Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

B cell checkpoints in autoimmune rheumatic diseases

Abstract

B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen-presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co-engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases.

Key points

  • B cells have important pathogenic functions in autoimmune rheumatic diseases; they can produce antibodies, serve as professional antigen-presenting cells (APCs) and produce cytokines.

  • B cells express activating receptors and inhibitory receptors, which serve as immune checkpoints that regulate their activation and function.

  • Activating receptors include the B cell receptor, Toll-like receptors, cytokine receptors, CD19, CD40 and other co-stimulatory receptors.

  • Inhibitory receptors include the low-affinity immunoglobulin-γ Fc region receptor IIb (FcγRIIb), CD22, programmed cell death 1 (PD1) and other receptors, which transmit inhibitory signals to B cells.

  • Various B cell-targeting strategies could be used for the treatment of autoimmune rheumatic diseases, such as B cell depletion, blockade of activation checkpoints, inhibition of pro-inflammatory cytokines, triggering of B cell inhibitory checkpoints and trafficking blockade.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The functions of B cells in autoimmune disease.
Fig. 2: Examples of B cell stimulatory and inhibitory checkpoints.
Fig. 3: B cell activation via dual stimulation by antigens.
Fig. 4: Therapeutic approaches for modulating B cells in autoimmunity.

Similar content being viewed by others

References

  1. Chan, O. T., Madaio, M. P. & Shlomchik, M. J. The central and multiple roles of B cells in lupus pathogenesis. Immunol. Rev. 169, 107–121 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Townsend, M. J., Monroe, J. G. & Chan, A. C. B cell targeted therapies in human autoimmune diseases: an updated perspective. Immunol. Rev. 237, 264–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Yuseff, M. I., Pierobon, P., Reversat, A. & Lennon-Dumenil, A. M. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat. Rev. Immunol. 13, 475–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Specks, U. et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N. Engl. J. Med. 369, 417–427 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Edwards, J. C. et al. Efficacy of B cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hauser, S. L. et al. B cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Cambridge, G. et al. Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis. Arthritis Rheum. 48, 2146–2154 (2003).

    Article  PubMed  Google Scholar 

  10. Cortazar, F. B. et al. Effect of continuous B cell depletion with rituximab on pathogenic autoantibodies and total IgG levels in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 69, 1045–1053 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Du, F. H., Mills, E. A. & Mao-Draayer, Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun. Highlights 8, 12 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rehnberg, M., Amu, S., Tarkowski, A., Bokarewa, M. I. & Brisslert, M. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res. Ther. 11, R123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin-Garrido, I., Carmona, E. M., Specks, U. & Limper, A. H. Pneumocystis pneumonia in patients treated with rituximab. Chest 144, 258–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Elsegeiny, W., Eddens, T., Chen, K. & Kolls, J. K. Anti-CD20 antibody therapy and susceptibility to Pneumocystis pneumonia. Infect. Immun. 83, 2043–2052 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei, K. C. et al. Pneumocystis jirovecii pneumonia in HIV-uninfected, rituximab treated non-Hodgkin lymphoma patients. Sci. Rep. 8, 8321 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shah, S., Jaggi, K., Greenberg, K. & Geetha, D. Immunoglobulin levels and infection risk with rituximab induction for anti-neutrophil cytoplasmic antibody-associated vasculitis. Clin. Kidney J. 10, 470–474 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bingham, C. O. 3rd et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum. 62, 64–74 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. van Assen, S. et al. Humoral responses after influenza vaccination are severely reduced in patients with rheumatoid arthritis treated with rituximab. Arthritis Rheum. 62, 75–81 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Kapetanovic, M. C. Rituximab and abatacept but not tocilizumab impair antibody response to pneumococcal conjugate vaccine in patients with rheumatoid arthritis. Arthritis Res. Ther. 15, R171 (2013).

    Article  CAS  Google Scholar 

  20. Suurmond, J. & Diamond, B. Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity. J. Clin. Invest. 125, 2194–2202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schiffer, L. et al. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J. Immunol. 171, 489–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Okroj, M., Heinegard, D., Holmdahl, R. & Blom, A. M. Rheumatoid arthritis and the complement system. Ann. Med. 39, 517–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Anquetil, F., Clavel, C., Offer, G., Serre, G. & Sebbag, M. IgM and IgA rheumatoid factors purified from rheumatoid arthritis sera boost the Fc receptor- and complement-dependent effector functions of the disease-specific anti-citrullinated protein autoantibodies. J. Immunol. 194, 3664–3674 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Clynes, R., Dumitru, C. & Ravetch, J. V. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279, 1052–1054 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Sokolove, J. et al. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol. 66, 813–821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daniels, R. H., Williams, B. D. & Morgan, B. P. Human rheumatoid synovial cell stimulation by the membrane attack complex and other pore-forming toxins in vitro: the role of calcium in cell activation. Immunology 71, 312–316 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hay, F. C., Jones, M. G., Bond, A. & Soltys, A. J. Rheumatoid factors and complex formation. The role of light-chain framework sequences and glycosylation. Clin Orthop. Relat. Res. 265, 54–62 (1991).

    Google Scholar 

  28. Regnault, A. et al. Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189, 371–380 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamano, Y., Arase, H., Saisho, H. & Saito, T. Immune complex and Fc receptor-mediated augmentation of antigen presentation for in vivo Th cell responses. J. Immunol. 164, 6113–6119 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Schuurhuis, D. H. et al. Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8+ CTL responses in vivo. J. Immunol. 168, 2240–2246 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Ise, W. et al. T follicular helper cell-germinal center B cell interaction strength regulates entry into plasma cell or recycling germinal center cell fate. Immunity 48, 702–715 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Stebegg, M. et al. Regulation of the germinal center response. Front. Immunol. 9, 2469 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ting, Y. T. et al. The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J. Biol. Chem. 293, 3236–3251 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Grumet, F. C., Coukell, A., Bodmer, J. G., Bodmer, W. F. & McDevitt, H. O. Histocompatibility (HL-A) antigens associated with systemic lupus erythematosus. A possible genetic predisposition to disease. N. Engl. J. Med. 285, 193–196 (1971).

    Article  CAS  PubMed  Google Scholar 

  36. Gaffney, P. M. et al. Genome screening in human systemic lupus erythematosus: results from a second Minnesota cohort and combined analyses of 187 sib-pair families. Am. J. Hum. Genet. 66, 547–556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brown, M. A. et al. HLA class I associations of ankylosing spondylitis in the white population in the United Kingdom. Ann. Rheum. Dis. 55, 268–270 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown, M. A. et al. Susceptibility to ankylosing spondylitis in twins: the role of genes, HLA, and the environment. Arthritis Rheum. 40, 1823–1828 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Shipman, W. D., Dasoveanu, D. C. & Lu, T. T. Tertiary lymphoid organs in systemic autoimmune diseases: pathogenic or protective? F1000Res. 6, 196 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Detanico, T. et al. Somatic mutagenesis in autoimmunity. Autoimmunity 46, 102–114 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Elliott, S. E. et al. Affinity maturation drives epitope spreading and generation of pro-inflammatory anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheumatol. 70, 1946–1958 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lu, D. R. et al. T cell-dependent affinity maturation and innate immune pathways differentially drive autoreactive B cell responses in rheumatoid arthritis. Arthritis Rheumatol. 70, 1732–1744 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lindhout, E. et al. Fibroblast-like synoviocytes from rheumatoid arthritis patients have intrinsic properties of follicular dendritic cells. J. Immunol. 162, 5949–5956 (1999).

    CAS  PubMed  Google Scholar 

  44. Harris, D. P. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat. Immunol. 1, 475–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Piancone, F. et al. B lymphocytes in multiple sclerosis: bregs and BTLA/CD272 expressing-CD19+ lymphocytes modulate disease severity. Sci. Rep. 6, 29699 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grammer, A. C. & Lipsky, P. E. B cell abnormalities in systemic lupus erythematosus. Arthritis Res. Ther. 5 (Suppl. 4), 22–27 (2003).

    Article  Google Scholar 

  48. Hirano, T. et al. Excessive production of interleukin 6/B cell stimulatory factor-2 in rheumatoid arthritis. Eur. J. Immunol. 18, 1797–1801 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Arkatkar, T. et al. B cell-derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. J. Exp. Med. 214, 3207–3217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dienz, O. & Rincon, M. The effects of IL-6 on CD4 T cell responses. Clin. Immunol. 130, 27–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Kalampokis, I., Yoshizaki, A. & Tedder, T. F. IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res. Ther. 15 (Suppl. 1), 1 (2013).

    Article  CAS  Google Scholar 

  52. Lee, K. M. et al. TGF-β-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur. J. Immunol. 44, 1728–1736 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, R. X. et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease. Nat. Med. 20, 633–641 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Egwuagu, C. E. & Yu, C. R. Interleukin 35-producing B cells (i35-Breg): a new mediator of regulatory B-cell functions in CNS autoimmune diseases. Crit. Rev. Immunol. 35, 49–57 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Meffre, E. & Wardemann, H. B cell tolerance checkpoints in health and autoimmunity. Curr. Opin. Immunol. 20, 632–638 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Kuokkanen, E., Sustar, V. & Mattila, P. K. Molecular control of B cell activation and immunological synapse formation. Traffic 16, 311–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, J. & Reth, M. in B Cell Receptor Signaling (eds Kurosaki, T. & Wienands, J.) 27–43 (Springer International Publishing, 2016).

  60. Avalos, A. M., Meyer-Wentrup, F. & Ploegh, H. L. B cell receptor signaling in lymphoid malignancies and autoimmunity. Adv. Immunol. 123, 1–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Dal Porto, J. M. et al. B cell antigen receptor signaling 101. Mol. Immunol. 41, 599–613 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Lane, P. et al. Activated human T cells express a ligand for the human B cell-associated antigen CD40 which participates in T cell-dependent activation of B lymphocytes. 22, 2573–2578 (1992).

  63. Bishop, G. A. & Hostager, B. S. The CD40–CD154 interaction in B cell–T cell liaisons. Cytokine Growth Factor Rev. 14, 297–309 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Hokazono, Y. et al. Inhibitory coreceptors activated by antigens but not by Anti-Ig heavy chain antibodies install requirement of costimulation through CD40 for survival and proliferation of B cells. J. Immunol. 171, 1835–1843 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Voynova, E. et al. Requirement for CD40/CD40L interactions for development of autoimmunity differs depending on specific checkpoint and costimulatory pathways. ImmunoHorizons 2, 54–66 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Peters, A. L., Stunz, L. L. & Bishop, G. A. CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21, 293–300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Toubi, E. & Shoenfeld, Y. The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity 37, 457–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Vinuesa, C. G. & Goodnow, C. C. Immunology: DNA drives autoimmunity. Nature 416, 595–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Pelka, K., Shibata, T., Miyake, K. & Latz, E. Nucleic acid-sensing TLRs and autoimmunity: novel insights from structural and cell biology. Immunol. Rev. 269, 60–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Hoffmann, M. H. & Steiner, G. A common pathway for all autoimmune diseases? The unholy alliance of environment, cell death and nucleic acids. Curr. Immunol. Rev. 5, 69–88 (2009).

    Article  CAS  Google Scholar 

  71. Leadbetter, E. A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Lau, C. M. et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J. Exp. Med. 202, 1171–1177 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Uckun, F. M., Sun, L., Qazi, S., Ma, H. & Ozer, Z. Recombinant human CD19-ligand protein as a potent anti-leukaemic agent. Br. J. Haematol. 153, 15–23 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, Z. et al. Peripheral CD19(hi) B cells exhibit activated phenotype and functionality in promoting IgG and IgM production in human autoimmune diseases. Sci. Rep. 7, 13921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Abraham, P. M., Quan, S. H., Dukala, D. & Soliven, B. CD19 as a therapeutic target in a spontaneous autoimmune polyneuropathy. Clin. Exp. Immunol. 175, 181–191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Stuve, O. et al. CD19 as a molecular target in CNS autoimmunity. Acta Neuropathol. 128, 177–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ng, L. G. et al. B cell-activating factor belonging to the TNF family (BAFF)-R is the principal BAFF receptor facilitating BAFF costimulation of circulating T and B cells. J. Immunol. 173, 807–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Mackay, F. & Browning, J. L. BAFF: a fundamental survival factor for B cells. Nat. Rev. Immunol. 2, 465–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Salazar-Camarena, D. C. et al. Association of BAFF, APRIL serum levels, BAFF-R, TACI and BCMA expression on peripheral B cell subsets with clinical manifestations in systemic lupus erythematosus. Lupus 25, 582–592 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Wallace, D. J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 61, 1168–1178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Steri, M. et al. Overexpression of the cytokine BAFF and autoimmunity risk. N. Engl. J. Med. 376, 1615–1626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Touma, Z. & Gladman, D. D. Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments. Lupus Sci. Med. 4, e000239 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vincent, F. B., Morand, E. F., Schneider, P. & Mackay, F. The BAFF/APRIL system in SLE pathogenesis. Nat. Rev. Rheumatol. 10, 365–373 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Dienz, O. et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 206, 69–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Maeda, K., Mehta, H., Drevets, D. A. & Coggeshall, K. M. IL-6 increases B cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood 115, 4699–4706 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Axmann, R. et al. Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum. 60, 2747–2756 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Wu, Q., Zhou, X., Huang, D., Ji, Y. & Kang, F. IL-6 enhances osteocyte-mediated osteoclastogenesis by promoting JAK2 and RANKL activity in vitro. Cell Physiol. Biochem. 41, 1360–1369 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Smolen, J. S. & Maini, R. N. Interleukin-6: a new therapeutic target. Arthritis Res. Ther. 8 (Suppl. 2), 5 (2006).

    Article  CAS  Google Scholar 

  89. Scott, L. J. Tocilizumab: a review in rheumatoid arthritis. Drugs 77, 1865–1879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wallace, D. J. et al. Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: a phase II dose-ranging randomised controlled trial. Ann. Rheum. Dis. 76, 534–542 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Liu, S. M. & King, C. IL-21-producing Th cells in immunity and autoimmunity. J. Immunol. 191, 3501–3506 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Konforte, D., Simard, N. & Paige, C. J. IL-21: an executor of B cell fate. J. Immunol. 182, 1781–1787 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Kuchen, S. et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J. Immunol. 179, 5886–5896 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Wu, Y. et al. The biological effects of IL-21 signaling on B-cell-mediated responses in organ transplantation. Front. Immunol. 7, 319 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Pritchard, N. R. & Smith, K. G. B cell inhibitory receptors and autoimmunity. Immunology 108, 263–273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gagneux, P. et al. Human-specific regulation of α2-6-linked sialic acids. J. Biol. Chem. 278, 48245–48250 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Tedder, T. F., Poe, J. C. & Haas, K. M. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv. Immunol. 88, 1–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Lumb, S. et al. Engagement of CD22 on B cells with the monoclonal antibody epratuzumab stimulates the phosphorylation of upstream inhibitory signals of the B cell receptor. J. Cell Commun. Signal 10, 143–151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Sohn, H. W., Pierce, S. K. & Tzeng, S. J. Live cell imaging reveals that the inhibitory FcγRIIB destabilizes B cell receptor membrane-lipid interactions and blocks immune synapse formation. J. Immunol. 180, 793–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Kleinau, S. The impact of Fc receptors on the development of autoimmune diseases. Curr. Pharm. Des. 9, 1861–1870 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Meyaard, L. The inhibitory collagen receptor LAIR-1 (CD305). J. Leukoc. Biol. 83, 799–803 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Franks, S. E., Getahun, A., Hogarth, P. M. & Cambier, J. C. Targeting B cells in treatment of autoimmunity. Curr. Opin. Immunol. 43, 39–45 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chatenoud, L. Biotherapies targeting T and B cells: from immune suppression to immune tolerance. Curr. Opin. Pharmacol. 23, 92–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Hardy, I. R. et al. Anti-CD79 antibody induces B cell anergy that protects against autoimmunity. J. Immunol. 192, 1641–1650 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Rossi, E. A., Chang, C. H. & Goldenberg, D. M. Anti-CD22/CD20 Bispecific antibody with enhanced trogocytosis for treatment of Lupus. PLOS ONE 9, e98315 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Donahue, A. C. & Fruman, D. A. Proliferation and survival of activated B cells requires sustained antigen receptor engagement and phosphoinositide 3-kinase activation. J. Immunol. 170, 5851–5860 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Galinier, A., Delwail, V. & Puyade, M. Ibrutinib is effective in the treatment of autoimmune haemolytic anaemia in mantle cell lymphoma. Case Rep. Oncol. 10, 127–129 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Muschen, M. Autoimmunity checkpoints as therapeutic targets in B cell malignancies. Nat. Rev. Cancer 18, 103–116 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Ryden-Aulin, M. et al. Off-label use of rituximab for systemic lupus erythematosus in Europe. Lupus Sci. Med. 3, e000163 (2016).

    Article  PubMed  Google Scholar 

  112. Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Kappos, L. et al. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378, 1779–1787 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Mysler, E. F. et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 65, 2368–2379 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Stashenko, P., Nadler, L. M., Hardy, R, & Schlossman, S. F. Expression of cell surface markers after human B lymphocyte activation. Proc. Natl Acad. Sci. USA 78, 3848–3852 (1981).

  116. DiLillo, D. J. et al. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J. Immunol. 180, 361–371 (2007).

    Article  Google Scholar 

  117. Forsthuber, T. G., Cimbora, D. M., Ratchford, J. N., Katz, E. & Stuve, O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther. Adv. Neurol. Disord. 11, 1756286418761697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Herbst, R. et al. B cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J. Pharmacol. Exp. Ther. 335, 213–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Chen, D. et al. Single dose of glycoengineered anti-CD19 antibody (MEDI551) disrupts experimental autoimmune encephalomyelitis by inhibiting pathogenic adaptive immune responses in the bone marrow and spinal cord while preserving peripheral regulatory mechanisms. J. Immunol. 193, 4823–4832 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Chen, D. et al. Autoreactive CD19+CD20- plasma cells contribute to disease severity of experimental autoimmune encephalomyelitis. J. Immunol. 196, 1541–1549 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Agius, M. A. et al. Safety and tolerability of inebilizumab (MEDI-551), an anti-CD19 monoclonal antibody, in patients with relapsing forms of multiple sclerosis: results from a phase 1 randomised, placebo-controlled, escalating intravenous and subcutaneous dose study. Mult. Scler. 25, 235–245 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Mei, H. E. et al. A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125, 1739–1748 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Ruck, T., Bittner, S., Wiendl, H. & Meuth, S. G. Alemtuzumab in multiple sclerosis: mechanism of action and beyond. Int. J. Mol. Sci. 16, 16414–16439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tolbert, V. P. et al. Daratumumab is effective in the treatment of refractory post-transplant autoimmune hemolytic anemia: a pediatric case report. Blood 128, 4819–4819 (2016).

    Google Scholar 

  125. Jagannath, S. et al. Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk. https://doi.org/10.1016/j.clml.2019.02.006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Usmani, S. Z. et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood 128, 37–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sidiropoulos, P. I. & Boumpas, D. T. Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13, 391–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Chamberlain, C. et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann. Rheum. Dis. 76, 1837–1844 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Fisher, B. et al. The novel anti-CD40 monoclonal antibody CFZ533 shows beneficial effects in patients with primary Sjögren’s syndrome: a phase IIa double-blind, placebo-controlled randomized trial. Abstract presented at 2017 ACR/ARHP Annual Meeting (San Diego, CA).

  130. Johnson, P. et al. Clinical and biological effects of an agonist anti-CD40 antibody: a Cancer Research UK phase I study. Clin. Cancer Res. 21, 1321–1328 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Dahan, R. et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 29, 820–831 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cheng, L. E. et al. Brief report: a randomized, double-blind, parallel-group, placebo-controlled, multiple-dose study to evaluate AMG 557 in patients with systemic lupus erythematosus and active lupus arthritis. Arthritis Rheumatol. 70, 1071–1076 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bluml, S., McKeever, K., Ettinger, R., Smolen, J. & Herbst, R. B cell targeted therapeutics in clinical development. Arthritis Res. Ther. 15 (Suppl. 1), 4 (2013).

    Article  CAS  Google Scholar 

  134. Clowse, M. E. et al. Efficacy and safety of epratuzumab in moderately to severely active systemic lupus erythematosus: results from two phase III randomized, double-blind, placebo-controlled trials. Arthritis Rheumatol. 69, 362–375 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chu, S. Y. et al. Inhibition of B cell receptor-mediated activation of primary human B cells by coengagement of CD19 and FcγRIIb with Fc-engineered antibodies. Mol. Immunol. 45, 3926–3933 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02725515 (2018).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02725476 (2018).

  138. Horton, H. M. et al. Antibody-mediated coengagement of FcγRIIb and B cell receptor complex suppresses humoral immunity in systemic lupus erythematosus. J. Immunol. 186, 4223–4233 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Chu, S. Y. et al. Suppression of rheumatoid arthritis B cells by XmAb5871, an anti-CD19 antibody that coengages B cell antigen receptor complex and Fcγ receptor IIb inhibitory receptor. Arthritis Rheumatol. 66, 1153–1164 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Veri, M. C. et al. Therapeutic control of B cell activation via recruitment of Fcγ receptor IIb (CD32B) inhibitory function with a novel bispecific antibody scaffold. Arthritis Rheum. 62, 1933–1943 (2010).

    CAS  PubMed  Google Scholar 

  141. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02376036 (2017).

  142. Pal Singh, S., Dammeijer, F. & Hendriks, R. W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 17, 57 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gillooly, K. M. et al. Bruton’s tyrosine kinase inhibitor BMS-986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care. PLOS ONE 12, e0181782 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee, S. K. et al. Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants. Eur. J. Clin. Pharmacol. 73, 689–698 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Crawford, J. J. et al. Discovery of GDC-0853: a potent, selective, and noncovalent Bruton’s tyrosine kinase inhibitor in early clinical development. J. Med. Chem. 61, 2227–2245 (2018).

    Article  CAS  PubMed  Google Scholar 

  146. Akinleye, A., Chen, Y., Mukhi, N., Song, Y. & Liu, D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol. 6, 59 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Katewa, A. et al. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNα-driven lupus nephritis. JCI Insight 2, e90111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gopal, A. K. et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 370, 1008–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Stark, A. K., Sriskantharajah, S., Hessel, E. M. & Okkenhaug, K. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr. Opin. Pharmacol. 23, 82–91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Baker, K. P. et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 48, 3253–3265 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Dall’Era, M. et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 56, 4142–4150 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Merrill, J. T. et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol. 70, 266–276 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jego, G. et al. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Yao, X. et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther. 141, 125–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Wallace, D. J. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392, 222–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Ghoreschi, K. et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J. Immunol. 186, 4234–4243 (2011).

    Article  CAS  PubMed  Google Scholar 

  159. Kubo, S., Nakayamada, S. & Tanaka, Y. Baricitinib for the treatment of rheumatoid arthritis. Expert Rev. Clin. Immunol. 12, 911–919 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Tanaka, Y. & Yamaoka, K. JAK inhibitor tofacitinib for treating rheumatoid arthritis: from basic to clinical. Mod. Rheumatol. 23, 415–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, S. P. et al. Tofacitinib, a JAK inhibitor, inhibits human B cell activation in vitro. Ann. Rheum. Dis. 73, 2213–2215 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Rizzi, M. et al. Impact of tofacitinib treatment on human B cells in vitro and in vivo. J. Autoimmun. 77, 55–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Ignatenko, S., Skrumsager, B. K., Steensberg, A. & Mouritzen, U. First in human study with recombinant anti-IL-21 monoclonal antibody in healthy subjects and patients with rheumatoid arthritis. Abstract presented at 2012 ACR/ARHP Annual Meeting (Washington, DC).

  164. Wagner, F., Skrumsager, B. K. & Fitilev, S. Safety and tolerability of NNC01140006, an anti-IL-21 monoclonal antibody, at multiple s.c. dose levels in patients with rheumatoid arthritis. Abstract presented at 2014 ACR/ARHP Annual Meeting (Boston, MA).

  165. Ignatenko, S., Skrumsager, B. K. & Mouritzen, U. Safety, PK, and PD of recombinant anti-interleukin-21 monoclonal antibody in a first-in-human trial. Int. J. Clin. Pharmacol. Ther. 54, 243–252 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin. Nature 356, 63–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  167. Guagnozzi, D. & Caprilli, R. Natalizumab in the treatment of Crohn’s disease. Biologics 2, 275–284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Yaldizli, O. & Putzki, N. Natalizumab in the treatment of multiple sclerosis. Ther. Adv. Neurol. Disord. 2, 115–128 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Stuve, O. et al. Immune surveillance in multiple sclerosis patients treated with natalizumab. Ann. Neurol. 59, 743–747 (2006).

    Article  CAS  PubMed  Google Scholar 

  170. Stüve, O. The effects of natalizumab on the innate and adaptive immune system in the central nervous system. J. Neurol. Sci. 274, 39–41 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Tocheva, A. S. & Mor, A. Checkpoint inhibitors: applications for autoimmunity. Curr. Allergy Asthma Rep. 17, 72 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Agata, Y. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol. 8, 765–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  173. Okazaki, T., Iwai, Y. & Honjo, T. New regulatory co-receptors: inducible co-stimulator and PD-1. Curr. Opin. Immunol. 14, 779–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  174. Thibult, M. L. et al. PD-1 is a novel regulator of human B cell activation. Int. Immunol. 25, 129–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hess, K. L. et al. Engineering immunological tolerance using quantum dots to tune the density of self-antigen display. Adv. Funct. Mater. 27, 1700290 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ortiz, D. F. et al. Elucidating the interplay between IgG-Fc valency and Fcγ activation for the design of immune complex inhibitors. Sci. Transl Med. 8, 365ra158 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Karnell, J. L. et al. CD19 and CD32b differentially regulate human B cell responsiveness. J. Immunol. 192, 1480–1490 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wu, X. & Demarest, S. J. Building blocks for bispecific and trispecific antibodies. Methods 154, 3–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Moore, P. A. et al. Application of dual affinity retargeting molecules to achieve optimal redirected T cell killing of B cell lymphoma. Blood 117, 4542–4551 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Huehls, A. M., Coupet, T. A. & Sentman, C. L. Bispecific T cell engagers for cancer immunotherapy. Immunol. Cell Biol. 93, 290–296 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01453205 (2018).

  183. Ikeda, H. et al. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res. 15, 4028–4037 (2009).

    Article  CAS  PubMed  Google Scholar 

  184. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02089087 (2017).

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03656562 (2019).

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02291029 (2018).

  187. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02565576 (2018).

  188. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02804763 (2019).

  189. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01127321 (2014).

  190. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02520791 (2019).

  191. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01683695 (2017).

  192. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00774943 (2013).

  193. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02391259 (2015).

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02334306 (2018).

  195. Byrd, J. C. et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369, 32–42 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00071812 (2013).

  197. Stohl, W. et al. Efficacy and safety of subcutaneous belimumab in systemic lupus erythematosus: a fifty-two-week randomized, double-blind, placebo-controlled study. Arthritis Rheumatol. 69, 1016–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01484496 (2018).

  199. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00430495 (2016).

  200. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00624338 (2016).

  201. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00642902 (2016).

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00853762 (2017).

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02808429 (2019).

  204. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02385110 (2018).

  206. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01208506 (2017).

  207. Fleischmann, R. et al. Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 390, 457–468 (2017).

    Article  CAS  PubMed  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03288324 (2019).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02535689 (2018).

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03159936 (2017).

  211. Taylor, P. C. et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 376, 652–662 (2017).

    Article  CAS  PubMed  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01710358 (2017).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03843125 (2019).

  214. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03616964 (2019).

  215. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03616912 (2019).

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00083759 (2016).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00831649 (2016).

  218. Polman, C. H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  PubMed  Google Scholar 

  219. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00027300 (2017).

Download references

Acknowledgements

S.J.S.R. thanks the National Science Foundation Graduate Research Fellowship and the Stanford Graduate Fellowship for their generous support. This Review is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE–1656518. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Research in the laboratory of W.H.R. is supported by US National Institutes of Health (NIH) National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grants R01 AR063676, U19 AI11049103 and U01 AI101981.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to William H. Robinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antibody-dependent cell-mediated cytotoxicity

(ADCC). A mechanism by which antibodies direct immune cells via Fc receptor (FcR) engagement to lyse a target cell bound by specific antibodies.

Complement-dependent cytotoxicity

(CDC). A mechanism by which the complement system kills pathogens or cells bound by specific antibodies by insertion of the membrane attack complex (MAC) to form pores that mediate lysis.

Fc region

The tail region of an antibody, containing two heavy chain constant domains, that interacts with Fc receptors (FcRs) to mediate immune cell effector functions.

Ectopic lymphoid structures

Also known as tertiary lymphoid structures; organized aggregates of lymphocytes and other cells that possess some features of germinal centres. These structures can develop in chronically inflamed nonlymphoid tissues such as the synovium in rheumatoid arthritis.

Affinity maturation

A process in the germinal centre by which B cells, following interaction and activation by follicular helper T cells, undergo immunoglobulin gene mutation and subsequent selection to generate B cells that express antibodies with increased affinity for the target antigen.

Single-chain variable fragments

Single polypeptide fusion proteins of the variable regions of the heavy and light chains of an antibody connected by a peptide linker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, S.J.S., Bloom, M.S. & Robinson, W.H. B cell checkpoints in autoimmune rheumatic diseases. Nat Rev Rheumatol 15, 303–315 (2019). https://doi.org/10.1038/s41584-019-0211-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0211-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing