Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis

Abstract

Systemic sclerosis (SSc) is an autoimmune fibrotic disease of unknown aetiology that is characterized by vascular changes in the skin and visceral organs. Autologous haematopoietic stem cell transplantation can improve skin and organ fibrosis in patients with progressive disease and a high risk of organ failure, indicating that cells originating in the bone marrow are important contributors to the pathogenesis of SSc. Animal studies also indicate a pivotal function of myeloid cells in the development of fibrosis leading to changes in the tissue architecture and dysfunction in multiple organs such as the heart, lungs, liver and kidney. In this Review, we summarize current knowledge about the function of myeloid cells in fibrogenesis that occurs in patients with SSc. Targeted therapies currently in clinical studies for SSc might affect myeloid cell-related pathways. Therefore, myeloid cells might be used as cellular biomarkers of disease through the application of high-dimensional techniques such as mass cytometry and single-cell RNA sequencing.

Key points

  • Chronic tissue injury, inflammation and prolonged fibroblast activation lead to fibrosis and organ dysfunction in systemic sclerosis (SSc).

  • Myeloid cells are crucial antigen-presenting cells, regulators of inflammatory responses and producers of cytokines, processes that are implicated in fibrogenesis.

  • Despite comprehensive investigation of myeloid cells, the function of these cells in SSc is not fully understood.

  • High-dimensional analysis of myeloid cells might identify a biomarker of SSc onset and progression.

  • Strategies that target myeloid cell-related pathways might prevent or reverse tissue fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crosstalk between innate and adaptive immune responses in fibrogenesis.
Fig. 2: Origin and tissue composition of myeloid cells.
Fig. 3: The fibrosis-promoting functions of monocytes.
Fig. 4: Macrophage-mediated mechanism of fibrosis in the skin and lungs.

Similar content being viewed by others

References

  1. Jordan, S., Chung, J. & Distler, O. Preclinical and translational research to discover potentially effective antifibrotic therapies in systemic sclerosis. Curr. Opin. Rheumatol. 25, 679–685 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Mayes, M. D. et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 48, 2246–2255 (2003).

    Article  PubMed  Google Scholar 

  3. Peoples, C. et al. Gender differences in systemic sclerosis: relationship to clinical features, serologic status and outcomes. J. Scleroderma Relat. Disord. 1, 177–240 (2016).

    Article  PubMed  Google Scholar 

  4. Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Primers 1, 15002 (2015).

    Article  PubMed  Google Scholar 

  5. Bujak, M. & Frangogiannis, N. G. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 74, 184–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Lech, M. & Anders, H. J. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim. Biophys. Acta 1832, 989–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Chizzolini, C. T cells, B cells, and polarized immune response in the pathogenesis of fibrosis and systemic sclerosis. Curr. Opin. Rheumatol. 20, 707–712 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. O’Reilly, S., Hugle, T. & van Laar, J. M. T cells in systemic sclerosis: a reappraisal. Rheumatology 51, 1540–1549 (2012).

    Article  CAS  Google Scholar 

  9. Sakkas, L. I. & Platsoucas, C. D. Is systemic sclerosis an antigen-driven T cell disease? Arthritis Rheum. 50, 1721–1733 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Guilliams, M. et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 14, 571–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Waldner, H. The role of innate immune responses in autoimmune disease development. Autoimmun. Rev. 8, 400–404 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Epelman, S., Lavine, K. J. & Randolph, G. J. Origin and functions of tissue macrophages. Immunity 41, 21–35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoeffel, G. et al. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tamoutounour, S. et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39, 925–938 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Satoh, T. et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 541, 96–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Shi, C. & Pamer, E. G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11, 762–774 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Passlick, B., Flieger, D. & Ziegler-Heitbrock, H. W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527–2534 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Wong, K. L. et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118, e16–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Higashi-Kuwata, N. et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Res. Ther. 12, R128 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Lescoat, A. et al. CD16-positive circulating monocytes and fibrotic manifestations of systemic sclerosis. Clin. Rheumatol. 36, 1649–1654 (2017).

    Article  PubMed  Google Scholar 

  27. Ong, S. M. et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis. 9, 266 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mathai, S. K. et al. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest. 90, 812–823 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soldano, S. P. et al. Increase in circulating cells coexpressing M1 and M2 macrophage surface markers in patients with systemic sclerosis. Ann. Rheum. Dis. 77, 1842–1845 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Chia, J. J. & Lu, T. T. Update on macrophages and innate immunity in scleroderma. Curr. Opin. Rheumatol. 27, 530–536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Misharin, A. V. et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 214, 2387–2404 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stifano, G. & Christmann, R. B. Macrophage involvement in systemic sclerosis: do we need more evidence? Curr. Rheumatol. Rep. 18, 2 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schlitzer, A. & Ginhoux, F. Organization of the mouse and human DC network. Curr. Opin. Immunol. 26, 90–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Satpathy, A. T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haniffa, M. et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37, 60–73 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schlitzer, A., Zhang, W., Song, M. & Ma, X. Recent advances in understanding dendritic cell development, classification, and phenotype. F1000Res. 7, 1558 (2018).

    Article  CAS  Google Scholar 

  41. Segura, E. & Amigorena, S. Inflammatory dendritic cells in mice and humans. Trends Immunol. 34, 440–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Valladeau, J. et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity 12, 71–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Affandi, A. J., Carvalheiro, T., Radstake, T. & Marut, W. Dendritic cells in systemic sclerosis: advances from human and mice studies. Immunol. Lett. 195, 18–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Veglia, F. & Gabrilovich, D. I. Dendritic cells in cancer: the role revisited. Curr. Opin. Immunol. 45, 43–51 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Binai, N., O’Reilly, S., Griffiths, B., van Laar, J. M. & Hugle, T. Differentiation potential of CD14+ monocytes into myofibroblasts in patients with systemic sclerosis. PLOS ONE 7, e33508 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dantas, A. T. et al. Reassessing the role of the active TGF-beta1 as a biomarker in systemic sclerosis: association of serum levels with clinical manifestations. Dis. Markers 2016, 6064830 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hasegawa, M., Sato, S. & Takehara, K. Augmented production of transforming growth factor-beta by cultured peripheral blood mononuclear cells from patients with systemic sclerosis. Arch. Dermatol. Res. 296, 89–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Reese, C. et al. Caveolin-1 deficiency may predispose African Americans to systemic sclerosis-related interstitial lung disease. Arthritis Rheumatol. 66, 1909–1919 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tourkina, E. et al. Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair 4, 15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, R. et al. Enhanced chemokine-receptor expression, function, and signaling in healthy African American and scleroderma-patient monocytes are regulated by caveolin-1. Fibrogenesis Tissue Repair 8, 11 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ciechomska, M. et al. Toll-like receptor-mediated, enhanced production of profibrotic TIMP-1 in monocytes from patients with systemic sclerosis: role of serum factors. Ann. Rheum. Dis. 72, 1382–1389 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Visse, R. & Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ciechomska, M. et al. Histone demethylation and Toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via Fra-2. Arthritis Rheumatol. 68, 1493–1504 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Maurer, B. et al. Fra-2 transgenic mice as a novel model of pulmonary hypertension associated with systemic sclerosis. Ann. Rheum. Dis. 71, 1382–1387 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Maurer, B. et al. Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis. Circulation 120, 2367–2376 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Reich, N. et al. The transcription factor Fra-2 regulates the production of extracellular matrix in systemic sclerosis. Arthritis Rheum. 62, 280–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Bohgaki, T. et al. Up regulated expression of tumour necrosis factor {alpha} converting enzyme in peripheral monocytes of patients with early systemic sclerosis. Ann. Rheum. Dis. 64, 1165–1173 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moss, M. L. & Minond, D. Recent advances in ADAM17 research: a promising target for cancer and inflammation. Mediators Inflamm. 2017, 9673537 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Schumacher, N. et al. Shedding of endogenous interleukin-6 receptor (IL-6R) is governed by a disintegrin and metalloproteinase (ADAM) proteases while a full-length IL-6R isoform localizes to circulating microvesicles. J. Biol. Chem. 290, 26059–26071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Duffy, M. J., Crown, J. & Mullooly, M. ADAM10 and ADAM17: new players in trastuzumab tesistance. Oncotarget 5, 10963–10964 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mahoney, J. M. et al. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms. PLOS Comput. Biol. 11, e1004005 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Reilly, S., Cant, R., Ciechomska, M. & van Laar, J. M. Interleukin-6: a new therapeutic target in systemic sclerosis? Clin. Transl Immunol. 2, e4 (2013).

    Article  CAS  Google Scholar 

  64. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Sahin, U. et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769–779 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Midgley, A. C. et al. Transforming growth factor-beta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J. Biol. Chem. 288, 14824–14838 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tan, F. K. et al. Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology 45, 694–702 (2006).

    Article  CAS  Google Scholar 

  68. Farina, G. A. et al. Poly(I:C) drives type I IFN- and TGFbeta-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. J. Invest. Dermatol. 130, 2583–2593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Christmann, R. B. et al. Interferon and alternative activation of monocyte/macrophages in systemic sclerosis-associated pulmonary arterial hypertension. Arthritis Rheum. 63, 1718–1728 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. York, M. R. et al. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum. 56, 1010–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Moreno-Moral, A. et al. Changes in macrophage transcriptome associate with systemic sclerosis and mediate GSDMA contribution to disease risk. Ann. Rheum. Dis. 77, 596–601 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Manetti, M. Deciphering the alternatively activated (M2) phenotype of macrophages in scleroderma. Exp. Dermatol. 24, 576–578 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Del Galdo, F., Maul, G. G., Jimenez, S. A. & Artlett, C. M. Expression of allograft inflammatory factor 1 in tissues from patients with systemic sclerosis and in vitro differential expression of its isoforms in response to transforming growth factor beta. Arthritis Rheum. 54, 2616–2625 (2006).

    Article  PubMed  CAS  Google Scholar 

  74. Utans, U., Arceci, R. J., Yamashita, Y. & Russell, M. E. Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allografts with chronic rejection. J. Clin. Invest. 95, 2954–2962 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Otieno, F. G., Lopez, A. M., Jimenez, S. A., Gentiletti, J. & Artlett, C. M. Allograft inflammatory factor-1 and tumor necrosis factor single nucleotide polymorphisms in systemic sclerosis. Tissue Antigens 69, 583–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Yamamoto, A. et al. Allograft inflammatory factor-1 is overexpressed and induces fibroblast chemotaxis in the skin of sclerodermatous GVHD in a murine model. Immunol. Lett. 135, 144–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Rabquer, B. J. et al. Dysregulated expression of MIG/CXCL9, IP-10/CXCL10 and CXCL16 and their receptors in systemic sclerosis. Arthritis Res. Ther. 13, R18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Distler, O. et al. Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis: role of platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis. Arthritis Rheum. 44, 2665–2678 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Galindo, M. et al. Chemokine expression by systemic sclerosis fibroblasts: abnormal regulation of monocyte chemoattractant protein 1 expression. Arthritis Rheum. 44, 1382–1386 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Yamamoto, T., Eckes, B., Hartmann, K. & Krieg, T. Expression of monocyte chemoattractant protein-1 in the lesional skin of systemic sclerosis. J. Dermatol. Sci. 26, 133–139 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Ong, V. H. et al. Monocyte chemoattractant protein 3 as a mediator of fibrosis: Overexpression in systemic sclerosis and the type 1 tight-skin mouse. Arthritis Rheum. 48, 1979–1991 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Bandinelli, F. et al. CCL2, CCL3 and CCL5 chemokines in systemic sclerosis: the correlation with SSc clinical features and the effect of prostaglandin E1 treatment. Clin. Exp. Rheumatol. 30, S44–S49 (2012).

    PubMed  Google Scholar 

  83. Assassi, S. et al. Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis. Arthritis Rheum. 65, 2917–2927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Carulli, M. T. et al. Chemokine receptor CCR2 expression by systemic sclerosis fibroblasts: evidence for autocrine regulation of myofibroblast differentiation. Arthritis Rheum. 52, 3772–3782 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Abraham, D. J., Krieg, T., Distler, J. & Distler, O. Overview of pathogenesis of systemic sclerosis. Rheumatology 48 (Suppl. 3), iii3–iii7 (2009).

    CAS  Google Scholar 

  86. Distler, J. H. et al. Monocyte chemoattractant protein 1 released from glycosaminoglycans mediates its profibrotic effects in systemic sclerosis via the release of interleukin-4 from T cells. Arthritis Rheum. 54, 214–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, K., Gharaee-Kermani, M., Jones, M. L., Warren, J. S. & Phan, S. H. Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J. Immunol. 153, 4733–4741 (1994).

    CAS  PubMed  Google Scholar 

  88. Ferreira, A. M. et al. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. J. Invest. Dermatol. 126, 1900–1908 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Distler, J. H., Akhmetshina, A., Schett, G. & Distler, O. Monocyte chemoattractant proteins in the pathogenesis of systemic sclerosis. Rheumatology 48, 98–103 (2009).

    Article  CAS  Google Scholar 

  90. Beyer, C., Schett, G., Distler, O. & Distler, J. H. Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum. 62, 2831–2844 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Vergunst, C. E. et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 58, 1931–1939 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Mathes, A. L. et al. Global chemokine expression in systemic sclerosis (SSc): CCL19 expression correlates with vascular inflammation in SSc skin. Ann. Rheum. Dis. 73, 1864–1872 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Chai, Q. et al. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 38, 1013–1024 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fasnacht, N. et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. J. Exp. Med. 211, 2265–2279 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wu, M. et al. Identification of cadherin 11 as a mediator of dermal fibrosis and possible role in systemic sclerosis. Arthritis Rheumatol. 66, 1010–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kato, A. et al. Oligosaccharide modification by N-acetylglucosaminyltransferase-V in macrophages are involved in pathogenesis of bleomycin-induced scleroderma. Exp. Dermatol. 24, 585–590 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Tian, H. et al. The implication of N-acetylglucosaminyltransferase V expression in gastric cancer. Pathobiology 75, 288–294 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J. W. Negative regulation of T cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Morgan, R. et al. N-Acetylglucosaminyltransferase V (Mgat5)-mediated N-glycosylation negatively regulates Th1 cytokine production by T cells. J. Immunol. 173, 7200–7208 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Knipper, J. A. et al. Interleukin-4 receptor alpha signaling in myeloid cells controls collagen fibril assembly in skin repair. Immunity 43, 803–816 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Martins, V. et al. FIZZ1-induced myofibroblast transdifferentiation from adipocytes and its potential role in dermal fibrosis and lipoatrophy. Am. J. Pathol. 185, 2768–2776 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wu, M. et al. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am. J. Pathol. 174, 519–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kruglikov, I. L. Interfacial adipose tissue in systemic sclerosis. Curr. Rheumatol. Rep. 19, 4 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Khanna, D. et al. Systemic sclerosis-associated interstitial lung disease: lessons from clinical trials, outcome measures, and future study design. Curr. Rheumatol. Rev. 6, 138–144 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Christmann, R. B. et al. Association of Interferon- and transforming growth factor beta-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheumatol. 66, 714–725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Luzina, I. G. et al. Gene expression in bronchoalveolar lavage cells from scleroderma patients. Am. J. Respir. Cell. Mol. Biol. 26, 549–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Schupp, J. et al. Serum CCL18 is predictive for lung disease progression and mortality in systemic sclerosis. Eur. Respir. J. 43, 1530–1532 (2014).

    Article  PubMed  Google Scholar 

  108. Taroni, J. N. et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med. 9, 27 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Larson-Casey, J. L., Deshane, J. S., Ryan, A. J., Thannickal, V. J. & Carter, A. B. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44, 582–596 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Murray, L. A. et al. Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int. J. Biochem. Cell Biol. 40, 2174–2182 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Ishida, Y. et al. Essential involvement of the CX3CL1-CX3CR1 axis in bleomycin-induced pulmonary fibrosis via regulation of fibrocyte and M2 macrophage migration. Sci. Rep. 7, 16833 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ayaub, E. A. et al. Overexpression of OSM and IL-6 impacts the polarization of pro-fibrotic macrophages and the development of bleomycin-induced lung fibrosis. Sci. Rep. 7, 1328 (2017).

    Article  CAS  Google Scholar 

  113. Huang, J. et al. Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann. Rheum. Dis. 75, 883–890 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Huang, J. et al. Nintedanib macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Ann. Rheum. Dis. 76, 1941–1948 (2017).

    Article  CAS  PubMed  Google Scholar 

  115. Spina, D. PDE4 inhibitors: current status. Br. J. Pharmacol. 155, 308–315 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Essayan, D. M. Cyclic nucleotide phosphodiesterase (PDE) inhibitors and immunomodulation. Biochem. Pharmacol. 57, 965–973 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Maier, C. et al. Inhibition of phosphodiesterase 4 (PDE4) reduces dermal fibrosis by interfering with the release of interleukin-6 from M2 macrophages. Ann. Rheum. Dis. 76, 1133–1141 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Schneider, D. J. et al. Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-beta production and epithelial to mesenchymal transition. FASEB J. 26, 503–512 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nagahara, H. et al. Allograft inflammatory factor-1 in the pathogenesis of bleomycin-induced acute lung injury. Biosci. Trends 10, 47–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Nagahara, H. et al. Role of allograft inflammatory factor-1 in bleomycin-induced lung fibrosis. Biochem. Biophys. Res. Commun. 495, 1901–1907 (2018).

    Article  CAS  PubMed  Google Scholar 

  121. Christmann, R. B. et al. miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res. Ther. 18, 155 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Gunawan, M., Jardine, L. & Haniffa, M. Isolation of human skin dendritic cell subsets. Methods Mol. Biol. 1423, 119–128 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Hall, J. C. & Rosen, A. Type I interferons: crucial participants in disease amplification in autoimmunity. Nat. Rev. Rheumatol. 6, 40–49 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ueno, H., Schmitt, N., Palucka, A. K. & Banchereau, J. Dendritic cells and humoral immunity in humans. Immunol. Cell Biol. 88, 376–380 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Qi, H., Egen, J. G., Huang, A. Y. & Germain, R. N. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 312, 1672–1676 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Ganguly, D., Haak, S., Sisirak, V. & Reizis, B. The role of dendritic cells in autoimmunity. Nat. Rev. Immunol. 13, 566–577 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Boltjes, A. & van Wijk, F. Human dendritic cell functional specialization in steady-state and inflammation. Front. Immunol. 5, 131 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Poulin, L. F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lauterbach, H. et al. Mouse CD8alpha+ DCs and human BDCA3+DCs are major producers of IFN-lambda in response to poly IC. J. Exp. Med. 207, 2703–2717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chia, J. J. et al. Dendritic cells maintain dermal adipose-derived stromal cells in skin fibrosis. J. Clin. Invest. 126, 4331–4345 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Fleischmajer, R., Damiano, V. & Nedwich, A. Scleroderma and the subcutaneous tissue. Science 171, 1019–1021 (1971).

    Article  CAS  PubMed  Google Scholar 

  132. Siegal, F. P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Guiducci, C. et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J. Exp. Med. 207, 2931–2942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Swiecki, M. & Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 15, 471–485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ah Kioon, M. D. et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl Med. 10, eaam8458 (2018).

    Article  PubMed  CAS  Google Scholar 

  136. Cipriani, P. et al. Differential expression of stromal cell-derived factor 1 and its receptor CXCR4 in the skin and endothelial cells of systemic sclerosis patients: pathogenetic implications. Arthritis Rheum. 54, 3022–3033 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Zabel, B. A., Silverio, A. M. & Butcher, E. C. Chemokine-like receptor 1 expression and chemerin-directed chemotaxis distinguish plasmacytoid from myeloid dendritic cells in human blood. J. Immunol. 174, 244–251 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Akamata, K. et al. Increased expression of chemerin in endothelial cells due to Fli1 deficiency may contribute to the development of digital ulcers in systemic sclerosis. Rheumatology 54, 1308–1316 (2015).

    Article  CAS  Google Scholar 

  139. van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370, 433–443 (2014).

    Article  PubMed  CAS  Google Scholar 

  140. Duan, H. et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum. 58, 1465–1474 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Rossato, M. et al. Association of MicroRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol. 69, 1891–1902 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Takahashi, T. et al. A potential contribution of antimicrobial peptide LL-37 to tissue fibrosis and vasculopathy in systemic sclerosis. Br. J. Dermatol. 175, 1195–1203 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Kafaja, S. et al. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight 3, 98380 (2018).

    Article  PubMed  Google Scholar 

  144. McKenna, K., Beignon, A. S. & Bhardwaj, N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J. Virol. 79, 17–27 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yanaba, K., Yoshizaki, A., Asano, Y., Kadono, T. & Sato, S. Serum interleukin 9 levels are increased in patients with systemic sclerosis: association with lower frequency and severity of pulmonary fibrosis. J. Rheumatol. 38, 2193–2197 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Lafyatis, R. Transforming growth factor beta — at the centre of systemic sclerosis. Nat. Rev. Rheumatol. 10, 706–719 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Usategui, A. et al. A profibrotic role for thymic stromal lymphopoietin in systemic sclerosis. Ann. Rheum. Dis. 72, 2018–2023 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Guggino, G. et al. Interleukin-9 over-expression and T helper 9 polarization in systemic sclerosis patients. Clin. Exp. Immunol. 190, 208–216 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chakraborty, K., Chatterjee, S. & Bhattacharyya, A. Modulation of CD11c + lung dendritic cells in respect to TGF-beta in experimental pulmonary fibrosis. Cell Biol. Int. 41, 991–1000 (2017).

    Article  CAS  PubMed  Google Scholar 

  150. Gerber, E. E. et al. Integrin-modulating therapy prevents fibrosis and autoimmunity in mouse models of scleroderma. Nature 503, 126–130 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Siracusa, L. D. et al. A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res. 6, 300–313 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Varghese, M. V. et al. Oxidative stress induced by the chemotherapeutic agent arsenic trioxide. 3 Biotech. 4, 425–430 (2014).

    Article  PubMed  Google Scholar 

  153. Kavian, N. et al. Arsenic trioxide prevents murine sclerodermatous graft-versus-host disease. J. Immunol. 188, 5142–5149 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Delaney, T. A. et al. Type I IFNs regulate inflammation, vasculopathy, and fibrosis in chronic cutaneous graft-versus-host disease. J. Immunol. 197, 42–50 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Municio, C. et al. Methotrexate limits inflammation through an A20-dependent cross-tolerance mechanism. Ann. Rheum. Dis. 77, 752–759 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Manno, R. & Boin, F. Immunotherapy of systemic sclerosis. Immunotherapy 2, 863–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Fraticelli, P. et al. Low-dose oral imatinib in the treatment of systemic sclerosis interstitial lung disease unresponsive to cyclophosphamide: a phase II pilot study. Arthritis Res. Ther. 16, R144 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Kowal-Bielecka, O. et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann. Rheum. Dis. 76, 1327–1339 (2017).

    Article  PubMed  Google Scholar 

  159. Smith, V. et al. Systemic sclerosis: state of the art on clinical practice guidelines. RMD Open 4, e000782 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. van Rhijn-Brouwer, F. C. C., Spierings, J. & van Laar, J. M. Autologous hematopoietic stem cell transplantation in systemic sclerosis: a reset to tolerance? Immunol. Lett. 195, 88–96 (2018).

    Article  PubMed  CAS  Google Scholar 

  161. van Laar, J. M., Naraghi, K. & Tyndall, A. Haematopoietic stem cell transplantation for poor-prognosis systemic sclerosis. Rheumatology 54, 2126–2133 (2015).

    Article  CAS  Google Scholar 

  162. Sullivan, K. M., Shah, A., Sarantopoulos, S. & Furst, D. E. Review: hematopoietic stem cell transplantation for scleroderma: effective immunomodulatory therapy for patients with pulmonary involvement. Arthritis Rheumatol. 68, 2361–2371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Tsukamoto, H. et al. Analysis of immune reconstitution after autologous CD34+stem/progenitor cell transplantation for systemic sclerosis: predominant reconstitution of Th1 CD4+ T cells. Rheumatology 50, 944–952 (2011).

    Article  CAS  Google Scholar 

  164. Michel, L. et al. Evolution of serum cytokine profile after hematopoietic stem cell transplantation in systemic sclerosis patients. Bone Marrow Transplant. 51, 1146–1149 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Distler, O. et al. Design of a randomised, placebo-controlled clinical trial of nintedanib in patients with systemic sclerosis-associated interstitial lung disease (SENSCIS). Clin. Exp. Rheumatol. 35 (Suppl. 106), 75–81 (2017).

    PubMed  Google Scholar 

  167. Huang, J. et al. Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Ann. Rheum. Dis. 76, 1941–1948 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Kania, G. et al. Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of transforming growth factor beta-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circ. Res. 105, 462–470 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Grimminger, F. et al. First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension. Eur. Respir. J. 33, 785–792 (2009).

    Article  CAS  PubMed  Google Scholar 

  170. Beyer, C. et al. Stimulation of soluble guanylate cyclase reduces experimental dermal fibrosis. Ann. Rheum. Dis. 71, 1019–1026 (2012).

    Article  CAS  PubMed  Google Scholar 

  171. Beyer, C. et al. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFbeta signalling. Ann. Rheum. Dis. 74, 1408–1416 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Dees, C. et al. Stimulators of soluble guanylate cyclase (sGC) inhibit experimental skin fibrosis of different aetiologies. Ann. Rheum. Dis. 74, 1621–1625 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Shaw, C. A., Webb, D. J., Rossi, A. G. & Megson, I. L. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis. J. Inflamm. 6, 14 (2009).

    Article  CAS  Google Scholar 

  174. Mitani, H. et al. Activity of interleukin 6 in the differentiation of monocytes to macrophages and dendritic cells. Br. J. Haematol. 109, 288–295 (2000).

    Article  CAS  PubMed  Google Scholar 

  175. Howlett, A. C. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 68–69, 619–631 (2002).

    Article  PubMed  Google Scholar 

  176. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    Article  CAS  PubMed  Google Scholar 

  177. Pacher, P. & Mechoulam, R. Is lipid signaling through cannabinoid 2 receptors part of a protective system? Prog. Lipid Res. 50, 193–211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Taylor, L. et al. Primary macrophage chemotaxis induced by cannabinoid receptor 2 agonists occurs independently of the CB2 receptor. Sci. Rep. 5, 10682 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Marchalant, Y., Cerbai, F., Brothers, H. M. & Wenk, G. L. Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats. Neurobiol. Aging 29, 1894–1901 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Burstein, S. H. Ajulemic acid: potential treatment for chronic inflammation. Pharmacol. Res. Perspect. 6, e00394 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Jin, Z. et al. Single-cell gene expression patterns in lupus monocytes independently indicate disease activity, interferon and therapy. Lupus Sci. Med. 4, e000202 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Krieg, C. et al. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat. Med. 24, 144–153 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Blyszczuk, P., Behnke, S., Luscher, T. F., Eriksson, U. & Kania, G. GM-CSF promotes inflammatory dendritic cell formation but does not contribute to disease progression in experimental autoimmune myocarditis. Biochim. Biophys. Acta 1833, 934–944 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Blyszczuk, P. et al. Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ. Res. 105, 912–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Kania, G., Blyszczuk, P. & Eriksson, U. Mechanisms of cardiac fibrosis in inflammatory heart disease. Trends Cardiovasc. Med. 19, 247–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Nie, Y. et al. AKT2 regulates pulmonary inflammation and fibrosis via modulating macrophage activation. J. Immunol. 198, 4470–4480 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Oliver Distler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kania, G., Rudnik, M. & Distler, O. Involvement of the myeloid cell compartment in fibrogenesis and systemic sclerosis. Nat Rev Rheumatol 15, 288–302 (2019). https://doi.org/10.1038/s41584-019-0212-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0212-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing