Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging targets of disease-modifying therapy for systemic sclerosis

Abstract

Systemic sclerosis (SSc) has the highest cause-specific mortality of all the connective tissue diseases, and the aetiology of this complex and heterogeneous condition remains an enigma. Current disease-modifying therapies for SSc predominantly target inflammatory and vascular pathways but have variable and unpredictable clinical efficacy, and none is curative. Moreover, many of these therapies possess undesirable safety profiles and have no appreciable effect on long-term mortality. This Review describes the most promising of the existing therapeutic targets for SSc and places them in the context of our evolving understanding of the pathophysiology of this disease. As well as taking an in-depth look at the immune, inflammatory, vascular and fibrotic pathways implicated in the pathogenesis of SSc, this Review discusses emerging treatment targets and therapeutic strategies. The article concludes with an overview of important unanswered questions in SSc research that might inform the design of future studies of treatments aimed at modifying the course of this disease.

Key points

  • Systemic sclerosis (SSc) is associated with the highest mortality among the rheumatic diseases and to date lacks approved disease-modifying therapies.

  • The clinical presentation and course of SSc are highly variable, which reflects interpatient genetic and molecular heterogeneity.

  • Advances in our understanding of the immune, vascular and fibrotic mechanisms underlying the pathogenesis of SSc have revealed a growing number of potential therapeutic targets.

  • Clinical trials have shown some efficacy of therapies for SSc that target immune cell types and mediators and cellular pathways that drive fibrosis.

  • Key challenges in the development of effective disease-modifying therapies for SSc include patient heterogeneity and a lack of consensus on optimal trial design and efficacy end points.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A model of SSc pathogenesis that highlights potential targets for disease-modifying therapy.
Fig. 2: Pathogenic fibroblast activation triggers pathways in SSc that are potential targets for disease-modifying therapy.

Similar content being viewed by others

References

  1. Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Primers 1, 15002 (2015).

    PubMed  Google Scholar 

  2. Gabrielli, A., Avvedimento, E. V. & Krieg, T. Scleroderma. N. Engl. J. Med. 360, 1989–2003 (2009).

    CAS  PubMed  Google Scholar 

  3. Varga, J., Trojanowska, M. & Kuwana, M. Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. J. Scleroderma Relat. Disord. 2, 137–152 (2017).

    Google Scholar 

  4. Townsend, M. J. & Arron, J. R. Reducing the risk of failure: biomarker-guided trial design. Nat. Rev. Drug Discov. 15, 517–518 (2016).

    CAS  PubMed  Google Scholar 

  5. Asmani, M. et al. Fibrotic microtissue array to predict anti-fibrosis drug efficacy. Nat. Commun. 9, 2066 (2018).

    PubMed  PubMed Central  Google Scholar 

  6. Kowal-Bielecka, O. et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann. Rheum. Dis. 76, 1327–1339 (2017).

    PubMed  Google Scholar 

  7. Tashkin, D. P. et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 4, 708–719 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernández-Codina, A., Walker, K. M. & Pope, J. E. Scleroderma Algorithm Group. Treatment algorithms for systemic sclerosis according to experts. Arthritis Rheumatol. 70, 1820–1828 (2018).

    PubMed  Google Scholar 

  9. Varga, J. & Abraham, D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J. Clin. Invest. 117, 557–567 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhattacharyya, S., Wei, J. & Varga, J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat. Rev. Rheumatol. 8, 42–54 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. Hinz, B. et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am. J. Pathol. 180, 1340–1355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pakshir, P. & Hinz, B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68–69, 81–93 (2018).

    PubMed  Google Scholar 

  13. Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

    PubMed  Google Scholar 

  14. Varga, J. & Pasche, B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat. Rev. Rheumatol. 5, 200–206 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lafyatis, R. Transforming growth factor β — at the centre of systemic sclerosis. Nat. Rev. Rheumatol. 10, 706–719 (2014).

    CAS  PubMed  Google Scholar 

  16. Kim, K. K., Sheppard, D. & Chapman, H. A. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol. 10, a022293 (2018).

    PubMed  Google Scholar 

  17. Sargent, J. L. et al. A TGFβ-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J. Invest. Dermatol. 130, 694–705 (2010).

    CAS  PubMed  Google Scholar 

  18. Robertson, I. B. & Rifkin, D. B. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb. Perspect. Biol. 8, a021907 (2016).

    PubMed  PubMed Central  Google Scholar 

  19. Xiao, H. et al. Metformin is a novel suppressor for transforming growth factor (TGF)-β1. Sci. Rep. 6, 28597 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsou, P. S., Haak, A. J., Khanna, D. & Neubig, R. R. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription. Am. J. Physiol. Cell Physiol. 307, C2–C13 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rice, L. M. et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Invest. 125, 2795–2807 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01371305 (2018).

  23. Bhattacharyya, S. et al. A non-SMAD mechanism of fibroblast activation by transforming growth factor-β via c-Abl and Egr-1: selective modulation by imatinib mesylate. Oncogene 28, 1285–1297 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Akhmetshina, A. et al. Treatment with imatinib prevents fibrosis in different preclinical models of systemic sclerosis and induces regression of established fibrosis. Arthritis Rheum. 60, 219–224 (2009).

    CAS  PubMed  Google Scholar 

  25. Spiera, R. F. et al. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann. Rheum. Dis. 70, 1003–1009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pope, J. et al. Imatinib in active diffuse cutaneous systemic sclerosis: results of a six-month, randomized, double-blind, placebo-controlled, proof-of-concept pilot study at a single center. Arthritis Rheum. 63, 3547–3551 (2011).

    CAS  PubMed  Google Scholar 

  27. Martyanov, V. et al. Novel lung imaging biomarkers and skin gene expression subsetting in dasatinib treatment of systemic sclerosis-associated interstitial lung disease. PLOS ONE 12, e0187580 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Gordon, J. K. et al. Nilotinib (Tasigna™) in the treatment of early diffuse systemic sclerosis: an open-label, pilot clinical trial. Arthritis Res. Ther. 17, 213 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Huang, J. et al. Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Ann. Rheum. Dis. 76, 1941–1948 (2017).

    CAS  PubMed  Google Scholar 

  30. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02597933 (2018).

  31. Distler, J. H. et al. Frontiers of antifibrotic therapy in systemic sclerosis. Arthritis Rheumatol. 69, 257–267 (2017).

    PubMed  Google Scholar 

  32. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03041025 (2018).

  33. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01890265 (2018).

  34. Wu, M. et al. Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am. J. Pathol. 174, 519–533 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, J. et al. PPARγ downregulation by TGFβ in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLOS ONE 5, e13778 (2010).

    PubMed  PubMed Central  Google Scholar 

  36. Marangoni, R. G. et al. A candidate gene study reveals association between a variant of the peroxisome proliferator-activated receptor gamma (PPAR-γ) gene and systemic sclerosis. Arthritis Res. Ther. 17, 128 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Avouac, J. et al. Pan-PPAR agonist IVA337 is effective in experimental lung fibrosis and pulmonary hypertension. Ann. Rheum. Dis. 76, 1931–1940 (2017).

    CAS  PubMed  Google Scholar 

  38. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02503644 (2018).

  39. Bogatkevich, G. S. et al. Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate in a murine model of interstitial lung disease. Arthritis Rheum. 63, 1416–1425 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shea, B. S. et al. Uncoupling the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2, 86608 (2017).

    PubMed  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02426229 (2018).

  42. Spadoni, T. et al. A reactive oxygen species-mediated loop maintains increased expression of NADPH oxidases 2 and 4 in skin fibroblasts from patients with systemic sclerosis. Arthritis Rheumatol. 67, 1611–1622 (2015).

    CAS  PubMed  Google Scholar 

  43. Piera-Velazquez, S., Makul, A. & Jiménez, S. A. Increased expression of NAPDH oxidase 4 in systemic sclerosis dermal fibroblasts: regulation by transforming growth factor β. Arthritis Rheumatol. 67, 2749–2758 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Nanthakumar, C. B. et al. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat. Rev. Drug Discov. 14, 693–720 (2015).

    CAS  PubMed  Google Scholar 

  45. Wei, J. et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces SMAD-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum. 64, 2734–2745 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Beyer, C. et al. Blockade of canonical Wnt signalling ameliorates experimental dermal fibrosis. Ann. Rheum. Dis. 72, 1255–1258 (2013).

    CAS  PubMed  Google Scholar 

  47. Lafyatis, R. et al. Inhibition of β-catenin signaling in the skin rescues cutaneous adipogenesis in systemic sclerosis: a randomized, double-blind, placebo-controlled trial of C-82. J. Invest. Dermatol. 137, 2473–2483 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Horn, A. et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum. 64, 2724–2733 (2012).

    CAS  PubMed  Google Scholar 

  49. Didiasova, M. et al. Pirfenidone exerts antifibrotic effects through inhibition of GLI transcription factors. FASEB J. 31, 1916–1928 (2017).

    CAS  PubMed  Google Scholar 

  50. Xiao, H. et al. Anti-fibrotic effects of pirfenidone by interference with the Hedgehog signaling pathway in patients with systemic sclerosis-associated interstitial lung disease. Int. J. Rheum. Dis. 21, 477–486 (2018).

    CAS  PubMed  Google Scholar 

  51. Khanna, D. et al. An open-label, phase II study of the safety and tolerability of pirfenidone in patients with scleroderma-associated interstitial lung disease: the LOTUSS Trial. J. Rheumatol. 43, 1672–1679 (2016).

    PubMed  Google Scholar 

  52. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03221257 (2018).

  53. Desallais, L. et al. Targeting IL-6 by both passive or active immunization strategies prevents bleomycin-induced skin fibrosis. Arthritis Res. Ther. 16, R157 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Kitaba, S. et al. Blockade of interleukin-6 receptor alleviates disease in mouse model of scleroderma. Am. J. Pathol. 180, 165–176 (2012).

    CAS  PubMed  Google Scholar 

  55. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 387, 2630–2640 (2016).

    CAS  PubMed  Google Scholar 

  56. Khanna, D. et al. Safety and efficacy of subcutaneous tocilizumab in systemic sclerosis: results from the open-label period of a phase II randomised controlled trial (faSScinate). Ann. Rheum. Dis. 77, 212–220 (2018).

    CAS  PubMed  Google Scholar 

  57. Denton, C. P. et al. Therapeutic interleukin-6 blockade reverses transforming growth factor-β pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis. Ann. Rheum. Dis. 77, 1362–1371 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fuschiotti, P. Role of IL-13 in systemic sclerosis. Cytokine 56, 544–549 (2011).

    CAS  PubMed  Google Scholar 

  59. Allanore, Y. et al. Double-blind, randomized, 8-week placebo-controlled followed by a 16-week open label extension study, with the LPA1 receptor antagonist SAR100842 for patients with diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 70, 1634–1643 (2018).

    CAS  PubMed  Google Scholar 

  60. Zurier, R. B. & Burstein, S. H. Cannabinoids, inflammation, and fibrosis. FASEB J. 30, 3682–3689 (2016).

    CAS  PubMed  Google Scholar 

  61. Gonzalez, E. G. et al. Synthetic cannabinoid ajulemic acid exerts potent antifibrotic effects in experimental models of systemic sclerosis. Ann. Rheum. Dis. 71, 1545–1551 (2012).

    CAS  PubMed  Google Scholar 

  62. del Río, C. et al. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci. Rep. 6, 21703 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02465437 (2018).

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03398837 (2019).

  65. Katz-Talmor, D. et al. Cannabinoids for the treatment of rheumatic diseases — where do we stand? Nat. Rev. Rheumatol. 14, 488–498 (2018).

    CAS  PubMed  Google Scholar 

  66. O’Reilly, S. Toll like receptors in systemic sclerosis: an emerging target. Immunol. Lett. 195, 2–8 (2018).

    PubMed  Google Scholar 

  67. Bhattacharyya, S. et al. Toll-like receptor 4 signaling augments transforming growth factor-β responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am. J. Pathol. 182, 192–205 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bhattacharyya, S. & Varga, J. Endogenous ligands of TLR4 promote unresolving tissue fibrosis: implications for systemic sclerosis and its targeted therapy. Immunol. Lett. 195, 9–17 (2018).

    CAS  PubMed  Google Scholar 

  69. Tomcik, M. et al. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann. Rheum. Dis. 73, 1215–1222 (2014).

    CAS  PubMed  Google Scholar 

  70. Takahashi, T. et al. Amelioration of tissue fibrosis by Toll-like receptor 4 knockout in murine models of systemic sclerosis. Arthritis Rheumatol. 67, 254–265 (2015).

    CAS  PubMed  Google Scholar 

  71. Christmann, R. B. et al. Association of interferon- and transforming growth factor β-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis Rheumatol. 66, 714–725 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Trujillo, G. et al. TLR9 differentiates rapidly from slowly progressing forms of idiopathic pulmonary fibrosis. Sci. Transl Med. 2, 57ra82 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kirillov, V. et al. Sustained activation of Toll-like receptor 9 induces an invasive phenotype in lung fibroblasts: possible implications in idiopathic pulmonary fibrosis. Am. J. Pathol. 185, 943–957 (2015).

    CAS  PubMed  Google Scholar 

  74. Fang, F. et al. Toll-like receptor 9 signaling is augmented in systemic sclerosis and elicits transforming growth factor β-dependent fibroblast activation. Arthritis Rheumatol. 68, 1989–2002 (2016).

    CAS  PubMed  Google Scholar 

  75. Gheita, T. A. et al. Toll-like receptor 9 in systemic sclerosis patients: relation to modified Rodnan skin score, disease severity, and functional status. Clin. Rheumatol. 37, 757–763 (2018).

    PubMed  Google Scholar 

  76. Affandi, A. J., Carvalheiro, T., Radstake, T. R. D. J. & Marut, W. Dendritic cells in systemic sclerosis: advances from human and mice studies. Immunol. Lett. 195, 18–29 (2018).

    CAS  PubMed  Google Scholar 

  77. Van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370, 433–443 (2014).

    PubMed  Google Scholar 

  78. Divekar, A. A. et al. pDCs and IL-4+ T cells in scleroderma as novel targets of imatinib mesylate. J. Immunol. 186, 44 (2011).

    Google Scholar 

  79. Kafaja, S. et al. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight 3, e98380 (2018).

    PubMed Central  Google Scholar 

  80. Rossato, M. et al. Association of microRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol. 69, 1891–1902 (2017).

    CAS  PubMed  Google Scholar 

  81. Peng, W. J. MicroRNA-29: a potential therapeutic target for systemic sclerosis. Expert Opin. Ther. Targets 16, 875–879 (2012).

    PubMed  Google Scholar 

  82. Wynn, T. A. & Vanella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44, 450–462 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02550873 (2018).

  84. King, J., Abraham, D. & Stratton, R. Chemokines in systemic sclerosis. Immunol. Lett. 195, 68–75 (2018).

    CAS  PubMed  Google Scholar 

  85. Castelino, F. V. & Varga, J. Current status of systemic sclerosis biomarkers: applications for diagnosis, management and drug development. Expert Rev. Clin. Immunol. 9, 1077–1090 (2013).

    CAS  PubMed  Google Scholar 

  86. Wermuth, P., Piera-Velazquez, S., Rosenbloom, J. & Jimenez, S. A. Existing and novel biomarkers for precision medicine in systemic sclerosis. Nat. Rev. Rheumatol. 14, 421–432 (2018).

    CAS  PubMed  Google Scholar 

  87. Ferreira, A. M. et al. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. J. Invest. Dermatol. 126, 1900–1908 (2006).

    CAS  PubMed  Google Scholar 

  88. Distler, O. et al. Overexpression of monocyte chemoattractant protein 1 in systemic sclerosis: role of platelet-derived growth factor and effects on monocyte chemotaxis and collagen synthesis. Arthritis Rheum. 44, 2665–2678 (2001).

    CAS  PubMed  Google Scholar 

  89. Antonelli, A. et al. CXCL10 (α) and CCL2 (β) chemokines in systemic sclerosis — a longitudinal study. Rheumatology 47, 45–49 (2008).

    CAS  PubMed  Google Scholar 

  90. Carulli, M. T. et al. Can CCL2 serum levels be used in risk stratification or to monitor treatment response in systemic sclerosis? Ann. Rheum. Dis. 67, 105–109 (2008).

    CAS  PubMed  Google Scholar 

  91. Wu, M. et al. CCL2 in the circulation predicts long-term progression of interstitial lung disease in patients with early systemic sclerosis: data from two independent cohorts. Arthritis Rheumatol. 69, 1871–1878 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, X. et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheum. 65, 226–235 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Volkmann, E. R. et al. Changes in plasma CXCL4 levels are associated with improvements in lung function in patients receiving immunosuppressive therapy for systemic sclerosis-related interstitial lung disease. Arthritis Res. Ther. 18, 305 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Puengel, T. et al. Differential impact of the dual CCR2/CCR5 inhibitor cenicriviroc on migration of monocyte and lymphocyte subsets in acute liver injury. PLOS ONE 12, e0184694 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Haringman, J. J. et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 54, 2387–2392 (2006).

    CAS  PubMed  Google Scholar 

  96. Vergunst, C. E. et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 58, 1931–1939 (2008).

    CAS  PubMed  Google Scholar 

  97. Tak, P. P. et al. Chemokine receptor CCR1 antagonist CCX354-C treatment for rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial. Ann. Rheum. Dis. 72, 337–344 (2013).

    CAS  PubMed  Google Scholar 

  98. Gadina, M. et al. Translational and clinical advances in JAK–STAT biology: the present and future of jakinibs. J. Leukoc. Biol. 104, 499–514 (2018).

    CAS  PubMed  Google Scholar 

  99. Villarino, A. V., Kanno, Y. & O’Shea, J. J. Mechanisms and consequences of JAK–STAT signaling in the immune system. Nat. Immunol. 18, 374–384 (2017).

    CAS  PubMed  Google Scholar 

  100. Muskardin, T. L. W. & Niewold, T. B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 14, 214–228 (2018).

    CAS  PubMed  Google Scholar 

  101. Costa, L. et al. Small molecule therapy for managing moderate to severe psoriatic arthritis. Expert Opin. Pharmacother. 18, 1557–1567 (2017).

    CAS  PubMed  Google Scholar 

  102. Dubash, S., McGonagle, D. & Marzo-Ortega, H. New advances in the understanding and treatment of axial spondyloarthritis: from chance to choice. Ther. Adv. Chronic Dis. 9, 77–87 (2018).

    CAS  PubMed  Google Scholar 

  103. White, J. R. et al. Review article: novel oral-targeted therapies in inflammatory bowel disease. Aliment. Pharmacol. Ther. 47, 1610–1622 (2018).

    CAS  PubMed  Google Scholar 

  104. Kahn, J. S., Deverapalli, S. C. & Rosmarin, D. M. JAK–STAT signaling pathway inhibition: a role for treatment of discoid lupus erythematosus and dermatomyositis. Int. J. Dermatol. 57, 1007–1014 (2018).

    CAS  PubMed  Google Scholar 

  105. Dees, C. et al. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis Rheum. 64, 3006–3015 (2012).

    CAS  PubMed  Google Scholar 

  106. Chakraborty, D., Šumová, B. & Mallano, T. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat. Commun. 8, 1130 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Xu, Y. et al. Polymorphisms in STAT4 and IRF5 increase the risk of systemic sclerosis: a meta-analysis. Int. J. Dermatol. 55, 408–416 (2016).

    CAS  PubMed  Google Scholar 

  108. Dieudé, P. et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 60, 2472–2479 (2009).

    PubMed  Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03274076 (2018).

  110. Deverapalli, S. C. & Rosmarin, D. The use of JAK inhibitors in the treatment of progressive systemic sclerosis. J. Eur. Acad. Dermatol. Venereol. 32, e328 (2018).

    Google Scholar 

  111. Sobanski, V. et al. Prevalence of anti-RNA polymerase III antibodies in systemic sclerosis: new data from a French cohort and a systematic review and meta-analysis. Arthritis Rheumatol. 66, 407–417 (2014).

    CAS  PubMed  Google Scholar 

  112. Kraaij, M. D. & van Laar, J. M. The role of B cells in systemic sclerosis. Biologics 2, 389–395 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Manetti, M. et al. Endothelial/lymphocyte activation leads to prominent CD4+T cell infiltration in the gastric mucosa of patients with systemic sclerosis. Arthritis Rheum. 58, 2866–2873 (2008).

    PubMed  Google Scholar 

  114. Lafyatis, R., O’Hara, C., Feghali-Bostwick, C. A. & Matteson, E. B cell infiltration in systemic sclerosis-associated interstitial lung disease. Arthritis Rheum. 56, 3167–3168 (2007).

    PubMed  Google Scholar 

  115. De Santis, M. et al. Bronchoalveolar lavage fluid and progression of scleroderma interstitial lung disease. Clin. Respir. J. 6, 9–17 (2012).

    PubMed  Google Scholar 

  116. Jordan, S. et al. Effects and safety of rituximab in systemic sclerosis: an analysis from the European Scleroderma Trial and Research (EUSTAR) group. Ann. Rheum. Dis. 74, 1188–1194 (2015).

    CAS  PubMed  Google Scholar 

  117. Sato, S., Fujimoto, M., Hasegawa, M. & Takehara, K. Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum. 50, 1918–1927 (2004).

    PubMed  Google Scholar 

  118. Gambichler, T. et al. Absolute count of T and B lymphocyte subsets is decreased in systemic sclerosis. Eur. J. Med. Res. 15, 44–46 (2010).

    PubMed  PubMed Central  Google Scholar 

  119. Sanges, S. et al. Role of B cells in the pathogenesis of systemic sclerosis. Rev. Med. Interne 38, 113–124 (2017).

    CAS  PubMed  Google Scholar 

  120. Mavropoulos, A. et al. Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis Rheumatol. 68, 494–504 (2016).

    CAS  PubMed  Google Scholar 

  121. Matsushita, T. et al. Decreased levels of regulatory B cells in patients with systemic sclerosis: association with autoantibody production and disease activity. Rheumatology 55, 263–267 (2016).

    CAS  PubMed  Google Scholar 

  122. Asano, N. et al. B Lymphocyte signaling established by the CD19/CD22 loop regulates autoimmunity in the tight-skin mouse. Am. J. Pathol. 165, 641–650 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Soto, L. et al. Systemic sclerosis patients present alterations in the expression of molecules involved in B cell regulation. Front. Immunol. 6, 496 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Sato, S. et al. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J. Immunol. 165, 6635–6643 (2000).

    CAS  PubMed  Google Scholar 

  125. Brkic, Z. et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 75, 1567–1573 (2016).

    CAS  PubMed  Google Scholar 

  126. Matsushita, T. et al. Elevated serum APRIL levels in patients with systemic sclerosis: distinct profiles of systemic sclerosis categorized by APRIL and BAFF. J. Rheumatol. 34, 2056–2062 (2007).

    CAS  PubMed  Google Scholar 

  127. Bielecki, M. et al. Increased production of a proliferation-inducing ligand (APRIL) by peripheral blood mononuclear cells is associated with anti-topoisomerase I antibody and more severe disease in systemic sclerosis. J. Rheumatol. 37, 2286–2289 (2010).

    PubMed  Google Scholar 

  128. Nardelli, B. et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 97, 198–204 (2001).

    CAS  PubMed  Google Scholar 

  129. Matsushita, T. et al. Elevated serum BAFF levels in patients with systemic sclerosis: enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 54, 192–201 (2006).

    CAS  PubMed  Google Scholar 

  130. Matsushita, T. et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci. Adv. 4, eaas9944 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Bassyouni, H. et al. Elevated serum levels of a proliferation-inducing ligand in patients with systemic sclerosis: possible association with myositis? Joint Bone Spine 78, 56–61 (2011).

    CAS  PubMed  Google Scholar 

  132. Thiebaut, M. et al. Efficacy and safety of rituximab in systemic sclerosis: French retrospective study and literature review. Autoimmun. Rev. 17, 582–587 (2018).

    CAS  PubMed  Google Scholar 

  133. Daoussis, D. et al. A multicenter, open-label, comparative study of B cell depletion therapy with rituximab for systemic sclerosis-associated interstitial lung disease. Semin. Arthritis Rheum. 46, 625–631 (2017).

    CAS  PubMed  Google Scholar 

  134. Streicher, K. et al. Baseline plasma cell gene signature predicts improvement in systemic sclerosis skin scores following treatment with inebilizumab (MEDI-551) and correlates with disease activity in systemic lupus erythematosus and chronic obstructive pulmonary disease. Arthritis Rheumatol. 70, 2087–2095 (2018).

    CAS  PubMed  Google Scholar 

  135. Gordon, J. K. et al. Belimumab for the treatment of early diffuse systemic sclerosis: results of a randomized, double-blind, placebo-controlled, pilot trial. Arthritis Rheumatol. 70, 308–316 (2018).

    CAS  PubMed  Google Scholar 

  136. Brembilla, N. C. & Chizzolini, C. T cell abnormalities in systemic sclerosis with a focus on TH17 cells. Eur. Cytokine Netw. 23, 128–139 (2012).

    CAS  PubMed  Google Scholar 

  137. O’Reilly, S., Hugle, T. & van Laar, J. M. T cells in systemic sclerosis: a reappraisal. Rheumatology 51, 1540–1549 (2012).

    PubMed  Google Scholar 

  138. Truchetet, M. E. Increased frequency of circulating TH22 in addition to TH17 and TH2 lymphocytes in systemic sclerosis: association with interstitial lung disease. Arthritis Res. Ther. 13, R166 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Rodriguez-Reyna, T. S. et al. TH17 peripheral cells are increased in diffuse cutaneous systemic sclerosis compared with limited illness: a cross-sectional study. Rheumatol. Int. 32, 2653–2660 (2012).

    PubMed  Google Scholar 

  140. Liston, A. & Gray, D. H. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14, 154–165 (2014).

    CAS  PubMed  Google Scholar 

  141. Buckner, J. H. Mechanisms of impaired regulation by CD4+CD25+FOXP3+ regulatory T cells in human autoimmune diseases. Nat. Rev. Immunol. 10, 849–859 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. MacDonald, K. G. et al. Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. J. Allergy Clin. Immunol. 135, 946 (2015).

    CAS  PubMed  Google Scholar 

  143. Slobodin, G. & Rimar, D. Regulatory T cells in systemic sclerosis: a comprehensive review. Clin. Rev. Allergy Immunol. 52, 194–201 (2017).

    CAS  PubMed  Google Scholar 

  144. Slobodin, G. et al. Regulatory T cells (CD4+CD25brightFoxP3+) expansion in systemic sclerosis correlates with disease activity and severity. Cell. Immunol. 261, 77–80 (2010).

    CAS  PubMed  Google Scholar 

  145. Jiang, N., Li, M. & Zeng, X. Correlation of TH17 cells and CD4+CD25+ regulatory T cells with clinical parameters in patients with systemic sclerosis. Chin. Med. J. 127, 3557–3561 (2014).

    PubMed  Google Scholar 

  146. Becker, M. O. et al. The monoclonal anti-CD25 antibody basiliximab for the treatment of progressive systemic sclerosis: an open-label study. Ann. Rheum. Dis. 70, 1340–1341 (2011).

    CAS  PubMed  Google Scholar 

  147. Ponsoye, M. et al. Treatment with abatacept prevents experimental dermal fibrosis and induces regression of established inflammation-driven fibrosis. Ann. Rheum. Dis. 75, 2142–2149 (2016).

    CAS  PubMed  Google Scholar 

  148. Elhai, M. et al. Outcomes of patients with systemic sclerosis-associated polyarthritis and myopathy treated with tocilizumab or abatacept: a EUSTAR observational study. Ann. Rheum. Dis. 72, 1217–1220 (2013).

    CAS  PubMed  Google Scholar 

  149. Khanna, D. et al. Abatacept versus placebo in early diffuse cutaneous systemic sclerosis — results of a phase 2 investigator initiated, double-blind, placebo-controlled, multicenter, randomized controlled trial. Arthritis Rheumatol. 70 (Suppl. 10), 900 (2018).

    Google Scholar 

  150. van Laar, J. M. et al. Autologous hematopoietic stem cell transplantation versus intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis: a randomized clinical trial. JAMA 311, 2490–2498 (2014).

    PubMed  Google Scholar 

  151. Burt, R. K. et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST): an open-label, randomised phase 2 trial. Lancet 378, 498–506 (2011).

    CAS  PubMed  Google Scholar 

  152. Sullivan, K. M. et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N. Engl. J. Med. 378, 35–47 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. van Rhijn-Brouwer, F. C. et al. Cellular therapies in systemic sclerosis: recent progress. Curr. Rheumatol. Rep. 18, 12 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. Sullivan, K. M. et al. Systemic sclerosis as an indication for autologous hematopoietic cell transplantation: position statement from the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 24, 1961–1964 (2018).

    PubMed  Google Scholar 

  155. Arruda, L. C. M. et al. Immune rebound associates with a favorable clinical response to autologous HSCT in systemic sclerosis patients. Blood Adv. 2, 126–141 (2018).

    PubMed  PubMed Central  Google Scholar 

  156. Baraut, J. et al. Peripheral blood regulatory T cells in patients with diffuse systemic sclerosis (SSc) before and after autologous hematopoietic SCT: a pilot study. Bone Marrow Transplant. 49, 349–354 (2014).

    CAS  PubMed  Google Scholar 

  157. Szodoray, P. et al. Immunological reconstitution after autologous stem cell transplantation in patients with refractory systemic autoimmune diseases. Scand. J. Rheumatol. 41, 110–115 (2012).

    CAS  PubMed  Google Scholar 

  158. Khanna, D. et al. Adipose-derived cell therapy for hand dysfunction in patients with systemic sclerosis: a randomized, double-blind, placebo-controlled trial. J. Scleroderma Relat. Disord. 3, 69–101 (2018).

    Google Scholar 

  159. Matucci-Cerinic, M. et al. Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 65, 1953–1962 (2013).

    CAS  PubMed  Google Scholar 

  160. Frech, T. M. et al. Implications of endothelial shear stress on systemic sclerosis vasculopathy and treatment. Clin. Exp. Rheumatol. 36, 175–182 (2018).

    PubMed  Google Scholar 

  161. Abdulle, A. E., Diercks, G. F. H., Feelisch, M., Mulder, D. J. & van Goor, H. The role of oxidative stress in the development of systemic sclerosis related vasculopathy. Front. Physiol. 9, 1177 (2018).

    PubMed  PubMed Central  Google Scholar 

  162. Bruni, C. et al. Vascular leaking, a pivotal and early pathogenetic event in systemic sclerosis: should the door be closed? Front. Immunol. 9, 204 (2018).

    Google Scholar 

  163. Simonneau, G. et al. Selexipag, an oral, selective IP receptor agonist for the treatment of pulmonary arterial hypertension. Eur. Respir. J. 40, 874–880 (2012).

    CAS  PubMed  Google Scholar 

  164. Cutolo, M. et al. Effects of selexipag and its active metabolite in contrasting the profibrotic myofibroblast activity in cultured scleroderma skin fibroblasts. Arthritis Res. Ther. 20, 77 (2018).

    PubMed  PubMed Central  Google Scholar 

  165. Denton, C. P. et al. Efficacy and safety of selexipag in adults with Raynaud’s phenomenon secondary to systemic sclerosis: a randomized, placebo-controlled, phase II study. Arthritis Rheumatol. 69, 2370–2379 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Gaine, S. et al. Selexipag for the treatment of connective tissue disease-associated pulmonary arterial hypertension. Eur. Respir. J. 50, 1602493 (2017).

    PubMed  PubMed Central  Google Scholar 

  167. Puliod, T. et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N. Engl. J. Med. 369, 809–818 (2013).

    Google Scholar 

  168. Khanna, D. et al. Effect of macitentan on the development of new ischemic digital ulcers in patients with systemic sclerosis: DUAL-1 and DUAL-2 randomized clinical trials. JAMA 315, 1975–1988 (2016).

    CAS  PubMed  Google Scholar 

  169. Kuwana, M., Okazaki, Y. & Kaburaki, J. Long-term beneficial effects of statins on vascular manifestations in patients with systemic sclerosis. Mod. Rheumatol. 19, 530–535 (2009).

    CAS  PubMed  Google Scholar 

  170. Furukawa, S. et al. Protective effect of pravastatin on vascular endothelium in patients with systemic sclerosis: a pilot study. Ann. Rheum. Dis. 65, 1118–1120 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Abou-Raya, A., Abou-Raya, S. & Helmii, M. Statins: potentially useful in therapy of systemic sclerosis-related Raynaud’s phenomenon and digital ulcers. J. Rheumatol. 35, 1801–1808 (2008).

    CAS  PubMed  Google Scholar 

  172. Sadik, H. Y. et al. Lack of effect of 8 weeks atorvastatin on microvascular endothelial function in patients with systemic sclerosis. Rheumatology 49, 990–996 (2010).

    CAS  PubMed  Google Scholar 

  173. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02370784 (2018).

  174. Grzegorzewska, A. P. et al. Dimethyl fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Sci. Rep. 7, 41605 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Kastrati, I. et al. Dimethyl fumarate inhibits the nuclear factor κB pathway in breast cancer cells by covalent modification of p65 protein. J. Biol. Chem. 291, 3639–3647 (2016).

    CAS  PubMed  Google Scholar 

  176. Toyama, T. et al. Therapeutic targeting of TAZ and YAP by dimethyl fumarate in systemic sclerosis fibrosis. J. Invest. Dermatol. 138, 78–88 (2018).

    CAS  PubMed  Google Scholar 

  177. Wei, J. et al. Nrf2 exerts cell-autonomous antifibrotic effects: compromised function in systemic sclerosis and therapeutic rescue with a novel heterocyclic chalcone derivative. Transl Res. 183, 71–86 (2017).

    CAS  PubMed  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02981082 (2018).

  179. Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).

    PubMed  PubMed Central  Google Scholar 

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02745145 (2018).

  182. Kurundkar, A. & Thannickal, V. J. Redox mechanisms in age-related lung fibrosis. Redox Biol. 9, 67–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Lagares, D. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl Med. 9, eaal3765 (2017).

    PubMed  Google Scholar 

  184. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Wei, J. et al. The histone deacetylas sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor β signaling. Arthritis Rheumatol. 67, 1323–1334 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Zerr, P. et al. Sirt1 regulates canonical TGF-β signaling to control fibroblast activation and tissue fibrosis. Ann. Rheum. Dis. 75, 226–233 (2016).

    CAS  PubMed  Google Scholar 

  187. Akamata, K. et al. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget 7, 69321–68336 (2016).

    PubMed  PubMed Central  Google Scholar 

  188. Tarrago, M. G. et al. A potent and specific CD38 inhibitor ameliorates age-related metabolic dysfunction by reversing tissue NAD+ decline. Cell Metab. 27, 1081–1095 (2018).

    CAS  PubMed  Google Scholar 

  189. Chini, E. N. et al. The pharmacology of CD38/NADase: an emerging target in cancer and diseases of aging. Trends Pharmacol. Sci. 39, 424–436 (2018).

    CAS  PubMed  Google Scholar 

  190. Fang, F. et al. The adipokine adiponectin has potent anti-fibrotic effects mediated via adenosine monophosphate-activated protein kinase: novel target for fibrosis therapy. Arthritis Res. Ther. 14, R229 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Ursini, F. et al. Metformin and autoimmunity: a “new deal” of an old drug. Front. Immunol. 9, 1236 (2018).

    PubMed  PubMed Central  Google Scholar 

  192. Angiolilli, C. et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat. Rev. Rheumatol. 14, 657–673 (2018).

    PubMed  Google Scholar 

  193. Tsou, P. S. & Sawalha, A. H. Unfolding the pathogenesis of scleroderma. J. Autoimmun. 83, 73–94 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Taylor, D. K. et al. T follicular helper-like cells contribute to skin fibrosis. Sci. Transl Med. 10, eaaf5307 (2018).

    PubMed  Google Scholar 

  195. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01748084 (2018).

  196. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01086540 (2018).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01862926 (2017).

  198. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02161406 (2018).

Download references

Acknowledgements

The authors thank D. Legares, S. Bhattacharyya and B. Korman for helpful discussions. The authors’ research is supported by grants from the National Institutes of Health (AR42309 and R56AG054207 to J.V. and E.R.V.) and a grant from the Rheumatology Research Foundation (to E.R.V.).

Review criteria

Articles for inclusion in this narrative review and overview article were selected by searching PubMed to identify relevant articles published in the past 5 years using the following search terms: “systemic sclerosis” OR “scleroderma” and “treatment” OR “therapy”. The abstracts of retrieved articles were reviewed to determine whether they described an inflammatory target, a fibrosis target or a vascular target, and articles that described none of these were eliminated. Additionally, the ClinicalTrials.gov database was searched using the terms “scleroderma” or “systemic sclerosis” to identify relevant clinical trials published within the past 5 years.

Reviewer information

Nature Reviews Rheumatology thanks C. Buckley, M. Matucci-Cerinic, and other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to John Varga.

Ethics declarations

Competing interests

E.R.V. declares that she has acted as a clinical trial investigator for Boehringer-Ingelheim and Genentech/Roche and is an advisory board member for Boehringer-Ingelheim. J.V. declares that he has acted as a clinical trial investigator for Corbus, Cytori, GlaxoSmithKline and Genentech/Roche; has received research grants from Bristol-Myers Squibb, Pfizer and the National Institutes of Health (NIH); and is an advisory board member for Boehringer-Ingelheim, Corbus, Emerald, Inventiva and Mitsubishi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkmann, E.R., Varga, J. Emerging targets of disease-modifying therapy for systemic sclerosis. Nat Rev Rheumatol 15, 208–224 (2019). https://doi.org/10.1038/s41584-019-0184-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0184-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing