleroderma bronchoalveolar lavage fluid contains thrombin, a mediator of human lung fibroblast proliferation via induction of platelet-derived growth factor alpha-receptor. Am. J. Respir. Cell Mol. Biol. 10, 405–412 (1994).

    Article  CAS  PubMed  Google Scholar 

  275. Kitasato, L. et al. Factor Xa in mouse fibroblasts may induce fibrosis more than thrombin. Int. Heart J. 55, 357–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  276. Stetina, R., Votruba, I., Holy, A. & Merta, A. The effect of purine phosphonomethoxyalkyl derivatives on DNA synthesis in CHO Chinese hamster cells. Neoplasma 41, 61–66 (1994).

    CAS  PubMed  Google Scholar 

  277. Chambers, R. C., Leoni, P., Blanc-Brude, O. P., Wembridge, D. E. & Laurent, G. J. Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J. Biol. Chem. 275, 35584–35591 (2000).

    Article  CAS  PubMed  Google Scholar 

  278. Deng, X., Mercer, P. F., Scotton, C. J., Gilchrist, A. & Chambers, R. C. Thrombin induces fibroblast CCL2/JE production and release via coupling of PAR1 to Galphaq and cooperation between ERK1/2 and Rho kinase signaling pathways. Mol. Biol. Cell 19, 2520–2533 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Bogatkevich, G. S., Ludwicka-Bradley, A. & Silver, R. M. Dabigatran, a direct thrombin inhibitor, demonstrates antifibrotic effects on lung fibroblasts. Arthritis Rheum. 60, 3455–3464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Dong, A. et al. Direct thrombin inhibition with dabigatran attenuates pressure overload-induced cardiac fibrosis and dysfunction in mice. Thromb. Res. 159, 58–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Duplantier, J. G. et al. A role for thrombin in liver fibrosis. Gut 53, 1682–1687 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Mora, A. L., Bueno, M. & Rojas, M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J. Clin. Invest. 127, 405–414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Hecker, L., Cheng, J. & Thannickal, V. J. Targeting NOX enzymes in pulmonary fibrosis. Cell. Mol. Life Sci. 69, 2365–2371 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Liu, X. & Chen, Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J. Transl. Med. 15, 207 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Kavian, N. et al. The Nrf2-antioxidant response element signaling pathway controls fibrosis and autoimmunity in scleroderma. Front. Immunol. 9, 1896 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Rufini, A., Tucci, P., Celardo, I. & Melino, G. Senescence and aging: the critical roles of p53. Oncogene 32, 5129–5143 (2013).

    Article  CAS  PubMed  Google Scholar 

  287. Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 14, 501–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  288. Armanios, M. Telomerase and idiopathic pulmonary fibrosis. Mutat. Res. 730, 52–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  289. Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLOS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  292. Korolchuk, V. I., Miwa, S., Carroll, B. & von Zglinicki, T. Mitochondria in cell senescence: is mitophagy the weakest link? EBioMedicine 21, 7–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Hoare, M. et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat. Cell Biol. 18, 979–992 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Razdan, N., Vasilopoulos, T. & Herbig, U. Telomere dysfunction promotes transdifferentiation of human fibroblasts into myofibroblasts. Aging Cell 17, e12838 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  295. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Wells, R. G. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832, 884–890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Darby, I. A. & Hewitson, T. D. Hypoxia in tissue repair and fibrosis. Cell Tissue Res. 365, 553–562 (2016).

    Article  CAS  PubMed  Google Scholar 

  298. van Putten, S., Shafieyan, Y. & Hinz, B. Mechanical control of cardiac myofibroblasts. J. Mol. Cell. Cardiol. 93, 133–142 (2016).

    Article  PubMed  CAS  Google Scholar 

  299. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  300. Liang, M. et al. Yap/Taz deletion in Gli+ cell-derived myofibroblasts attenuates fibrosis. J. Am. Soc. Nephrol. 28, 3278–3290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Chen, H. et al. Mechanosensing by the α6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis. Nat. Commun. 7, 12564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Wenger, R. H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16, 1151–1162 (2002).

    Article  CAS  PubMed  Google Scholar 

  303. Distler, J. H. et al. Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. Arthritis Rheum. 50, 10–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  304. Corpechot, C. et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 35, 1010–1021 (2002).

    Article  CAS  PubMed  Google Scholar 

  305. Orphanides, C., Fine, L. G. & Norman, J. T. Hypoxia stimulates proximal tubular cell matrix production via a TGF-β1-independent mechanism. Kidney Int. 52, 637–647 (1997).

    Article  CAS  PubMed  Google Scholar 

  306. Altorok, N., Tsou, P. S., Coit, P., Khanna, D. & Sawalha, A. H. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann. Rheum. Dis. 74, 1612–1620 (2015).

    Article  CAS  PubMed  Google Scholar 

  307. Wang, Y., Fan, P. S. & Kahaleh, B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 54, 2271–2279 (2006).

    Article  CAS  PubMed  Google Scholar 

  308. Mann, J. et al. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ. 14, 275–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  309. Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. King, T. E., Pardo, A. & Selman, M. Idiopathic pulmonary fibrosis. Lancet 378, 1949–1961 (2011).

    Article  PubMed  Google Scholar 

  311. Kato, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Montgomery, R. L. et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med. 6, 1347–1356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Razin, A. & Riggs, A. D. DNA methylation and gene function. Science 210, 604–610 (1980).

    Article  CAS  PubMed  Google Scholar 

  314. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  315. Bergmann, C. & Distler, J. H. W. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics 9, 463–477 (2017).

    Article  CAS  PubMed  Google Scholar 

  316. Chen, X. et al. Suppression of SUN2 by DNA methylation is associated with HSCs activation and hepatic fibrosis. Cell Death Dis. 9, 1021 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  317. Sanders, Y. Y. et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 39, 610–618 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Zhang, Y. et al. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann. Rheum. Dis. 77, 744–751 (2018).

    Article  CAS  PubMed  Google Scholar 

  319. Noda, S. et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat. Commun. 5, 5797 (2014).

    Article  CAS  PubMed  Google Scholar 

  320. Asano, Y., Bujor, A. M. & Trojanowska, M. The impact of Fli1 deficiency on the pathogenesis of systemic sclerosis. J. Dermatol. Sci. 59, 153–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  321. Asano, Y. & Trojanowska, M. Fli1 represses transcription of the human alpha2(I) collagen gene by recruitment of the HDAC1/p300 complex. PLOS ONE 8, e74930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Dees, C. et al. TGFβ stimulates promoter hypermethylation and subsequent silencing of the anti-fibrotic gene Socs3 [abstract 1265]. Arthritis Rheumatol. 60, S1031 (2009).

    Google Scholar 

  323. Asano, Y., Czuwara, J. & Trojanowska, M. Transforming growth factor-β regulates DNA binding activity of transcription factor Fli1 by p300/CREB-binding protein-associated factor-dependent acetylation. J. Biol. Chem. 282, 34672–34683 (2007).

    Article  CAS  PubMed  Google Scholar 

  324. Zhao, S., Cao, M., Wu, H., Hu, Y. & Xue, X. 5-aza-2'-deoxycytidine inhibits the proliferation of lung fibroblasts in neonatal rats exposed to hyperoxia. Pediatr. Neonatol. 58, 122–127 (2017).

    Article  CAS  PubMed  Google Scholar 

  325. Vettori, S., Gay, S. & Distler, O. Role of microRNAs in fibrosis. Open Rheumatol. J. 6, 130–139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Liu, G. et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med. 207, 1589–1597 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Zhong, X., Chung, A. C. K., Chen, H. Y., Meng, X. M. & Lan, H. Y. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol. 22, 1668–1681 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008).

    Article  CAS  PubMed  Google Scholar 

  329. Maurer, B. et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733–1743 (2010).

    Article  CAS  PubMed  Google Scholar 

  330. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  331. Wang, B. et al. Suppression of microRNA-29 expression by TGF-β 1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252–265 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Pogribny, I. P. et al. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab. Invest. 90, 1437–1446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Messemaker, T. C. et al. Antisense long non-coding RNAs are deregulated in skin tissue of patients with systemic sclerosis. J. Invest. Dermatol. 138, 826–835 (2018).

    Article  CAS  PubMed  Google Scholar 

  334. Whitfield, M. L. et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proc. Natl Acad. Sci. USA 100, 12319–12324 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Gardner, H. et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum. 54, 1961–1973 (2006).

    Article  CAS  PubMed  Google Scholar 

  336. Milano, A. et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLOS ONE 3, e2696 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Pendergrass, S. A. et al. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J. Invest. Dermatol. 132, 1363–1373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Hinchcliff, M. et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J. Invest. Dermatol. 133, 1979–1989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Assassi, S. et al. Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis. Arthritis Rheumatol. 67, 3016–3026 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Sargent, J. L. et al. A TGFβ-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J. Invest. Dermatol. 130, 694–705 (2010).

    Article  CAS  PubMed  Google Scholar 

  341. Johnson, M. E. et al. Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts. PLOS ONE 10, e0114017 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  342. Rice, L. M. et al. A longitudinal biomarker for the extent of skin disease in patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 67, 3004–3015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  344. Whitfield, M. L. et al. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13, 1977–2000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Franks, J. M. et al. A machine learning classifier for assigning individual patients with systemic sclerosis to intrinsic molecular subsets. Arthritis Rheumatol. 71, 1701–1710 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  346. Greenblatt, M. B. et al. Interspecies comparison of human and murine scleroderma reveals IL-13 and CCL2 as disease subset-specific targets. Am. J. Pathol. 180, 1080–1094 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Chung, L. et al. Molecular framework for response to imatinib mesylate in systemic sclerosis. Arthritis Rheum. 60, 584–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Mahoney, J. M. et al. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms. PLOS Comput. Biol. 11, e1004005 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  349. Yang, I. V. et al. Expression of cilium-associated genes defines novel molecular subtypes of idiopathic pulmonary fibrosis. Thorax 68, 1114–1121 (2013).

    Article  PubMed  Google Scholar 

  350. Lofgren, S. et al. Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity. JCI Insight 1, e89073 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Pendergrass, S. A. et al. Limited systemic sclerosis patients with pulmonary arterial hypertension show biomarkers of inflammation and vascular injury. PLOS ONE 5, e12106 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  352. Derrett-Smith, E. C. et al. Limited cutaneous systemic sclerosis skin demonstrates distinct molecular subsets separated by a cardiovascular development gene expression signature. Arthritis Res. Ther. 19, 156 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. Taroni, J. N. et al. Molecular characterization of systemic sclerosis esophageal pathology identifies inflammatory and proliferative signatures. Arthritis Res. Ther. 17, 194 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  354. Taroni, J. N. et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med. 9, 27 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  355. Chakravarty, E. F. et al. Gene expression changes reflect clinical response in a placebo-controlled randomized trial of abatacept in patients with diffuse cutaneous systemic sclerosis. Arthritis Res. Ther. 17, 159 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  356. Khanna, D. et al. Abatacept in early diffuse cutaneous systemic sclerosis – results of a phase 2 investigator-initiated, multicenter, double-blind randomized placebo-controlled trial. Arthritis Rheumatol. https://doi.org/10.1002/art.41055 (2019).

  357. Martyanov, V. et al. Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLOS ONE 12, e0187580 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. Gordon, J. et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 24-month open label, extension phase, single-centre trial. Clin. Exp. Rheumatol. 32, S-189–S-193 (2014).

    Google Scholar 

  359. Gordon, J. K. et al. Nilotinib (Tasigna) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical trial. Arthritis Res. Ther. 17, 213 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  360. Leask, A. Toward personalized medicine in scleroderma: classification of scleroderma patients into stable "inflammatory" and "fibrotic" subgroups. J. Invest. Dermatol. 132, 1329–1331 (2012).

    Article  CAS  PubMed  Google Scholar 

  361. Martyanov, V. & Whitfield, M. L. Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data. Curr. Opin. Rheumatol. 28, 83–88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Franks, J. et al. Machine learning classification of peripheral blood gene expression identifies a subset of patients with systemic sclerosis most likely to show clinical improvement in response to hematopoietic stem cell transplant [abstract]. Arthritis Rheumatol. 70 (Suppl. 10), 1876 (2018).

    Google Scholar 

  363. Matei, A. E. et al. Vascularised human skin equivalents as a novel in vitro model of skin fibrosis and platform for testing of antifibrotic drugs. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2019-216108 (2019).

    Article  PubMed  CAS  Google Scholar 

  364. Shultz, L. D. et al. Humanized mouse models of immunological diseases and precision medicine. Mamm. Genome 30, 123–142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Lehmann, M. et al. Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respir. Res. 19, 175 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  366. Alsafadi, H. N. et al. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am. J. Physiol. Lung Cell. Mol. Physiol. 312, L896–L902 (2017).

    Article  PubMed  Google Scholar 

  367. Wu, X. et al. Precision-cut human liver slice cultures as an immunological platform. J. Immunol. Methods 455, 71–79 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Petrovski, S. et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 196, 82–93 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  370. Cai, L., Fisher, A. L., Huang, H. & Xie, Z. CRISPR-mediated genome editing and human diseases. Genes Dis. 3, 244–251 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03545815 (2018).

  372. Tabib, T., Morse, C., Wang, T., Chen, W. & Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J. Invest. Dermatol. 138, 802–810 (2018).

    Article  CAS  PubMed  Google Scholar 

  373. Lindeman, I. & Stubbington, M. J. T. Antigen receptor sequence reconstruction and clonality inference from scRNA-Seq data. Methods Mol. Biol. 1935, 223–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  374. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Peterson, V. M. et al. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 35, 936–939 (2017).

    Article  CAS  PubMed  Google Scholar 

  376. Han, G., Spitzer, M. H., Bendall, S. C., Fantl, W. J. & Nolan, G. P. Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc. 13, 2121–2148 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    Article  Google Scholar 

  378. Bushati, N., Smith, J., Briscoe, J. & Watkins, C. An intuitive graphical visualization technique for the interrogation of transcriptome data. Nucleic Acids Res. 39, 7380–7389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article  CAS  Google Scholar 

  380. Lacouture, M. E. et al. Cutaneous keratoacanthomas/squamous cell carcinomas associated with neutralization of transforming growth factor β by the monoclonal antibody fresolimumab (GC1008). Cancer Immunol. Immunother. 64, 437–446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Skronska-Wasek, W., Gosens, R., Konigshoff, M. & Baarsma, H. A. WNT receptor signalling in lung physiology and pathology. Pharmacol. Ther. 187, 150–166 (2018).

    Article  CAS  PubMed  Google Scholar 

  382. Martinez, F. J. et al. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers 3, 17074 (2017).

    Article  PubMed  Google Scholar 

  383. Chizzolini, C. et al. Systemic sclerosis Th2 cells inhibit collagen production by dermal fibroblasts via membrane-associated tumor necrosis factor α. Arthritis Rheum. 48, 2593–2604 (2003).

    Article  CAS  PubMed  Google Scholar 

  384. Boin, F. et al. T cell polarization identifies distinct clinical phenotypes in scleroderma lung disease. Arthritis Rheum. 58, 1165–1174 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  385. Brembilla, N. C. et al. Th17 cells favor inflammatory responses while inhibiting type I collagen deposition by dermal fibroblasts: differential effects in healthy and systemic sclerosis fibroblasts. Arthritis Res. Ther. 15, R151 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  386. Truchetet, M. E. et al. Interleukin-17A+ cell counts are increased in systemic sclerosis skin and their number is inversely correlated with the extent of skin involvement. Arthritis Rheum. 65, 1347–1356 (2013).

    Article  CAS  PubMed  Google Scholar 

  387. Truchetet, M. E., Brembilla, N. C., Montanari, E., Allanore, Y. & Chizzolini, C. Increased frequency of circulating Th22 in addition to Th17 and Th2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res. Ther. 13, R166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Zhang, J. et al. Profibrotic effects of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 316, L487–L497 (2019).

    Article  CAS  PubMed  Google Scholar 

  389. Yang, X., Yang, J., Xing, X., Wan, L. & Li, M. Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction. Arthritis Res. Ther. 16, R4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  390. Antiga, E. et al. Regulatory T cells in the skin lesions and blood of patients with systemic sclerosis and morphoea. Br. J. Dermatol. 162, 1056–1063 (2010).

    Article  CAS  PubMed  Google Scholar 

  391. MacDonald, K. G. et al. Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. J. Allergy Clin. Immunol. 135, 946–955.e9 (2015).

    Article  CAS  PubMed  Google Scholar 

  392. Slobodin, G. et al. Regulatory T cells (CD4+CD25brightFoxP3+) expansion in systemic sclerosis correlates with disease activity and severity. Cell. Immunol. 261, 77–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  393. Kotsianidis, I. et al. Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 179, 1121–1130 (2009).

    Article  CAS  PubMed  Google Scholar 

  394. Tanaka, C. et al. Inducible costimulator ligand regulates bleomycin-induced lung and skin fibrosis in a mouse model independently of the inducible costimulator/inducible costimulator ligand pathway. Arthritis Rheum. 62, 1723–1732 (2010).

    Article  CAS  PubMed  Google Scholar 

  395. Fuschiotti, P., Larregina, A. T., Ho, J., Feghali-Bostwick, C. & Medsger, T. A. Jr. Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum. 65, 236–246 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Daniil, Z. et al. CD8+ T lymphocytes in lung tissue from patients with idiopathic pulmonary fibrosis. Respir. Res. 6, 81 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by the grants DI 1537/7-1, DI 1537/8-1, DI 1537/9-1 DI 153/9-2, DI 1537/11-1, DI 1537/12-1, DI 1537/13-1 and DI 1537/14-1 of the German Research Foundation, SFB CRC1181 (project C01) and SFB TR221/ project number 324392634 (B04) of the German Research Foundation and a Career Support Award of Medicine of the Ernst Jung Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article and contributed to writing and review/editing of the manuscript before submission and contributed to discussion of the content.

Corresponding author

Correspondence to Jörg H. W. Distler.

Ethics declarations

Competing interests

J.H.W.D. declares that he has consultancy relationships and/or has received research funding from Actelion, Active Biotech, Array Biopharma, Bayer Pharma, Boehringer Ingelheim, BMS, Celgene, GSK, JB Therapeutics, Novartis, Sanofi-Aventis and UCB in the area of potential treatments for systemic sclerosis, and owns stock in 4D Science GmbH. M.R. declares that she is an employee of Boehringer-Ingelheim. The other authors declare no competing interests.

Additional information

Publisher’s note

Nature Reviews Rheumatology thanks A. Wells and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Epigenetic modifications

Heritable differences in gene expression that are not encoded by changes of the nucleotide sequence.

Mitogens

Chemical substances that induce cell division.

Mesangial cells

Specialized cells that form the renal mesangium.

Senolytic therapies

Drugs that selectively induce the death of senescent cells.

Mitophagy

The selective removal of mitochondria by autophagy.

CpG islands

Regions of DNA with a high frequency of cytosine–guanine dinucleotides.

Antagomirs

Chemically modified oligonucleotides that are used to silence microRNAs by binding specifically to particular microRNAs.

Keratoacanthomas

Benign tumours of the skin, originating from the hair follicle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Distler, J.H.W., Györfi, AH., Ramanujam, M. et al. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol 15, 705–730 (2019). https://doi.org/10.1038/s41584-019-0322-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0322-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing