Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systemic effects of IL-17 in inflammatory arthritis

Abstract

Inflammatory arthritis occurs in many diseases and is characterized by joint inflammation and damage. However, the inflammatory state in arthritis is commonly associated with systemic manifestations, which are generally linked to a poor prognosis. The pro-inflammatory cytokine IL-17 functions within a complex network of cytokines and contributes to the pathogenesis of various inflammatory diseases. Three IL-17 inhibitors have already been approved for the treatment of psoriasis, psoriatic arthritis, and ankylosing spondylitis. After a brief description of IL-17 and its local effects on joints, this Review focuses on the systemic effects of IL-17 in inflammatory arthritis. Increased circulating concentrations of bioactive IL-17 mediate changes in blood vessels, liver and cardiac and skeletal muscles. The effects of IL-17 on vascular and cardiac cells might contribute to the increased risk of cardiovascular events that occurs in all patients with inflammatory disorders. In the liver, IL-17 contributes to the high circulating concentrations of acute-phase proteins, such as C-reactive protein, and the appearance of liver lesions. In skeletal muscle, IL-17 contributes to muscle contractibility defects and weakness. Thus, targeting IL-17 might have beneficial effects at both local and systemic levels, and could also be proposed for the treatment of a wider range of inflammatory diseases.

Key points

  • Inflammatory arthritis is associated with systemic comorbidities that lead to a poor prognosis.

  • Alone, or in cooperation with other cytokines, IL-17 participates in the establishment and chronicity of several inflammatory diseases, including inflammatory arthritis.

  • IL-17 can mediate pleiotropic effects throughout the body as IL-17 receptors are expressed on most cell types.

  • IL-17 contributes to the increased risk of cardiovascular events common to inflammatory diseases by affecting vascular and cardiac cells.

  • IL-17 induces increased concentrations of C-reactive protein and contributes to liver changes by inducing an inflammatory response in liver cells.

  • The systemic effects of IL-17 suggest that targeting this cytokine might be beneficial for the treatment of arthritic and non-arthritic conditions, in addition to inflammatory arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main biological functions of IL-17.
Fig. 2: Effects of IL-17 on cells of the blood vessels, liver, heart and skeletal muscle.
Fig. 3: Systemic effects of IL-17.

Similar content being viewed by others

References

  1. Symmons, D. P. M. & Gabriel, S. E. Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nat. Rev. Rheumatol. 7, 399–408 (2011).

    Article  PubMed  Google Scholar 

  2. Prasad, M. et al. Cardiorheumatology: cardiac involvement in systemic rheumatic disease. Nat. Rev. Cardiol. 12, 168–176 (2015).

    Article  PubMed  Google Scholar 

  3. Crowson, C. S. et al. Rheumatoid arthritis and cardiovascular disease. Am. Heart J. 166, 622–628 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beringer, A., Noack, M. & Miossec, P. IL-17 in chronic inflammation: from discovery to targeting. Trends Mol. Med. 22, 230–241 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Lubberts, E. The IL-23-IL-17 axis in inflammatory arthritis. Nat. Rev. Rheumatol. 11, 415–429 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Gaffen, S. L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556–567 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Robert, M. & Miossec, P. IL-17 in rheumatoid arthritis and precision medicine: from synovitis expression to circulating bioactive levels. Front. Med. 5, 364 (2019).

    Article  Google Scholar 

  8. Onishi, R. M. & Gaffen, S. L. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129, 311–321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kleinschek, M. A. et al. IL-25 regulates Th17 function in autoimmune inflammation. J. Exp. Med. 204, 161–170 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lavocat, F., Ndongo-Thiam, N. & Miossec, P. Interleukin-25 produced by synoviocytes has anti-inflammatory effects by acting as a receptor antagonist for interleukin-17A function. Front. Immunol. 8, 647 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cua, D. J. & Tato, C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kenna, T. J. et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Osta, B., Lavocat, F., Eljaafari, A. & Miossec, P. Effects of interleukin-17A on osteogenic differentiation of isolated human mesenchymal stem cells. Front. Immunol. 5, 425 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Hartupee, J., Liu, C., Novotny, M., Li, X. & Hamilton, T. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 179, 4135–4141 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hara, M. et al. Interleukin-17A plays a pivotal role in cholestatic liver fibrosis in mice. J. Surg. Res. 183, 574–582 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Sparna, T. et al. Genome-wide comparison between IL-17 and combined TNF-alpha/IL-17 induced genes in primary murine hepatocytes. BMC Genomics 11, 226 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chabaud, M. et al. Human interleukin-17: A T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Leipe, J. et al. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum. 62, 2876–2885 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Raychaudhuri, S. P., Raychaudhuri, S. K. & Genovese, M. C. IL-17 receptor and its functional significance in psoriatic arthritis. Mol. Cell. Biochem. 359, 419–429 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Hattori, T. et al. Gene expression profiling of IL-17A-treated synovial fibroblasts from the human temporomandibular joint. Mediators Inflamm. 2015, 436067 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lee, S.-Y. et al. IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Res. Ther. 15, R31 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toh, M.-L. et al. Role of interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression. PLOS ONE 5, e13416 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Benedetti, G., Bonaventura, P., Lavocat, F. & Miossec, P. IL-17A and TNF-α increase the expression of the antiapoptotic adhesion molecule amigo-2 in arthritis synoviocytes. Front. Immunol. 7, 254 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Agarwal, S., Misra, R. & Aggarwal, A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J. Rheumatol. 35, 515–519 (2008).

    CAS  PubMed  Google Scholar 

  26. Koenders, M. I. et al. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 52, 3239–3247 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Gravallese, E. M. & Schett, G. Effects of the IL-23-IL-17 pathway on bone in spondyloarthritis. Nat. Rev. Rheumatol. 14, 631–640 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Lubberts, E. et al. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum. 50, 650–659 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Adamopoulos, I. E. et al. Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Res. Ther. 12, R29 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yang, L., Zhang, J., Tao, J. & Lu, T. Elevated serum levels of interleukin-37 are associated with inflammatory cytokines and disease activity in rheumatoid arthritis. APMIS 123, 1025–1031 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Al-Saadany, H. M., Hussein, M. S., Gaber, R. A. & Zaytoun, H. A. Th-17 cells and serum IL-17 in rheumatoid arthritis patients: Correlation with disease activity and severity. Egypt. Rheumatol. 38, 1–7 (2016).

    Article  Google Scholar 

  32. Gullick, N. J. et al. Enhanced and persistent levels of interleukin (IL)-17+ CD4+ T cells and serum IL-17 in patients with early inflammatory arthritis. Clin. Exp. Immunol. 174, 292–301 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, Y. H. & Bae, S.-C. Associations between circulating IL-17 levels and rheumatoid arthritis and between IL-17 gene polymorphisms and disease susceptibility: a meta-analysis. Postgrad. Med. J. 93, 465–471 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Mei, Y. et al. Increased serum IL-17 and IL-23 in the patient with ankylosing spondylitis. Clin. Rheumatol. 30, 269–273 (2011).

    Article  PubMed  Google Scholar 

  35. Gullick, N. J. et al. Linking power doppler ultrasound to the presence of Th17 cells in the rheumatoid arthritis joint. PLOS ONE 5, e12516 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Chen, D.-Y. et al. Increasing levels of circulating Th17 cells and interleukin-17 in rheumatoid arthritis patients with an inadequate response to anti-TNF-α therapy. Arthritis Res. Ther. 13, R126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taylan, A. et al. Evaluation of the T helper 17 axis in ankylosing spondylitis. Rheumatol. Int. 32, 2511–2515 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Chen, W.-S. et al. Association of serum interleukin-17 and interleukin-23 levels with disease activity in Chinese patients with ankylosing spondylitis. J. Chin. Med. Assoc. 75, 303–308 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, X., Lin, Z., Wei, Q., Jiang, Y. & Gu, J. Expression of IL-23 and IL-17 and effect of IL-23 on IL-17 production in ankylosing spondylitis. Rheumatol. Int. 29, 1343–1347 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Ndongo-Thiam, N. & Miossec, P. A cell-based bioassay for circulating bioactive IL-17: application to destruction in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1629–1631 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Kohno, M. et al. Interleukin-17 gene expression in patients with rheumatoid arthritis. Mod. Rheumatol. 18, 15–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Shen, H., Goodall, J. C. & Hill Gaston, J. S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 60, 1647–1656 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Nistala, K. et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 58, 875–887 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Taleb, S., Tedgui, A. & Mallat, Z. IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler. Thromb. Vasc. Biol. 35, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Robert, M. & Miossec, P. Effects of interleukin 17 on the cardiovascular system. Autoimmun. Rev. 16, 984–991 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Yuan, S. et al. Interleukin-17 stimulates STAT3-mediated endothelial cell activation for neutrophil recruitment. Cell. Physiol. Biochem. 36, 2340–2356 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Erbel, C. et al. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J. Immunol. 193, 4344–4355 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Erbel, C. et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in ApoE-deficient mice. J. Immunol. 183, 8167–8175 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Eid, R. E. et al. Interleukin-17 and interferon-gamma are produced concomitantly by human coronary artery-infiltrating T cells and act synergistically on vascular smooth muscle cells. Circulation 119, 1424–1432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hot, A., Lenief, V. & Miossec, P. Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells. Ann. Rheum. Dis. 71, 768–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, F. et al. IL-17 induces apoptosis of vascular endothelial cells: a potential mechanism for human acute coronary syndrome. Clin. Immunol. 141, 152–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Maione, F. et al. IL-17A increases ADP-induced platelet aggregation. Biochem. Biophys. Res. Commun. 408, 658–662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gisterå, A. et al. Transforming growth factor-β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci. Transl Med. 5, 196ra100 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. Smith, E. et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 121, 1746–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gao, Q. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J. Immunol. 185, 5820–5827 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Cheng, X. et al. Inhibition of IL-17A in atherosclerosis. Atherosclerosis 215, 471–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Madhur, M. S. et al. Role of interleukin 17 in inflammation, atherosclerosis, and vascular function in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 1565–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Danzaki, K. et al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, 273–280 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Taleb, S. et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J. Exp. Med. 206, 2067–2077 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee, Y. T. et al. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis. 16, 12 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Liao, Y.-H. et al. Interleukin-17A contributes to myocardial ischemia/reperfusion injury by regulating cardiomyocyte apoptosis and neutrophil infiltration. J. Am. Coll. Cardiol. 59, 420–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yan, X. et al. Deleterious effect of the IL-23/IL-17A axis and γδT cells on left ventricular remodeling after myocardial infarction. J. Am. Heart Assoc. 1, e004408 (2012).

    PubMed  PubMed Central  Google Scholar 

  64. Zhou, S.-F. et al. IL-17A promotes ventricular remodeling after myocardial infarction. J. Mol. Med. 92, 1105–1116 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Markó, L. et al. Interferon-γ signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension 60, 1430–1436 (2012).

    Article  PubMed  CAS  Google Scholar 

  66. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Wu, J. et al. Inflammation and mechanical stretch promote aortic stiffening in hypertension through activation of p38 mitogen-activated protein kinase. Circ. Res. 114, 616–625 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Amador, C. A. et al. Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 63, 797–803 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Liu, Z. et al. Correlation of peripheral Th17 cells and Th17-associated cytokines to the severity of carotid artery plaque and its clinical implication. Atherosclerosis 221, 232–241 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Erbel, C. et al. Expression of IL-17A in human atherosclerotic lesions is associated with increased inflammation and plaque vulnerability. Basic Res. Cardiol. 106, 125–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Hashmi, S. & Zeng, Q. T. Role of interleukin-17 and interleukin-17-induced cytokines interleukin-6 and interleukin-8 in unstable coronary artery disease. Coron. Artery Dis. 17, 699–706 (2006).

    Article  PubMed  Google Scholar 

  72. Cheng, X. et al. The Th17/Treg imbalance in patients with acute coronary syndrome. Clin. Immunol. 127, 89–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Bochaton, T. et al. Early kinetics of serum Interleukine-17A and infarct size in patients with reperfused acute ST-elevated myocardial infarction. PLOS ONE 12, e0188202 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Simon, T. et al. Circulating levels of interleukin-17 and cardiovascular outcomes in patients with acute myocardial infarction. Eur. Heart J. 34, 570–577 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Gelfand, J. M. et al. Risk of myocardial infarction in patients with psoriasis. JAMA 296, 1735–1741 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Gelfand, J. M. et al. The risk of stroke in patients with psoriasis. J. Invest. Dermatol. 129, 2411–2418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ding, H.-S. et al. Interleukin-17 contributes to cardiovascular diseases. Mol. Biol. Rep. 39, 7473–7478 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Krueger, J. G. & Brunner, P. M. Interleukin-17 alters the biology of many cell types involved in the genesis of psoriasis, systemic inflammation and associated comorbidities. Exp. Dermatol. 27, 115–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Beringer, A. & Miossec, P. IL-17 and IL-17-producing cells and liver diseases, with focus on autoimmune liver diseases. Autoimmun. Rev. 17, 1176–1185 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Lafdil, F., Miller, A. M., Ki, S. H. & Gao, B. Th17 cells and their associated cytokines in liver diseases. Cell. Mol. Immunol. 7, 250–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lemmers, A. et al. The interleukin-17 pathway is involved in human alcoholic liver disease. Hepatology 49, 646–657 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Beringer, A., Thiam, N., Molle, J., Bartosch, B. & Miossec, P. Synergistic effect of interleukin-17 and tumour necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-dependent and independent pathways. Clin. Exp. Immunol. 193, 221–233 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gu, F.-M. et al. IL-17 induces AKT-dependent IL-6/JAK2/STAT3 activation and tumor progression in hepatocellular carcinoma. Mol. Cancer 10, 150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Patel, D. N. et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-kappaB and C/EBPbeta activation. J. Biol. Chem. 282, 27229–27238 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Zhao, L. et al. Interleukin-17 contributes to the pathogenesis of autoimmune hepatitis through inducing hepatic interleukin-6 expression. PLOS ONE 6, e18909 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pai, J. K. et al. Inflammatory markers and the risk of coronary heart disease in men and women. N. Engl. J. Med. 351, 2599–2610 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Tan, Z. et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J. Immunol. 191, 1835–1844 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Sun, H. Q. et al. Increased Th17 cells contribute to disease progression in patients with HBV-associated liver cirrhosis. J. Viral Hepat. 19, 396–403 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Harada, K. et al. Periductal interleukin-17 production in association with biliary innate immunity contributes to the pathogenesis of cholangiopathy in primary biliary cirrhosis. Clin. Exp. Immunol. 157, 261–270 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shi, T. et al. The distribution and the fibrotic role of elevated inflammatory Th17 cells in patients with primary biliary cirrhosis. Medicine (Baltimore) 94, e1888 (2015).

    Article  CAS  Google Scholar 

  92. Fabre, T., Kared, H., Friedman, S. L. & Shoukry, N. H. IL-17A enhances the expression of profibrotic genes through upregulation of the TGF-β receptor on hepatic stellate cells in a JNK-dependent manner. J. Immunol. 193, 3925–3933 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Amara, S. et al. Synergistic effect of pro-inflammatory TNFα and IL-17 in periostin mediated collagen deposition: potential role in liver fibrosis. Mol. Immunol. 64, 26–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Lafdil, F. et al. Myeloid STAT3 inhibits T cell-mediated hepatitis by regulating T helper 1 cytokine and interleukin-17 production. Gastroenterology 137, 2125–2135 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, Y. et al. MicroRNA let-7a ameliorates Con A-induced hepatitis by inhibiting IL-6-dependent Th17 cell differentiation. J. Clin. Immunol. 33, 630–639 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Xu, M. et al. Regulation of the development of acute hepatitis by IL-23 through IL-22 and IL-17 production. Eur. J. Immunol. 41, 2828–2839 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Yan, S., Wang, L., Liu, N., Wang, Y. & Chu, Y. Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol. Cell Biol. 90, 421–428 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. He, J., Lang, G., Ding, S. & Li, L. Pathological role of interleukin-17 in poly I:C-induced hepatitis. PLOS ONE 8, e73909 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Furuya, S. et al. Interleukin 17A plays a role in lipopolysaccharide/D-galactosamine-induced fulminant hepatic injury in mice. J. Surg. Res. 199, 487–493 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Yu, H. et al. IL-17 contributes to autoimmune hepatitis. J. Huazhong Univ. Sci. Technol. Med. Sci. 30, 443–446 (2010).

    Article  CAS  Google Scholar 

  101. Kawata, K. et al. Identification of potential cytokine pathways for therapeutic intervention in murine primary biliary cirrhosis. PLOS ONE 8, e74225 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van der Voort, E. A. M., Wakkee, M., Veldt-Kok, P., Darwish Murad, S. & Nijsten, T. Enhanced liver fibrosis test in patients with psoriasis, psoriatic arthritis and rheumatoid arthritis: a cross-sectional comparison with procollagen-3 N-terminal peptide (P3NP). Br. J. Dermatol. 176, 1599–1606 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Ogdie, A. et al. Risk of incident liver disease in patients with psoriasis, psoriatic arthritis, and rheumatoid arthritis: a population-based study. J. Invest. Dermatol. 138, 760–767 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Ruderman, E. M. et al. Histologic liver abnormalities in an autopsy series of patients with rheumatoid arthritis. Br. J. Rheumatol. 36, 210–213 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Quintin, E., Scoazec, J.-Y., Marotte, H. & Miossec, P. Rare incidence of methotrexate-specific lesions in liver biopsy of patients with arthritis and elevated liver enzymes. Arthritis Res. Ther. 12, R143 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Toulemonde, G., Scoazec, J.-Y. & Miossec, P. Treatment with etanercept of autoimmune hepatitis associated with rheumatoid arthritis: an open label proof of concept study. Ann. Rheum. Dis. 71, 1423–1424 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Giles, D. A., Moreno-Fernandez, M. E. & Divanovic, S. IL-17 axis driven inflammation in non-alcoholic fatty liver disease progression. Curr. Drug Targets 16, 1315–1323 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chackelevicius, C. M., Gambaro, S. E., Tiribelli, C. & Rosso, N. Th17 involvement in nonalcoholic fatty liver disease progression to non-alcoholic steatohepatitis. World J. Gastroenterol. 22, 9096–9103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chevrel, G. et al. Interleukin-17 increases the effects of IL-1 beta on muscle cells: arguments for the role of T cells in the pathogenesis of myositis. J. Neuroimmunol. 137, 125–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Tournadre, A., Lenief, V. & Miossec, P. Expression of Toll-like receptor 3 and Toll-like receptor 7 in muscle is characteristic of inflammatory myopathy and is differentially regulated by Th1 and Th17 cytokines. Arthritis Rheum. 62, 2144–2151 (2010).

    CAS  PubMed  Google Scholar 

  111. Beringer, A., Gouriou, Y., Lavocat, F., Michel, O. & Miossec, P. Blockade of store-operated calcium entry reduces IL-17/TNF cytokine-induced inflammatory response in human myoblasts. Front. Immunol. 9, 3170 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Kocić, J. et al. Interleukin 17 inhibits myogenic and promotes osteogenic differentiation of C2C12 myoblasts by activating ERK1,2. Biochim. Biophys. Acta 1823, 838–849 (2012).

    Article  PubMed  CAS  Google Scholar 

  113. Kocić, J. et al. Interleukin-17 modulates myoblast cell migration by inhibiting urokinase type plasminogen activator expression through p38 mitogen-activated protein kinase. Int. J. Biochem. Cell Biol. 45, 464–475 (2013).

    Article  PubMed  CAS  Google Scholar 

  114. Su, S.-A. et al. Interleukin-17A mediates cardiomyocyte apoptosis through Stat3-iNOS pathway. Biochim. Biophys. Acta 1863, 2784–2794 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. LaFramboise, W. A. et al. Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am. J. Physiol. Cell Physiol. 292, C1799–C1808 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Wu, L. et al. Cardiac fibroblasts mediate IL-17A-driven inflammatory dilated cardiomyopathy. J. Exp. Med. 211, 1449–1464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cortez, D. M. et al. IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK- and ERK1/2-dependent C/EBP-beta, NF-kappaB, and AP-1 activation. Am. J. Physiol. Heart Circ. Physiol. 293, H3356–H3365 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Valente, A. J. et al. Interleukin-17A stimulates cardiac fibroblast proliferation and migration via negative regulation of the dual-specificity phosphatase MKP-1/DUSP-1. Cell. Signal. 24, 560–568 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Atefi, G. et al. Complement dependency of cardiomyocyte release of mediators during sepsis. FASEB J. 25, 2500–2508 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Janssen, S. P. M. et al. Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. Circulation 111, 996–1005 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Lazzerini, P. E., Capecchi, P. L. & Laghi-Pasini, F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur. Heart J. 38, 1717–1727 (2017).

    CAS  PubMed  Google Scholar 

  122. Hanaoka, B. Y. et al. Chronic inflammation in RA: mediator of skeletal muscle pathology and physical impairment. Arthritis Care Res. 71, 173–177 (2019).

    Article  Google Scholar 

  123. Huffman, K. M. et al. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability. Arthritis Res. Ther. 19, 12 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Yamada, T., Steinz, M. M., Kenne, E. & Lanner, J. T. Muscle weakness in rheumatoid arthritis: the role of Ca2+ and free radical signaling. EBioMedicine 23, 12–19 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Genovese, M. C. et al. Safety and efficacy of open-label subcutaneous ixekizumab treatment for 48 weeks in a phase II study in biologic-naive and TNF-IR patients with rheumatoid arthritis. J. Rheumatol. 43, 289–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  126. Blanco, F. J. et al. Secukinumab in active rheumatoid arthritis: a phase III randomized, double-blind, active comparator- and placebo-controlled study. Arthritis Rheumatol. 69, 1144–1153 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Kunwar, S., Dahal, K. & Sharma, S. Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol. Int. 36, 1065–1075 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. O’Brien, K. M. et al. IL-17A synergistically enhances bile acid–induced inflammation during obstructive cholestasis. Am. J. Pathol. 183, 1498–1507 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work of A.B. is supported by the Ministry of Education and Research, France. P.M. is a senior member of the Institut Universitaire de France. His laboratory is supported in part by the IHU OPERA.

Peer review information

Nature Reviews Rheumatology thanks S. Divanovic, P. Wenzel and E. Lubberts for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

A.B. researched data for the article. P.M. reviewed and/or edited the manuscript before submission. Both authors made a substantial contribution to discussion of content and wrote the article.

Corresponding author

Correspondence to Pierre Miossec.

Ethics declarations

Competing interests

P.M. holds a patent on the IL-17 bioassay (patent number 20170176456). A.B. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beringer, A., Miossec, P. Systemic effects of IL-17 in inflammatory arthritis. Nat Rev Rheumatol 15, 491–501 (2019). https://doi.org/10.1038/s41584-019-0243-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0243-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing