Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surgical and tissue engineering strategies for articular cartilage and meniscus repair

Abstract

Injuries to articular cartilage and menisci can lead to cartilage degeneration that ultimately results in arthritis. Different forms of arthritis affect ~50 million people in the USA alone, and it is therefore crucial to identify methods that will halt or slow the progression to arthritis, starting with the initiating events of cartilage and meniscus defects. The surgical approaches in current use have a limited capacity for tissue regeneration and yield only short-term relief of symptoms. Tissue engineering approaches are emerging as alternatives to current surgical methods for cartilage and meniscus repair. Several cell-based and tissue-engineered products are currently in clinical trials for cartilage lesions and meniscal tears, opening new avenues for cartilage and meniscus regeneration. This Review provides a summary of surgical techniques, including tissue-engineered products, that are currently in clinical use, as well as a discussion of state-of-the-art tissue engineering strategies and technologies that are being developed for use in articular cartilage and meniscus repair and regeneration. The obstacles to clinical translation of these strategies are also included to inform the development of innovative tissue engineering approaches.

Key points

  • Current cartilage repair techniques include surgery and cell-based therapies for articular cartilage, and surgery for meniscus repair; however, such treatments have limited capacity to induce regeneration.

  • Tissue engineering strategies to create cartilage using a variety of cell sources and exogenous stimuli have made advances towards replicating the native architecture and functional properties of cartilage.

  • Most cell-based tissue engineering products currently in clinical trials are indicated for knee articular cartilage, with very few indicated for hip cartilage or the meniscus.

  • Allogeneic and non-articulating cartilage might serve as additional cell sources for engineered articular cartilage and meniscus products.

  • The pro-inflammatory environment of arthritic joints and issues surrounding neotissue integration need to be addressed to maximize the clinical translation of new tissue-engineered products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Articular cartilage structure and treatment methods.
Fig. 2: Meniscus structure and treatment methods.
Fig. 3: Advances in tissue engineering strategies for articular cartilage and meniscus.
Fig. 4: Challenges to the clinical translation of engineered cartilage and meniscus products.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention. Arthritis-related statistics. CDC https://www.cdc.gov/arthritis/data_statistics/arthritis-related-stats.htm (2018).

  2. Centers for Disease Control and Prevention. Osteoarthritis. CDC https://www.cdc.gov/arthritis/basics/osteoarthritis.htm (2019).

  3. Wilder, F. V., Hall, B. J., Barrett, J. P. Jr & Lemrow, N. B. History of acute knee injury and osteoarthritis of the knee: a prospective epidemiological assessment. The Clearwater Osteoarthritis Study. Osteoarthritis Cartilage 10, 611–616 (2002).

    CAS  PubMed  Google Scholar 

  4. Wellsandt, E. et al. Decreased knee joint loading associated with early knee osteoarthritis after anterior cruciate ligament injury. Am. J. Sports Med. 44, 143–151 (2016).

    PubMed  Google Scholar 

  5. Lohmander, L. S., Englund, P. M., Dahl, L. L. & Roos, E. M. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am. J. Sports Med. 35, 1756–1769 (2007).

    PubMed  Google Scholar 

  6. Cross, M. et al. The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 73, 1323–1330 (2014).

    PubMed  Google Scholar 

  7. Helmick, C. G. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 58, 15–25 (2008).

    PubMed  Google Scholar 

  8. Losina, E. et al. Lifetime medical costs of knee osteoarthritis management in the United States: impact of extending indications for total knee arthroplasty. Arthritis Care Res. 67, 203–215 (2015).

    Google Scholar 

  9. Birnbaum, H. et al. Societal cost of rheumatoid arthritis patients in the US. Curr. Med. Res. Opin. 26, 77–90 (2010).

    PubMed  Google Scholar 

  10. Hochberg, M. C. et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 64, 465–474 (2012).

    CAS  Google Scholar 

  11. Singh, J. A. et al. 2015 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Care Res. 68, 1–25 (2016).

    Google Scholar 

  12. Makris, E. A., Gomoll, A. H., Malizos, K. N., Hu, J. C. & Athanasiou, K. A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11, 21–34 (2015).

    CAS  PubMed  Google Scholar 

  13. Athanasiou, K. A., Darling, E. M., Hu, J. C., DuRaine, G. D. & Reddi, A. H. Articular Cartilage 2nd edn Ch. 4 257–389 (Taylor & Francis, 2016).

  14. Moran, C. J., Busilacchi, A., Lee, C. A., Athanasiou, K. A. & Verdonk, P. C. Biological augmentation and tissue engineering approaches in meniscus surgery. Arthroscopy 31, 944–955 (2015).

    PubMed  Google Scholar 

  15. Athanasiou, K. A. & Sanchez-Adams, J. Engineering the Knee Meniscus Ch. 3 35–53 (Morgan & Claypool, 2009).

  16. Curl, W. W. et al. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13, 456–460 (1997).

    CAS  PubMed  Google Scholar 

  17. Hjelle, K., Solheim, E., Strand, T., Muri, R. & Brittberg, M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18, 730–734 (2002).

    PubMed  Google Scholar 

  18. Flanigan, D. C., Harris, J. D., Trinh, T. Q., Siston, R. A. & Brophy, R. H. Prevalence of chondral defects in athletes’ knees: a systematic review. Med. Sci. Sports Exerc. 42, 1795–1801 (2010).

    PubMed  Google Scholar 

  19. Richter, D. L., Schenck, R. C. Jr, Wascher, D. C. & Treme, G. Knee articular cartilage repair and restoration techniques: a review of the literature. Sports Health 8, 153–160 (2016).

    PubMed  Google Scholar 

  20. Bedi, A., Feeley, B. T. & Williams, R. J. 3rd. Management of articular cartilage defects of the knee. J. Bone Joint Surg. Am. 92, 994–1009 (2010).

    PubMed  Google Scholar 

  21. Steadman, J. R., Rodkey, W. G. & Rodrigo, J. J. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. Relat. Res. 391, S362–S369 (2001).

    Google Scholar 

  22. Gudas, R. et al. Ten-year follow-up of a prospective, randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint of athletes. Am. J. Sports Med. 40, 2499–2508 (2012).

    PubMed  Google Scholar 

  23. Solheim, E., Hegna, J., Strand, T., Harlem, T. & Inderhaug, E. Randomized study of long-term (15–17 years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am. J. Sports Med. 46, 826–831 (2018).

    PubMed  Google Scholar 

  24. Albright, J. C. & Daoud, A. K. Microfracture and microfracture plus. Clin. Sports Med. 36, 501–507 (2017).

    PubMed  Google Scholar 

  25. Gao, L., Orth, P., Cucchiarini, M. & Madry, H. Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am. J. Sports Med. 47, 222–231 (2017).

    PubMed  Google Scholar 

  26. Krych, A. J. et al. Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 25, 3186–3196 (2017).

    PubMed  Google Scholar 

  27. Hangody, L. et al. Autologous osteochondral mosaicplasty. Surgical technique. J. Bone Joint Surg. Am. 86-A, S65–S72 (2004).

    Google Scholar 

  28. Arzi, B. et al. Cartilage immunoprivilege depends on donor source and lesion location. Acta Biomater. 23, 72–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Koh, J. L., Kowalski, A. & Lautenschlager, E. The effect of angled osteochondral grafting on contact pressure: a biomechanical study. Am. J. Sports Med. 34, 116–119 (2006).

    PubMed  Google Scholar 

  30. Koh, J. L., Wirsing, K., Lautenschlager, E. & Zhang, L. O. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am. J. Sports Med. 32, 317–320 (2004).

    PubMed  Google Scholar 

  31. Cook, J. L. et al. Importance of donor chondrocyte viability for osteochondral allografts. Am. J. Sports Med. 44, 1260–1268 (2016).

    PubMed  Google Scholar 

  32. Williams, R. J. 3rd, Ranawat, A. S., Potter, H. G., Carter, T. & Warren, R. F. Fresh stored allografts for the treatment of osteochondral defects of the knee. J. Bone Joint Surg. Am. 89, 718–726 (2007).

    PubMed  Google Scholar 

  33. Levy, Y. D., Gortz, S., Pulido, P. A., McCauley, J. C. & Bugbee, W. D. Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin. Orthop. Relat. Res. 471, 231–237 (2013).

    PubMed  Google Scholar 

  34. Hangody, L. & Fules, P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J. Bone Joint Surg. Am. 85-A, S25–S32 (2003).

    Google Scholar 

  35. Balazs, G. C. et al. Return to play among elite basketball players after osteochondral allograft transplantation of full-thickness cartilage lesions. Orthop. J. Sports Med. 6, 2325967118786941 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Hinckel, B. B., Gomoll, A. H. & Farr, J. 2nd Cartilage restoration in the patellofemoral joint. Am. J. Orthop. 46, 217–222 (2017).

    PubMed  Google Scholar 

  37. Dunkin, B. S. & Lattermann, C. New and emerging techniques in cartilage repair: MACI. Oper. Tech. Sports Med. 21, 100–107 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Ebert, J. R., Fallon, M., Wood, D. J. & Janes, G. C. A Prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am. J. Sports Med. 45, 59–69 (2017).

    PubMed  Google Scholar 

  39. Ebert, J. R., Fallon, M., Smith, A., Janes, G. C. & Wood, D. J. Prospective clinical and radiologic evaluation of patellofemoral matrix-induced autologous chondrocyte implantation. Am. J. Sports Med. 43, 1362–1372 (2015).

    PubMed  Google Scholar 

  40. Fillingham, Y. A., Riboh, J. C., Erickson, B. J., Bach, B. R. Jr & Yanke, A. B. Inside-out versus all-inside repair of isolated meniscal tears: an updated systematic review. Am. J. Sports Med. 45, 234–242 (2017).

    PubMed  Google Scholar 

  41. Barrett, G. R., Field, M. H., Treacy, S. H. & Ruff, C. G. Clinical results of meniscus repair in patients 40 years and older. Arthroscopy 14, 824–829 (1998).

    CAS  PubMed  Google Scholar 

  42. Eggli, S., Wegmuller, H., Kosina, J., Huckell, C. & Jakob, R. P. Long-term results of arthroscopic meniscal repair. An analysis of isolated tears. Am. J. Sports Med. 23, 715–720 (1995).

    CAS  PubMed  Google Scholar 

  43. Kim, S., Bosque, J., Meehan, J. P., Jamali, A. & Marder, R. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J. Bone Joint Surg. Am. 93, 994–1000 (2011).

    PubMed  Google Scholar 

  44. Papalia, R., Del Buono, A., Osti, L., Denaro, V. & Maffulli, N. Meniscectomy as a risk factor for knee osteoarthritis: a systematic review. Br. Med. Bull. 99, 89–106 (2011).

    PubMed  Google Scholar 

  45. Abrams, G. D. et al. Trends in meniscus repair and meniscectomy in the United States, 2005–2011. Am. J. Sports Med. 41, 2333–2339 (2013).

    PubMed  Google Scholar 

  46. Johnson, M. J., Lucas, G. L., Dusek, J. K. & Henning, C. E. Isolated arthroscopic meniscal repair: a long-term outcome study (more than 10 years). Am. J. Sports Med. 27, 44–49 (1999).

    CAS  PubMed  Google Scholar 

  47. Pujol, N., Bohu, Y., Boisrenoult, P., Macdes, A. & Beaufils, P. Clinical outcomes of open meniscal repair of horizontal meniscal tears in young patients. Knee Surg. Sports Traumatol. Arthrosc. 21, 1530–1533 (2013).

    PubMed  Google Scholar 

  48. Choi, N. H., Kim, T. H., Son, K. M. & Victoroff, B. N. Meniscal repair for radial tears of the midbody of the lateral meniscus. Am. J. Sports Med. 38, 2472–2476 (2010).

    PubMed  Google Scholar 

  49. Wasserstein, D. et al. A matched-cohort population study of reoperation after meniscal repair with and without concomitant anterior cruciate ligament reconstruction. Am. J. Sports Med. 41, 349–355 (2013).

    PubMed  Google Scholar 

  50. Hutchinson, I. D., Moran, C. J., Potter, H. G., Warren, R. F. & Rodeo, S. A. Restoration of the meniscus: form and function. Am. J. Sports Med. 42, 987–998 (2014).

    PubMed  Google Scholar 

  51. Zhang, Z., Arnold, J. A., Williams, T. & McCann, B. Repairs by trephination and suturing of longitudinal injuries in the avascular area of the meniscus in goats. Am. J. Sports Med. 23, 35–41 (1995).

    CAS  PubMed  Google Scholar 

  52. Taylor, S. A. & Rodeo, S. A. Augmentation techniques for isolated meniscal tears. Curr. Rev. Musculoskelet. Med. 6, 95–101 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Henning, C. E. et al. Arthroscopic meniscal repair using an exogenous fibrin clot. Clin. Orthop. Relat. Res. 252, 64–72 (1990).

    Google Scholar 

  54. Dean, C. S., Chahla, J., Matheny, L. M., Mitchell, J. J. & LaPrade, R. F. Outcomes after biologically augmented isolated meniscal repair with marrow venting are comparable with those after meniscal repair with concomitant anterior cruciate ligament reconstruction. Am. J. Sports Med. 45, 1341–1348 (2017).

    PubMed  Google Scholar 

  55. Verdonk, R. et al. Indications and limits of meniscal allografts. Injury 44 (Suppl. 1), 21–27 (2013).

    Google Scholar 

  56. Rodeo, S. A. Meniscal allografts—where do we stand? Am. J. Sports Med. 29, 246–261 (2001).

    CAS  PubMed  Google Scholar 

  57. Lee, S. R., Kim, J. G. & Nam, S. W. The tips and pitfalls of meniscus allograft transplantation. Knee Surg. Relat. Res. 24, 137–145 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Dienst, M., Greis, P. E., Ellis, B. J., Bachus, K. N. & Burks, R. T. Effect of lateral meniscal allograft sizing on contact mechanics of the lateral tibial plateau: an experimental study in human cadaveric knee joints. Am. J. Sports Med. 35, 34–42 (2007).

    PubMed  Google Scholar 

  59. Vundelinckx, B., Vanlauwe, J. & Bellemans, J. Long-term subjective, clinical, and radiographic outcome evaluation of meniscal allograft transplantation in the knee. Am. J. Sports Med. 42, 1592–1599 (2014).

    PubMed  Google Scholar 

  60. Lee, S. M. et al. Long-term outcomes of meniscal allograft transplantation with and without extrusion: mean 12.3-year follow-up study. Am. J. Sports Med. 47, 815–821 (2019).

    PubMed  Google Scholar 

  61. van Tienen, T. G., Hannink, G. & Buma, P. Meniscus replacement using synthetic materials. Clin. Sport Med. 28, 143–156 (2009).

    Google Scholar 

  62. Bulgheroni, E. et al. Long-term outcomes of medial CMI implant versus partial medial meniscectomy in patients with concomitant ACL reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 23, 3221–3227 (2015).

    PubMed  Google Scholar 

  63. Schuttler, K. F. et al. Midterm follow-up after implantation of a polyurethane meniscal scaffold for segmental medial meniscus loss: maintenance of good clinical and MRI outcome. Knee Surg. Sports Traumatol. Arthrosc. 24, 1478–1484 (2016).

    PubMed  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02136901 (2018).

  65. Marinescu, R. & Antoniac, I. in Handbook of Bioceramics and Biocomposite (ed. Antoniac, I. V.) 1–31 (Springer, Cham, 2015).

  66. Kramer, D. E. & Micheli, L. J. Meniscal tears and discoid meniscus in children: diagnosis and treatment. J. Am. Acad. Orthop. Surg. 17, 698–707 (2009).

    PubMed  Google Scholar 

  67. Adirim, T. A. & Cheng, T. L. Overview of injuries in the young athlete. Sports Med. 33, 75–81 (2003).

    PubMed  Google Scholar 

  68. Beck, N. A., Lawrence, J. T. R., Nordin, J. D., DeFor, T. A. & Tompkins, M. ACL tears in school-aged children and adolescents over 20 years. Pediatrics 139, e20161877 (2017).

    PubMed  Google Scholar 

  69. Kreuz, P. C. et al. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy 22, 1180–1186 (2006).

    PubMed  Google Scholar 

  70. Asik, M., Ciftci, F., Sen, C., Erdil, M. & Atalar, A. The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy 24, 1214–1220 (2008).

    PubMed  Google Scholar 

  71. Mithoefer, K., McAdams, T., Williams, R. J., Kreuz, P. C. & Mandelbaum, B. R. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am. J. Sports Med. 37, 2053–2063 (2009).

    PubMed  Google Scholar 

  72. Mithoefer, K. et al. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J. Bone Joint Surg. Am. 87, 1911–1920 (2005).

    PubMed  Google Scholar 

  73. Gudas, R. et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 21, 1066–1075 (2005).

    PubMed  Google Scholar 

  74. Murphy, R. T., Pennock, A. T. & Bugbee, W. D. Osteochondral allograft transplantation of the knee in the pediatric and adolescent population. Am. J. Sports Med. 42, 635–640 (2014).

    PubMed  Google Scholar 

  75. Frank, R. M. et al. Osteochondral allograft transplantation of the knee: analysis of failures at 5 years. Am. J. Sports Med. 45, 864–874 (2017).

    PubMed  Google Scholar 

  76. Micheli, L. J. et al. Articular cartilage defects of the distal femur in children and adolescents: treatment with autologous chondrocyte implantation. J. Pediatr. Orthop. 26, 455–460 (2006).

    PubMed  Google Scholar 

  77. Mithofer, K., Minas, T., Peterson, L., Yeon, H. & Micheli, L. J. Functional outcome of knee articular cartilage repair in adolescent athletes. Am. J. Sports Med. 33, 1147–1153 (2005).

    PubMed  Google Scholar 

  78. Knutsen, G. et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J. Bone Joint Surg. Am. 86, 455–464 (2004).

    PubMed  Google Scholar 

  79. Saris, D. B. et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am. J. Sports Med. 37 (Suppl. 1), 10–19 (2009).

    Google Scholar 

  80. Gudas, R., Stankevicius, E., Monastyreckiene, E., Pranys, D. & Kalesinskas, R. J. Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes. Knee Surg. Sports Traumatol. Arthrosc. 14, 834–842 (2006).

    PubMed  Google Scholar 

  81. Kon, E. et al. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am. J. Sports Med. 37, 33–41 (2009).

    PubMed  Google Scholar 

  82. Noyes, F. R. & Barber-Westin, S. D. Meniscus transplantation: indications, techniques, clinical outcomes. Instr. Course Lect. 54, 341–353 (2005).

    PubMed  Google Scholar 

  83. Riboh, J. C., Tilton, A. K., Cvetanovich, G. L., Campbell, K. A. & Cole, B. J. Meniscal allograft transplantation in the adolescent population. Arthroscopy 32, 1133–1140 (2016).

    PubMed  Google Scholar 

  84. Steadman, J. R. et al. Meniscus suture repair: minimum 10-year outcomes in patients younger than 40 years compared with patients 40 and older. Am. J. Sports Med. 43, 2222–2227 (2015).

    PubMed  Google Scholar 

  85. Rothermel, S. D., Smuin, D. & Dhawan, A. Are outcomes after meniscal repair age dependent? A systematic review. Arthroscopy 34, 979–987 (2018).

    PubMed  Google Scholar 

  86. Nepple, J. J., Dunn, W. R. & Wright, R. W. Meniscal repair outcomes at greater than five years: a systematic literature review and meta-analysis. J. Bone Joint Surg. Am. 94, 2222–2227 (2012).

    PubMed  PubMed Central  Google Scholar 

  87. Shyh-Chang, N. et al. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778–792 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Makris, E. A., Hadidi, P. & Athanasiou, K. A. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32, 7411–7431 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bhattacharjee, M. et al. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv. Drug Deliv. Rev. 84, 107–122 (2015).

    CAS  PubMed  Google Scholar 

  90. Rowland, C. R., Colucci, L. A. & Guilak, F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials 91, 57–72 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shimomura, K., Rothrauff, B. B. & Tuan, R. S. Region-specific effect of the decellularized meniscus extracellular matrix on mesenchymal stem cell-based meniscus tissue engineering. Am. J. Sports Med. 45, 604–611 (2017).

    PubMed  Google Scholar 

  92. Liu, M. et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5, 17014 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Guo, T., Lembong, J., Zhang, L. G. & Fisher, J. P. Three-dimensional printing articular cartilage: recapitulating the complexity of native tissue. Tissue Eng. B 23, 225–236 (2017).

    Google Scholar 

  94. Shen, S. et al. 3D printing-based strategies for functional cartilage regeneration. Tissue Eng. B https://doi.org/10.1089/ten.teb.2018.0248 (2019).

    Article  Google Scholar 

  95. Athanasiou, K. A., Eswaramoorthy, R., Hadidi, P. & Hu, J. C. Self-organization and the self-assembling process in tissue engineering. Annu. Rev. Biomed. Eng. 15, 115–136 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hu, J. C. & Athanasiou, K. A. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 12, 969–979 (2006).

    CAS  PubMed  Google Scholar 

  97. Hoben, G. M., Hu, J. C., James, R. A. & Athanasiou, K. A. Self-assembly of fibrochondrocytes and chondrocytes for tissue engineering of the knee meniscus. Tissue Eng. 13, 939–946 (2007).

    CAS  PubMed  Google Scholar 

  98. Ofek, G. et al. Matrix development in self-assembly of articular cartilage. PLoS One 3, e2795 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Lee, J. K. et al. Tension stimulation drives tissue formation in scaffold-free systems. Nat. Mater. 16, 864–873 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Elder, B. D. & Athanasiou, K. A. Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs. Osteoarthritis Cartilage 17, 114–123 (2009).

    CAS  PubMed  Google Scholar 

  101. Little, C. J., Bawolin, N. K. & Chen, X. Mechanical properties of natural cartilage and tissue-engineered constructs. Tissue Eng. B 17, 213–227 (2011).

    CAS  Google Scholar 

  102. Gunja, N. J., Huey, D. J., James, R. A. & Athanasiou, K. A. Effects of agarose mould compliance and surface roughness on self-assembled meniscus-shaped constructs. J. Tissue Eng. Regen. Med. 3, 521–530 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Makris, E. A., MacBarb, R. F., Paschos, N. K., Hu, J. C. & Athanasiou, K. A. Combined use of chondroitinase-ABC, TGF-β1, and collagen crosslinking agent lysyl oxidase to engineer functional neotissues for fibrocartilage repair. Biomaterials 35, 6787–6796 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhu, D., Tong, X., Trinh, P. & Yang, F. Mimicking cartilage tissue zonal organization by engineering tissue-scale gradient hydrogels as 3D cell niche. Tissue Eng. A 24, 1–10 (2018).

    Google Scholar 

  105. Steele, J. A. et al. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomater. 10, 2065–2075 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zitnay, J. L. et al. Fabrication of dense anisotropic collagen scaffolds using biaxial compression. Acta Biomater. 65, 76–87 (2018).

    CAS  PubMed  Google Scholar 

  107. Higashioka, M. M., Chen, J. A., Hu, J. C. & Athanasiou, K. A. Building an anisotropic meniscus with zonal variations. Tissue Eng. A 20, 294–302 (2014).

    Google Scholar 

  108. Darling, E. M. & Athanasiou, K. A. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23, 425–432 (2005).

    CAS  PubMed  Google Scholar 

  109. Huwe, L. W., Brown, W. E., Hu, J. C. & Athanasiou, K. A. Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J. Tissue Eng. Regen. Med. 12, 1163–1176 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kwon, H., O’Leary, S. A., Hu, J. C. & Athanasiou, K. A. Translating the application of transforming growth factor-β1, chondroitinase-ABC, and lysyl oxidase-like 2 for mechanically robust tissue-engineered human neocartilage. J. Tissue Eng. Regen. Med. 13, 283–294 (2019).

    CAS  PubMed  Google Scholar 

  111. Murphy, M. K., Huey, D. J., Hu, J. C. & Athanasiou, K. A. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells 33, 762–773 (2015).

    CAS  PubMed  Google Scholar 

  112. Pelttari, K. et al. Adult human neural crest-derived cells for articular cartilage repair. Sci. Transl Med. 6, 251ra119 (2014).

    PubMed  Google Scholar 

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02673905 (2018).

  114. Bianchi, V. J., Weber, J. F., Waldman, S. D., Backstein, D. & Kandel, R. A. Formation of hyaline cartilage tissue by passaged human osteoarthritic chondrocytes. Tissue Eng. A 23, 156–165 (2017).

    CAS  Google Scholar 

  115. Kwon, H. et al. Tissue engineering potential of human dermis-isolated adult stem cells from multiple anatomical locations. PLoS One 12, e0182531 (2017).

    PubMed  PubMed Central  Google Scholar 

  116. Lavoie, J. F. et al. Skin-derived precursors differentiate into skeletogenic cell types and contribute to bone repair. Stem Cells Dev. 18, 893–906 (2009).

    CAS  PubMed  Google Scholar 

  117. Fu, W. L., Zhou, C. Y. & Yu, J. K. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am. J. Sports Med. 42, 592–601 (2014).

    PubMed  Google Scholar 

  118. Chang, N. J. et al. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits. Osteoarthritis Cartilage 21, 1613–1622 (2013).

    PubMed  Google Scholar 

  119. Jiang, Y. et al. Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Transl Med. 5, 733–744 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Somoza, R. A., Welter, J. F., Correa, D. & Caplan, A. I. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng. B 20, 596–608 (2014).

    Google Scholar 

  121. Chen, S., Fu, P., Cong, R., Wu, H. & Pei, M. Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis. 2, 76–95 (2015).

    PubMed  PubMed Central  Google Scholar 

  122. Kwon, H., Paschos, N. K., Hu, J. C. & Athanasiou, K. Articular cartilage tissue engineering: the role of signaling molecules. Cell. Mol. Life Sci. 73, 1173–1194 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Feng, Q. et al. Sulfated hyaluronic acid hydrogels with retarded degradation and enhanced growth factor retention promote hMSC chondrogenesis and articular cartilage integrity with reduced hypertrophy. Acta Biomater. 53, 329–342 (2017).

    CAS  PubMed  Google Scholar 

  124. Amann, E., Wolff, P., Breel, E., van Griensven, M. & Balmayor, E. R. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Acta Biomater. 52, 130–144 (2017).

    CAS  PubMed  Google Scholar 

  125. Liu, Q. et al. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Acta Biomater. 76, 29–38 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Johnson, K. et al. A stem cell-based approach to cartilage repair. Science 336, 717–721 (2012).

    CAS  PubMed  Google Scholar 

  127. Cai, G. et al. Recent advances in kartogenin for cartilage regeneration. J. Drug Target 27, 28–32 (2019).

    CAS  PubMed  Google Scholar 

  128. Bian, L. et al. Influence of temporary chondroitinase ABC-induced glycosaminoglycan suppression on maturation of tissue-engineered cartilage. Tissue Eng. A 15, 2065–2072 (2009).

    CAS  Google Scholar 

  129. Natoli, R. M., Revell, C. M. & Athanasiou, K. A. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage. Tissue Eng. A 15, 3119–3128 (2009).

    CAS  Google Scholar 

  130. Makris, E. A., Responte, D. J., Paschos, N. K., Hu, J. C. & Athanasiou, K. A. Developing functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking. Proc. Natl Acad. Sci. USA 111, E4832–E4841 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Makris, E. A., Hu, J. C. & Athanasiou, K. A. Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartilage. Osteoarthritis Cartilage 21, 634–641 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Athanasiou, K. A., Darling, E. M., Hu, J. C., DuRaine, G. D. & Reddi, A. H. Articular Cartilage 2nd edn Ch. 1 18–25 (Taylor & Francis, 2016).

  133. Huwe, L. W., Sullan, G. K., Hu, J. C. & Athanasiou, K. A. Using costal chondrocytes to engineer articular cartilage with applications of passive axial compression and bioactive stimuli. Tissue Eng. A 24, 516–526 (2018).

    CAS  Google Scholar 

  134. Meinert, C., Schrobback, K., Hutmacher, D. W. & Klein, T. J. A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Sci. Rep. 7, 16997 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. Son, M. S. & Levenston, M. E. Quantitative tracking of passage and 3D culture effects on chondrocyte and fibrochondrocyte gene expression. J. Tissue Eng. Regen. Med. 11, 1185–1194 (2017).

    CAS  PubMed  Google Scholar 

  136. Zellner, J. et al. Role of mesenchymal stem cells in tissue engineering of meniscus. J. Biomed. Mater. Res. A 94, 1150–1161 (2010).

    PubMed  Google Scholar 

  137. Moriguchi, Y. et al. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials 34, 2185–2193 (2013).

    CAS  PubMed  Google Scholar 

  138. Sasaki, H. et al. In vitro repair of meniscal radial tear with hydrogels seeded with adipose stem cells and TGF-β3. Am. J. Sports Med. 46, 2402–2413 (2018).

    PubMed  Google Scholar 

  139. Koh, R. H., Jin, Y. J., Kang, B. J. & Hwang, N. S. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomater. 53, 318–328 (2017).

    CAS  PubMed  Google Scholar 

  140. Xie, X. et al. A co-culture system of rat synovial stem cells and meniscus cells promotes cell proliferation and differentiation as compared to mono-culture. Sci. Rep. 8, 7693 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Hadidi, P. et al. Tendon and ligament as novel cell sources for engineering the knee meniscus. Osteoarthritis Cartilage 24, 2126–2134 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Pangborn, C. A. & Athanasiou, K. A. Growth factors and fibrochondrocytes in scaffolds. J. Orthop. Res. 23, 1184–1190 (2005).

    CAS  PubMed  Google Scholar 

  143. Bonnevie, E. D., Puetzer, J. L. & Bonassar, L. J. Enhanced boundary lubrication properties of engineered menisci by lubricin localization with insulin-like growth factor I treatment. J. Biomech. 47, 2183–2188 (2014).

    PubMed  Google Scholar 

  144. Lee, C. H. et al. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci. Transl Med. 6, 266ra171 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Liang, Y. et al. Plasticity of human meniscus fibrochondrocytes: a study on effects of mitotic divisions and oxygen tension. Sci. Rep. 7, 12148 (2017).

    PubMed  PubMed Central  Google Scholar 

  146. Croutze, R., Jomha, N., Uludag, H. & Adesida, A. Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions. BMC Musculoskelet. Disord. 14, 353 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. Huey, D. J. & Athanasiou, K. A. Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs. PLoS One 6, e27857 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zellner, J. et al. Dynamic hydrostatic pressure enhances differentially the chondrogenesis of meniscal cells from the inner and outer zone. J. Biomech. 48, 1479–1484 (2015).

    CAS  PubMed  Google Scholar 

  149. Puetzer, J. L. & Bonassar, L. J. Physiologically distributed loading patterns drive the formation of zonally organized collagen structures in tissue-engineered meniscus. Tissue Eng. A 22, 907–916 (2016).

    CAS  Google Scholar 

  150. MacBarb, R. F., Chen, A. L., Hu, J. C. & Athanasiou, K. A. Engineering functional anisotropy in fibrocartilage neotissues. Biomaterials 34, 9980–9989 (2013).

    CAS  PubMed  Google Scholar 

  151. Huang, B. J., Hu, J. C. & Athanasiou, K. A. Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98, 1–22 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. McCormick, F. et al. Treatment of focal cartilage defects with a juvenile allogeneic 3-dimensional articular cartilage graft. Oper. Tech. Sports Med. 21, 95–99 (2013).

    Google Scholar 

  153. Park, Y. B., Ha, C. W., Lee, C. H., Yoon, Y. C. & Park, Y. G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med. 6, 613–621 (2017).

    CAS  PubMed  Google Scholar 

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01733186 (2018).

  155. Rhee, C., Amar, E., Glazebrook, M., Coday, C. & Wong, I. H. Safety profile and short-term outcomes of BST-CarGel as an adjunct to microfracture for the treatment of chondral lesions of the hip. Orthop. J. Sports Med. 6, 2325967118789871 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Tahoun, M. et al. Results of arthroscopic treatment of chondral delamination in femoroacetabular impingement with bone marrow stimulation and BST-CarGel((R)). SICOT J. 3, 51 (2017).

    PubMed  PubMed Central  Google Scholar 

  157. Thier, S., Weiss, C. & Fickert, S. Arthroscopic autologous chondrocyte implantation in the hip for the treatment of full-thickness cartilage defects—a case series of 29 patients and review of the literature. SICOT J. 3, 72 (2017).

    PubMed  PubMed Central  Google Scholar 

  158. Whitehouse, M. R. et al. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl Med. 6, 1237–1248 (2017).

    CAS  PubMed  Google Scholar 

  159. Vangsness, C. T. Jr. et al. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J. Bone Joint Surg. 96, 90–98 (2014).

    PubMed  Google Scholar 

  160. Murphy, M. K., Masters, T. E., Hu, J. C. & Athanasiou, K. A. Engineering a fibrocartilage spectrum through modulation of aggregate redifferentiation. Cell Transplant. 24, 235–245 (2015).

    PubMed  Google Scholar 

  161. Martin, F., Lehmann, M., Sack, U. & Anderer, U. Featured article: In vitro development of personalized cartilage microtissues uncovers an individualized differentiation capacity of human chondrocytes. Exp. Biol. Med. 242, 1746–1756 (2017).

    CAS  Google Scholar 

  162. Vapniarsky, N. et al. Tissue engineering toward temporomandibular joint disc regeneration. Sci. Transl Med. 10, eaaq1802 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. US Food & Drug Administration. Guidance for industry: eligibility determination for donors of human cells, tissues, and cellular and tissue-based products (HCT/Ps). FDA.gov https://www.fda.gov/media/73072/download (2015).

  164. Arvayo, A. L., Wong, I. J., Dragoo, J. L. & Levenston, M. E. Enhancing integration of articular cartilage grafts via photochemical bonding. J. Orthop. Res. 36, 2406–2415 (2018).

    CAS  PubMed  Google Scholar 

  165. Athens, A. A., Makris, E. A. & Hu, J. C. Induced collagen cross-links enhance cartilage integration. PLoS One 8, e60719 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Utomo, L., van Osch, G. J., Bayon, Y., Verhaar, J. A. & Bastiaansen-Jenniskens, Y. M. Guiding synovial inflammation by macrophage phenotype modulation: an in vitro study towards a therapy for osteoarthritis. Osteoarthritis Cartilage 24, 1629–1638 (2016).

    CAS  PubMed  Google Scholar 

  167. Lai, J. H. et al. Interaction between osteoarthritic chondrocytes and adipose-derived stem cells is dependent on cell distribution in three-dimension and transforming growth factor-β3 induction. Tissue Eng. A 21, 992–1002 (2015).

    CAS  Google Scholar 

  168. Elder, B. D., Eleswarapu, S. V. & Athanasiou, K. A. Extraction techniques for the decellularization of tissue engineered articular cartilage constructs. Biomaterials 30, 3749–3756 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Cissell, D. D., Hu, J. C., Griffiths, L. G. & Athanasiou, K. A. Antigen removal for the production of biomechanically functional, xenogeneic tissue grafts. J. Biomech. 47, 1987–1996 (2014).

    PubMed  Google Scholar 

  170. McNickle, A. G., Wang, V. M., Shewman, E. F., Cole, B. J. & Williams, J. M. Performance of a sterile meniscal allograft in an ovine model. Clin. Orthop. Relat. Res. 467, 1868–1876 (2009).

    PubMed  Google Scholar 

  171. US Food & Drug Administration. Expedited programs for regenerative medicine therapies for serious conditions: guidance for industry. FDA.gov https://www.fda.gov/media/120267/download (2017).

  172. Nehrer, S., Chiari, C., Domayer, S., Barkay, H. & Yayon, A. Results of chondrocyte implantation with a fibrin-hyaluronan matrix: a preliminary study. Clin. Orthop. Relat. Res. 466, 1849–1855 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Domayer, S. E. et al. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: preliminary results. Eur. J. Radiol. 73, 636–642 (2010).

    CAS  PubMed  Google Scholar 

  174. Fontana, A., Bistolfi, A., Crova, M., Rosso, F. & Massazza, G. Arthroscopic treatment of hip chondral defects: autologous chondrocyte transplantation versus simple debridement—a pilot study. Arthroscopy 28, 322–329 (2012).

    PubMed  Google Scholar 

  175. Ossendorf, C. et al. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Res. Ther. 9, R41 (2007).

    PubMed  PubMed Central  Google Scholar 

  176. Kreuz, P. C., Muller, S., Ossendorf, C., Kaps, C. & Erggelet, C. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res. Ther. 11, R33 (2009).

    PubMed  PubMed Central  Google Scholar 

  177. Stanish, W. D. et al. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J. Bone Joint Surg. Am. 95, 1640–1650 (2013).

    PubMed  Google Scholar 

  178. Schneider, U. et al. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. Am. J. Sports Med. 39, 2558–2565 (2011).

    PubMed  Google Scholar 

  179. Cole, B. J. et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am. J. Sports Med. 39, 1170–1179 (2011).

    PubMed  Google Scholar 

  180. Selmi, T. A. et al. Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: outcome at two years. J. Bone Joint Surg. Br. 90, 597–604 (2008).

    CAS  PubMed  Google Scholar 

  181. Clave, A. et al. Third-generation autologous chondrocyte implantation versus mosaicplasty for knee cartilage injury: 2-year randomized trial. J. Orthop. Res. 34, 658–665 (2016).

    CAS  PubMed  Google Scholar 

  182. Fickert, S. et al. One-year clinical and radiological results of a prospective, investigator-initiated trial examining a novel, purely autologous 3-dimensional autologous chondrocyte transplantation product in the knee. Cartilage 3, 27–42 (2012).

    PubMed  PubMed Central  Google Scholar 

  183. Meyer, U., Meyer, Th., Handschel, J. & Wiesmann, H. P. (eds) Fundamentals of Tissue Engineering and Regenerative Medicine (Springer, 2009).

  184. Gobbi, A. et al. One-step surgery with multipotent stem cells and hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg. Sports Traumatol. Arthrosc. 25, 2494–2501 (2017).

    PubMed  Google Scholar 

  185. Marcacci, M. et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results. Clin. Orthopaed. Related Res. 435, 96–105 (2005).

    Google Scholar 

  186. Nehrer, S. et al. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur. J. Radiol. 57, 3–8 (2006).

    CAS  PubMed  Google Scholar 

  187. Tognana, E., Borrione, A., De Luca, C. & Pavesio, A. Hyalograft C: hyaluronan-based scaffolds in tissue-engineered cartilage. Cells Tissues Organs 186, 97–103 (2007).

    CAS  PubMed  Google Scholar 

  188. Brittberg, M. in Techniques in Cartilage Repair Surgery Ch. 19 (eds Shetty, A. A. et al.) 227–235 (Springer, 2014).

  189. Hendriks, J. et al. First clinical experience with INSTRUCT—a single surgery, autologous cell based technology for cartilage repair [poster]. CellCoTec http://www.cellcotec.com/wp-content/uploads/2017/11/P187-first-clinical-experience-with-INSTRUCT-final2.pdf (2013).

  190. Zak, L. et al. Results 2 years after matrix-associated autologous chondrocyte transplantation using the Novocart 3D scaffold: an analysis of clinical and radiological data. Am. J. Sports Med. 42, 1618–1627 (2014).

    PubMed  Google Scholar 

  191. Crawford, D. C., DeBerardino, T. M. & Williams, R. J. 3rd NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J. Bone Joint Surg. Am. 94, 979–989 (2012).

    PubMed  Google Scholar 

  192. Crawford, D. C. et al. An autologous cartilage tissue implant NeoCart for treatment of grade III chondral injury to the distal femur: prospective clinical safety trial at 2 years. Am. J. Sports Med. 37, 1334–1343 (2009).

    PubMed  Google Scholar 

  193. Mizuno, S., Kusanagi, A., Tarrant, L. J. B., Tokuno, T. & Smith, R. L. Systems for cartilage repair. US Patent 20130273121A1 (2013).

  194. Mumme, M. et al. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet 388, 1985–1994 (2016).

    CAS  PubMed  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00729716 (2012).

  196. European Medicines Agency. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2011-003594-28/DE (2011).

  197. German Institute of Medical Documentation and Information. German Clinical Trials Register http://www.drks.de/DRKS00010658 (2016).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02981355 (2018).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02540200 (2016).

  200. Shive, M. S. et al. BST-CarGel(R) treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage 6, 62–72 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01498029 (2012).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00881023 (2016).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00945399 (2015).

  204. European Medicines Agency. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2007-003481-18/BE (2008).

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01626677 (2017).

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01041001 (2017).

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01222559 (2018).

  208. Becher, C. et al. Safety of three different product doses in autologous chondrocyte implantation: results of a prospective, randomised, controlled trial. J. Orthop. Surg. Res. 12, 71 (2017).

    PubMed  PubMed Central  Google Scholar 

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02659215 (2018).

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03219307 (2019).

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02348697 (2019).

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01957722 (2019).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01656902 (2018).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03319797 (2019).

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02941120 (2019).

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02179346 (2019).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01066702 (2019).

  218. Anderson, D. E. et al. Magnetic resonance imaging characterization and clinical outcomes after neocart surgical therapy as a primary reparative treatment for knee cartilage injuries. Am. J. Sports Med. 45, 875–883 (2017).

    PubMed  Google Scholar 

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01400607 (2017).

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00702741 (2014).

  221. European Medicines Agency. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-024162-22/GB (2011).

Download references

Acknowledgements

The work of the authors was supported by the National Institutes of Health (grants R01AR067821 and R01AR071457 to K.A.A.), and by funds provided by the Henry Samueli Chair in Engineering.

Peer review information

Nature Reviews Rheumatology thanks H. Madry, E. Kon and D. J. Kelly for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

H.K., W.E.B., C.A.L., D.W., N.P. and J.C.H. researched data for this article. All authors provided substantial contributions to the discussion of content, wrote the article and reviewed and/or edited the article before submission. H.K. and W.E.B. contributed equally to this article.

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Ethics declarations

Competing interests

W.E.B. declares she is the Director of Outreach and a social media contributor for Science Cheerleaders, Incorporated. C.A.L. declares she is on the advisory board of Vericel. N.P. declares he is an associate editor of the Arthroscopy Journal. K.A.A. declares he is on the scientific advisory board of Histogenics. K.A.A., J.C.H., H.K. and W.E.B. declare they are listed as co-authors of submitted US patent applications (16/136,894 and 16/137,120). D.W. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Debridement

The removal of damaged tissue and/or torn fragments from a defect.

Hoop stresses

Compressive forces experienced by the meniscus in the circumferential direction.

Rasping

Mechanical scraping to expose fresh and/or bleeding tissue.

Radial trephination

Puncturing small holes into the joint lining and/or synovium and into the tissue to stimulate healing.

Bone plugs

Created or fashioned bone cylinders containing the enthesis of the meniscal roots.

Common bone bridge

Excised bone containing and preserving the anatomic relationship between the anterior and posterior meniscal horns (also known as ‘slot’).

Hemi-plateau

Half of the tibial plateau, containing the articular surface, subchondral bone and meniscus with root attachments.

Lysholm score

A scoring system used to measure changes in limping, support, locking, instability, pain, swelling, stair climbing and squatting (originally developed to evaluate outcomes of knee ligament surgery).

Stress shielding

Protection of tissue from normal mechanical stresses by the presence of a much stiffer implant, often resulting in tissue loss.

Self-assembling process

A scaffold-free technology that produces tissues that demonstrate spontaneous organization without external forces via the minimization of free energy through cell-to-cell interactions.

Anisotropy

Having directionally dependent properties.

International Knee Documentation Committee (IKDC) score

A scoring system used to measure symptoms, sports and daily activities, current knee function and function before injury.

International Cartilage Repair Society (ICRS)-Cartilage Repair Assessment System

A tool used to macroscopically evaluate the quality of cartilage repair tissue.

International Hip Outcome Tool

A tool used to measure symptoms, functional limitation, work-related concerns, sports and recreational activities, and social, emotional and lifestyle concerns using a visual analogue scale.

Tegner–Lysholm score

A patient-reported score of the effect of knee pain and stability on daily life.

Range of motion (ROM) score

A measurement of the range of flexion and extension of a joint.

Tribological properties

Functional properties relating to friction and lubrication of tissues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, H., Brown, W.E., Lee, C.A. et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 15, 550–570 (2019). https://doi.org/10.1038/s41584-019-0255-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0255-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research