Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into the genetics and epigenetics of systemic sclerosis

Abstract

Systemic sclerosis (SSc) is a severe autoimmune disease that is characterized by vascular abnormalities, immunological alterations and fibrosis of the skin and internal organs. The results of genetic studies in patients with SSc have revealed statistically significant genetic associations with disease manifestations and progression. Nevertheless, genetic susceptibility to SSc is moderate, and the functional consequences of genetic associations remain only partially characterized. A current hypothesis is that, in genetically susceptible individuals, epigenetic modifications constitute the driving force for disease initiation. As epigenetic alterations can occur years before fibrosis appears, these changes could represent a potential link between inflammation and tissue fibrosis. Epigenetics is a fast-growing discipline, and a considerable number of important epigenetic studies in SSc have been published in the past few years that span histone post-translational modifications, DNA methylation, microRNAs and long non-coding RNAs. This Review describes the latest insights into genetic and epigenetic contributions to the pathogenesis of SSc and aims to provide an improved understanding of the molecular pathways that link inflammation and fibrosis. This knowledge will be of paramount importance for the development of medicines that are effective in treating or even reversing tissue fibrosis.

Key points

  • Systemic sclerosis (SSc) is a complex fibrotic, autoimmune disease, the manifestations of which are only partially explained by genetic predisposition.

  • The concordance rate for SSc in monozygotic twins is low, indicating that genetic predisposition is insufficient to explain disease development and suggesting a role for environmental factors and epigenetic influences.

  • Epigenetic factors associated with SSc include changes in DNA methylation, histone modifications and the expression of microRNAs and long non-coding RNAs, which together drive aberrant immune activation and fibrosis.

  • Integration of the knowledge derived from genomic and epigenomic studies in SSc is needed to improve the characterization of the disease.

  • Therapies that target epigenetic pathways are emerging as promising therapeutic tools in experimental models of fibrosis, raising hope for future applications in SSc.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key epigenetic processes.
Fig. 2: Genetic and epigenetic influences on the pathogenesis of systemic sclerosis.

Similar content being viewed by others

References

  1. Gabrielli, A., Avvedimento, E. V. & Krieg, T. Scleroderma. N. Engl. J. Med. 360, 1989–2003 (2009).

    CAS  PubMed  Google Scholar 

  2. [No authors listed]. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum. 23, 581–590 (1980).

    Google Scholar 

  3. Barnes, J. & Mayes, M. D. Epidemiology of systemic sclerosis: incidence, prevalence, survival, risk factors, malignancy, and environmental triggers. Curr. Opin. Rheumatol. 24, 165–170 (2012).

    PubMed  Google Scholar 

  4. LeRoy, E. C. & Medsger, T. A. Jr. Criteria for the classification of early systemic sclerosis. J. Rheumatol. 28, 1573–1576 (2001).

    CAS  PubMed  Google Scholar 

  5. van den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 72, 1747–1755 (2013).

    PubMed  Google Scholar 

  6. Pope, J. E. & Johnson, S. R. New classification criteria for systemic sclerosis (scleroderma). Rheum. Dis. Clin. North Am. 41, 383–398 (2015).

    PubMed  Google Scholar 

  7. Chifflot, H., Fautrel, B., Sordet, C., Chatelus, E. & Sibilia, J. Incidence and prevalence of systemic sclerosis: a systematic literature review. Semin. Arthritis Rheum. 37, 223–235 (2008).

    PubMed  Google Scholar 

  8. Roberts-Thomson, P. J. et al. Scleroderma in South Australia: epidemiological observations of possible pathogenic significance. Intern. Med. J. 31, 220–229 (2001).

    CAS  PubMed  Google Scholar 

  9. Mayes, M. D. et al. Prevalence, incidence, survival, and disease characteristics of systemic sclerosis in a large US population. Arthritis Rheum. 48, 2246–2255 (2003).

    PubMed  Google Scholar 

  10. De Martinis, M., Ciccarelli, F., Sirufo, M. M. & Ginaldi, L. An overview of environmental risk factors in systemic sclerosis. Expert Rev. Clin. Immunol. 12, 465–478 (2016).

    PubMed  Google Scholar 

  11. McCormic, Z. D., Khuder, S. S., Aryal, B. K., Ames, A. L. & Khuder, S. A. Occupational silica exposure as a risk factor for scleroderma: a meta-analysis. Int. Arch. Occup. Environ. Health 83, 763–769 (2010).

    CAS  PubMed  Google Scholar 

  12. Walczyk, M., Paradowska-Gorycka, A. & Olesinska, M. Epigenetics: the future direction in systemic sclerosis. Scand. J. Immunol. 86, 427–435 (2017).

    CAS  PubMed  Google Scholar 

  13. Broen, J. C., Radstake, T. R. & Rossato, M. The role of genetics and epigenetics in the pathogenesis of systemic sclerosis. Nat. Rev. Rheumatol. 10, 671–681 (2014).

    CAS  PubMed  Google Scholar 

  14. Englert, H. et al. Familial risk estimation in systemic sclerosis. Aust. N. Z. J. Med. 29, 36–41 (1999).

    CAS  PubMed  Google Scholar 

  15. Arnett, F. C. et al. Familial occurrence frequencies and relative risks for systemic sclerosis (scleroderma) in three United States cohorts. Arthritis Rheum. 44, 1359–1362 (2001).

    CAS  PubMed  Google Scholar 

  16. Feghali-Bostwick, C., Medsger, T. A. Jr & Wright, T. M. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 48, 1956–1963 (2003).

    PubMed  Google Scholar 

  17. Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13, 899–902 (1986).

    CAS  PubMed  Google Scholar 

  18. Bammer, H., Schaltenbrand, G. & Solcher, H. [Examinations of twins in multiple sclerosis]. Dtsch. Z. Nervenheilkd 181, 261–279 (1960).

    CAS  PubMed  Google Scholar 

  19. Selmi, C. et al. Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 127, 485–492 (2004).

    PubMed  Google Scholar 

  20. Zhou, X., Tan, F. K., Xiong, M., Arnett, F. C. & Feghali-Bostwick, C. A. Monozygotic twins clinically discordant for scleroderma show concordance for fibroblast gene expression profiles. Arthritis Rheum. 52, 3305–3314 (2005).

    CAS  PubMed  Google Scholar 

  21. Hudson, M. et al. Polyautoimmunity and familial autoimmunity in systemic sclerosis. J. Autoimmun. 31, 156–159 (2008).

    CAS  PubMed  Google Scholar 

  22. Arora-Singh, R. K. et al. Autoimmune diseases and autoantibodies in the first degree relatives of patients with systemic sclerosis. J. Autoimmun. 35, 52–57 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chairta, P., Nicolaou, P. & Christodoulou, K. Genomic and genetic studies of systemic sclerosis: a systematic review. Hum. Immunol. 78, 153–165 (2017).

    CAS  PubMed  Google Scholar 

  24. Mayes, M. D. et al. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am. J. Hum. Genet. 94, 47–61 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Arnett, F. C. et al. Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann. Rheum. Dis. 69, 822–827 (2010).

    CAS  PubMed  Google Scholar 

  26. Beretta, L. et al. Analysis of class II human leucocyte antigens in Italian and Spanish systemic sclerosis. Rheumatol. 51, 52–59 (2012).

    CAS  Google Scholar 

  27. Rodriguez-Reyna, T. S. et al. HLA class I and II blocks are associated to susceptibility, clinical subtypes and autoantibodies in Mexican systemic sclerosis (SSc) patients. PLoS ONE 10, e0126727 (2015).

    PubMed  PubMed Central  Google Scholar 

  28. Furukawa, H. et al. Human leukocyte antigen and systemic sclerosis in Japanese: the sign of the four independent protective alleles, DRB1*13:02, DRB1*14:06, DQB1*03:01, and DPB1*02:01. PLoS ONE 11, e0154255 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Wang, J. et al. Association of HLA-DPB1 with scleroderma and its clinical features in Chinese population. PLoS ONE 9, e87363 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Vigone, B. et al. Role of class II human leucocyte antigens in the progression from early to definite systemic sclerosis. Rheumatol. 54, 707–711 (2015).

    CAS  Google Scholar 

  31. Lambert, N. C. et al. HLA-DQA1*0501 is associated with diffuse systemic sclerosis in Caucasian men. Arthritis Rheum. 43, 2005–2010 (2000).

    CAS  PubMed  Google Scholar 

  32. Stevens, A. M. et al. Brief report: HLA-DRB1, DQA1, and DQB1 in juvenile-onset systemic sclerosis. Arthritis Rheumatol. 68, 2772–2777 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Higgs, B. W. et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis. 70, 2029–2036 (2011).

    CAS  PubMed  Google Scholar 

  34. Xu, Y., Wang, W., Tian, Y., Liu, J. & Yang, R. Polymorphisms in STAT4 and IRF5 increase the risk of systemic sclerosis: a meta-analysis. Int. J. Dermatol. 55, 408–416 (2016).

    CAS  PubMed  Google Scholar 

  35. Lopez-Isac, E. et al. Brief report: IRF4 newly identified as a common susceptibility locus for systemic sclerosis and rheumatoid arthritis in a cross-disease meta-analysis of genome-wide association studies. Arthritis Rheumatol. 68, 2338–2344 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Allanore, Y. et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet. 7, e1002091 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin, J. E. et al. Identification of CSK as a systemic sclerosis genetic risk factor through genome wide association study follow-up. Hum. Mol. Genet. 21, 2825–2835 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Radstake, T. R. et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet. 42, 426–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, J. et al. Lack of association of the CD247 SNP rs2056626 with systemic sclerosis in Han Chinese. Open Rheumatol. J. 8, 43–45 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Sato, S. et al. Levels of interleukin 12, a cytokine of type 1 helper T cells, are elevated in sera from patients with systemic sclerosis. J. Rheumatol. 27, 2838–2842 (2000).

    CAS  PubMed  Google Scholar 

  41. Bossini-Castillo, L. et al. A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Hum. Mol. Genet. 21, 926–933 (2012).

    CAS  PubMed  Google Scholar 

  42. Lopez-Isac, E. et al. Identification of IL12RB1 as a novel systemic sclerosis susceptibility locus. Arthritis Rheumatol. 66, 3521–3523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin, J. E. et al. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum. Mol. Genet. 22, 4021–4029 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tsuchiya, N. et al. Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann. Rheum. Dis. 68, 1375–1376 (2009).

    CAS  PubMed  Google Scholar 

  45. Elshazli, R. & Settin, A. Association of PTPN22 rs2476601 and STAT4 rs7574865 polymorphisms with rheumatoid arthritis: a meta-analysis update. Immunobiology 220, 1012–1024 (2015).

    CAS  PubMed  Google Scholar 

  46. Gestermann, N. et al. STAT4 is a confirmed genetic risk factor for Sjögren’s syndrome and could be involved in type 1 interferon pathway signaling. Genes Immun. 11, 432–438 (2010).

    CAS  PubMed  Google Scholar 

  47. Namjou, B. et al. High-density genotyping of STAT4 reveals multiple haplotypic associations with systemic lupus erythematosus in different racial groups. Arthritis Rheum. 60, 1085–1095 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsuchiya, N., Ito, I. & Kawasaki, A. Association of IRF5, STAT4 and BLK with systemic lupus erythematosus and other rheumatic diseases. Nihon Rinsho Meneki Gakkai Kaishi 33, 57–65 (2010).

    CAS  PubMed  Google Scholar 

  49. Ito, I. et al. Association of a functional polymorphism in the IRF5 region with systemic sclerosis in a Japanese population. Arthritis Rheum. 60, 1845–1850 (2009).

    CAS  PubMed  Google Scholar 

  50. Koumakis, E. et al. A candidate gene study identifies a haplotype of CD2 as novel susceptibility factor for systemic sclerosis. Clin. Exp. Rheumatol. 34 (Suppl. 100), 43–48 (2016).

    PubMed  Google Scholar 

  51. Sisirak, V. et al. Digestion of chromatin in apoptotic cell microparticles prevents autoimmunity. Cell 166, 88–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zochling, J. et al. An Immunochip-based interrogation of scleroderma susceptibility variants identifies a novel association at DNASE1L3. Arthritis Res. Ther. 16, 438 (2014).

    PubMed  PubMed Central  Google Scholar 

  53. Wei, P. et al. Identification of an association of TNFAIP3 polymorphisms with matrix metalloproteinase expression in fibroblasts in an integrative study of systemic sclerosis-associated genetic and environmental factors. Arthritis Rheumatol. 68, 749–760 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao, J. H. et al. The influence of different solvents on systemic sclerosis: an updated meta-analysis of 14 case-control studies. J. Clin. Rheumatol. 22, 253–259 (2016).

    PubMed  Google Scholar 

  55. Johar, A. S. et al. Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture. Autoimmun Rev. 14, 204–209 (2015).

    CAS  PubMed  Google Scholar 

  56. Gao, L. et al. Identification of rare variants in ATP8B4 as a risk factor for systemic sclerosis by whole-exome sequencing. Arthritis Rheumatol. 68, 191–200 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lopez-Isac, E. et al. Analysis of ATP8B4 F436L missense variant in a large systemic sclerosis cohort. Arthritis Rheumatol. 69, 1337–1338 (2017).

    CAS  PubMed  Google Scholar 

  58. Mak, A. C. et al. Brief report: whole-exome sequencing for identification of potential causal variants for diffuse cutaneous systemic sclerosis. Arthritis Rheumatol. 68, 2257–2262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dieude, P. et al. BANK1 is a genetic risk factor for diffuse cutaneous systemic sclerosis and has additive effects with IRF5 and STAT4. Arthritis Rheum. 60, 3447–3454 (2009).

    CAS  PubMed  Google Scholar 

  60. van Bon, L. et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 370, 433–443 (2014).

    PubMed  Google Scholar 

  61. van Bon, L. et al. Distinct evolution of TLR-mediated dendritic cell cytokine secretion in patients with limited and diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 69, 1539–1547 (2010).

    PubMed  Google Scholar 

  62. Ah Kioon, M. D. et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl Med. 10, eaam8458 (2018).

    PubMed  Google Scholar 

  63. Silva-Cardoso, S. C. et al. CXCL4 exposure potentiates TLR-driven polarization of human monocyte-derived dendritic cells and increases stimulation of T cells. J. Immunol. 199, 253–262 (2017).

    CAS  PubMed  Google Scholar 

  64. Altorok, N., Tsou, P. S., Coit, P., Khanna, D. & Sawalha, A. H. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann. Rheum. Dis. 74, 1612–1620 (2015).

    CAS  PubMed  Google Scholar 

  65. Hattori, M. et al. Global DNA hypomethylation and hypoxia-induced expression of the ten eleven translocation (TET) family, TET1, in scleroderma fibroblasts. Exp. Dermatol. 24, 841–846 (2015).

    CAS  PubMed  Google Scholar 

  66. Sargent, J. L. et al. A TGFβ-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. J. Invest. Dermatol. 130, 694–705 (2010).

    CAS  PubMed  Google Scholar 

  67. Dantas, A. T. et al. Reassessing the role of the active TGF-β1 as a biomarker in systemic sclerosis: association of serum levels with clinical manifestations. Dis. Markers 2016, 6064830 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Dees, C. et al. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann. Rheum. Dis. 73, 1232–1239 (2014).

    CAS  PubMed  Google Scholar 

  69. Noda, S. et al. Simultaneous downregulation of KLF5 and FLI1 is a key feature underlying systemic sclerosis. Nat. Commun. 5, 5797 (2014).

    CAS  PubMed  Google Scholar 

  70. Zhang, Y. et al. Poly(ADP-ribose) polymerase-1 regulates fibroblast activation in systemic sclerosis. Ann. Rheum. Dis. 77, 744–751 (2018).

    PubMed  Google Scholar 

  71. Bujor, A. M. et al. Ciprofloxacin has antifibrotic effects in scleroderma fibroblasts via downregulation of DNMT1 and upregulation of FLI1. Int. J. Mol. Med. 30, 1473–1480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lei, W. et al. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand. J. Rheumatol. 38, 369–374 (2009).

    CAS  PubMed  Google Scholar 

  73. Qing, Y. et al. Quantitation and mapping of the epigenetic marker 5-hydroxymethylcytosine. Bioessays https://doi.org/10.1002/bies.201700010 (2017).

    Article  PubMed  Google Scholar 

  74. Zhang, S. et al. miR-30a as potential therapeutics by targeting TET1 through regulation of Drp-1 promoter hydroxymethylation in idiopathic pulmonary fibrosis. Int. J. Mol. Sci. 18, E633 (2017).

    PubMed  Google Scholar 

  75. O’Reilly, S., Ciechomska, M., Fullard, N., Przyborski, S. & van Laar, J. M. IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics. Sci. Rep. 6, 25066 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. He, Y., Tsou, P. S., Khanna, D. & Sawalha, A. H. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann. Rheum. Dis. 77, 1208–1218 (2018).

    PubMed  Google Scholar 

  77. Keerthisingam, C. B. et al. Cyclooxygenase-2 deficiency results in a loss of the anti-proliferative response to transforming growth factor-β in human fibrotic lung fibroblasts and promotes bleomycin-induced pulmonary fibrosis in mice. Am. J. Pathol. 158, 1411–1422 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Evans, I. C. et al. Epigenetic regulation of cyclooxygenase-2 by methylation of C8orf4 in pulmonary fibrosis. Clin. Sci. (Lond.) 130, 575–586 (2016).

    CAS  Google Scholar 

  79. Kim, J. et al. TC1(C8orf4) is a novel endothelial inflammatory regulator enhancing NF-κB activity. J. Immunol. 183, 3996–4002 (2009).

    CAS  PubMed  Google Scholar 

  80. Matatiele, P., Tikly, M., Tarr, G. & Gulumian, M. DNA methylation similarities in genes of black South Africans with systemic lupus erythematosus and systemic sclerosis. J. Biomed. Sci. 22, 34 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. Ding, W. et al. Genome-wide DNA methylation analysis in systemic sclerosis reveals hypomethylation of IFN-associated genes in CD4(+) and CD8(+) T cells. J. Invest. Dermatol. 138, 1069–1077 (2018).

    CAS  PubMed  Google Scholar 

  82. Yoshizaki, A. et al. Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model. J. Immunol. 185, 2502–2515 (2010).

    CAS  PubMed  Google Scholar 

  83. Wang, Y. et al. Hypomethylation and overexpression of ITGAL (CD11a) in CD4(+) T cells in systemic sclerosis. Clin. Epigenet. 6, 25 (2014).

    CAS  Google Scholar 

  84. Yin, H. et al. Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus. Oncotarget 8, 48938–48947 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Absher, D. M. et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T cell populations. PLoS Genet. 9, e1003678 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Carmona, F. D. et al. Novel identification of the IRF7 region as an anticentromere autoantibody propensity locus in systemic sclerosis. Ann. Rheum. Dis. 71, 114–119 (2012).

    CAS  PubMed  Google Scholar 

  87. Rezaei, R. et al. IRF7 gene expression profile and methylation of its promoter region in patients with systemic sclerosis. Int. J. Rheum. Dis. 20, 1551–1561 (2017).

    CAS  PubMed  Google Scholar 

  88. Wang, Y. Y. et al. DNA hypermethylation of the forkhead box protein 3 (FOXP3) promoter in CD4+ T cells of patients with systemic sclerosis. Br. J. Dermatol. 171, 39–47 (2014).

    CAS  PubMed  Google Scholar 

  89. Almanzar, G. et al. Disease manifestation and inflammatory activity as modulators of Th17/Treg balance and RORC/FoxP3 methylation in systemic sclerosis. Int. Arch. Allergy Immunol. 171, 141–154 (2016).

    CAS  PubMed  Google Scholar 

  90. Tsou, P. S. et al. Histone deacetylase 5 is overexpressed in scleroderma endothelial cells and impairs angiogenesis via repression of proangiogenic factors. Arthritis Rheumatol. 68, 2975–2985 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, Y., Fan, P. S. & Kahaleh, B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 54, 2271–2279 (2006).

    CAS  PubMed  Google Scholar 

  92. Chu, H. et al. Sirtuin1 protects against systemic sclerosis-related pulmonary fibrosis by decreasing proinflammatory and profibrotic processes. Am. J. Respir. Cell. Mol. Biol. 58, 28–39 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zerr, P. et al. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann. Rheum. Dis. 75, 226–233 (2016).

    CAS  PubMed  Google Scholar 

  94. Wei, J. et al. The histone deacetylase sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor β signaling. Arthritis Rheumatol. 67, 1323–1334 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Wyman, A. E. et al. Sirtuin 7 is decreased in pulmonary fibrosis and regulates the fibrotic phenotype of lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 312, L945–L958 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Sosulski, M. L., Gongora, R., Feghali-Bostwick, C., Lasky, J. A. & Sanchez, C. G. Sirtuin 3 deregulation promotes pulmonary fibrosis. J. Gerontol. A Biol. Sci. Med. Sci. 72, 595–602 (2017).

    PubMed  Google Scholar 

  97. Akamata, K. et al. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget 7, 69321–69336 (2016).

    PubMed  PubMed Central  Google Scholar 

  98. Zhu, X. et al. SIRT1 ameliorates systemic sclerosis by targeting the mTOR pathway. J. Dermatol. Sci. 87, 149–158 (2017).

    CAS  PubMed  Google Scholar 

  99. Wang, Q. et al. Overexpression of JMJD3 may contribute to demethylation of H3K27me3 in CD4+ T cells from patients with systemic sclerosis. Clin. Immunol. 161, 396–399 (2015).

    CAS  PubMed  Google Scholar 

  100. Bergmann, C. et al. The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Ann. Rheum. Dis. 77, 150–158 (2018).

    PubMed  Google Scholar 

  101. Fan, Z. et al. MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis. Biochim. Biophys. Acta 1849, 1219–1228 (2015).

    CAS  PubMed  Google Scholar 

  102. Rossato, M. et al. Association of microRNA-618 expression with altered frequency and activation of plasmacytoid dendritic cells in patients with systemic sclerosis. Arthritis Rheumatol. 69, 1891–1902 (2017).

    CAS  PubMed  Google Scholar 

  103. Ciechomska, M. et al. The role of microRNA-5196 in the pathogenesis of systemic sclerosis. Eur. J. Clin. Invest. 47, 555–564 (2017).

    CAS  PubMed  Google Scholar 

  104. Ciechomska, M., O’Reilly, S., Suwara, M., Bogunia-Kubik, K. & van Laar, J. M. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-β activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS ONE 9, e115596 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Jafarinejad-Farsangi, S. et al. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 48, 369–378 (2015).

    PubMed  Google Scholar 

  106. Jafarinejad-Farsangi, S. et al. Inhibition of microRNA-21 induces apoptosis in dermal fibroblasts of patients with systemic sclerosis. Int. J. Dermatol. 55, 1259–1267 (2016).

    CAS  PubMed  Google Scholar 

  107. Zhou, B. et al. MicroRNA-202-3p regulates scleroderma fibrosis by targeting matrix metalloproteinase 1. Biomed. Pharmacother. 87, 412–418 (2017).

    CAS  PubMed  Google Scholar 

  108. Yan, Q., Chen, J., Li, W., Bao, C. & Fu, Q. Targeting miR-155 to treat experimental scleroderma. Sci. Rep. 6, 20314 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Christmann, R. B. et al. MiR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res. Ther. 18, 155 (2016).

    PubMed  PubMed Central  Google Scholar 

  110. Artlett, C. M., Sassi-Gaha, S., Hope, J. L., Feghali-Bostwick, C. A. & Katsikis, P. D. Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Res. Ther. 19, 144 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Artlett, C. M. et al. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum. 63, 3563–3574 (2011).

    CAS  PubMed  Google Scholar 

  112. Iwamoto, N. et al. Downregulation of miR-193b in systemic sclerosis regulates the proliferative vasculopathy by urokinase-type plasminogen activator expression. Ann. Rheum. Dis. 75, 303–310 (2016).

    CAS  PubMed  Google Scholar 

  113. Weiland, M., Gao, X. H., Zhou, L. & Mi, Q. S. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 9, 850–859 (2012).

    CAS  PubMed  Google Scholar 

  114. Steen, S. O. et al. The circulating cell-free microRNA profile in systemic sclerosis is distinct from both healthy controls and systemic lupus erythematosus. J. Rheumatol. 42, 214–221 (2015).

    CAS  PubMed  Google Scholar 

  115. Wuttge, D. M. et al. Specific autoantibody profiles and disease subgroups correlate with circulating micro-RNA in systemic sclerosis. Rheumatol. 54, 2100–2107 (2015).

    CAS  Google Scholar 

  116. Chouri, E. et al. Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J. Autoimmun. 89, 162–170 (2018).

    CAS  PubMed  Google Scholar 

  117. Nakamura, K. et al. Altered expression of CD63 and exosomes in scleroderma dermal fibroblasts. J. Dermatol. Sci. 84, 30–39 (2016).

    CAS  PubMed  Google Scholar 

  118. Wermuth, P. J., Piera-Velazquez, S. & Jimenez, S. A. Exosomes isolated from serum of systemic sclerosis patients display alterations in their content of profibrotic and antifibrotic microRNA and induce a profibrotic phenotype in cultured normal dermal fibroblasts. Clin. Exp. Rheumatol. 35 (Suppl. 106), 21–30 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Messemaker, T. C. et al. Antisense long non-coding RNAs are deregulated in skin tissue of patients with systemic sclerosis. J. Invest. Dermatol. 138, 826–835 (2018).

    CAS  PubMed  Google Scholar 

  120. Wang, Z. et al. Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp. Dermatol. 25, 131–136 (2016).

    CAS  PubMed  Google Scholar 

  121. Angiolilli, C., Baeten, D. L., Radstake, T. R. & Reedquist, K. A. The acetyl code in rheumatoid arthritis and other rheumatic diseases. Epigenomics 9, 447–461 (2017).

    CAS  PubMed  Google Scholar 

  122. O’Reilly, S. Epigenetic modulation as a therapy in systemic sclerosis. Rheumatol. https://doi.org/10.1093/rheumatology/key071 (2018).

    Article  Google Scholar 

  123. Strickland, F. M. et al. Characterisation of an epigenetically altered CD4(+) CD28(+) KIR(+) T cell subset in autoimmune rheumatic diseases by multiparameter flow cytometry. Lupus Sci. Med. 3, e000147 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Richardson, B. Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum. Immunol. 17, 456–470 (1986).

    CAS  PubMed  Google Scholar 

  125. Svegliati, S. et al. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci. Signal 7, ra84 (2014).

    PubMed  Google Scholar 

  126. Huber, L. C. et al. Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum. 56, 2755–2764 (2007).

    CAS  PubMed  Google Scholar 

  127. Ota, C. et al. Histone deacetylase inhibitor restores surfactant protein-C expression in alveolar-epithelial type II cells and attenuates bleomycin-induced pulmonary fibrosis in vivo. Exp. Lung Res. 41, 422–434 (2015).

    CAS  PubMed  Google Scholar 

  128. Hu, L. et al. Epigenetic regulation of interleukin 6 by histone acetylation in macrophages and its role in paraquat-induced pulmonary fibrosis. Front. Immunol. 7, 696 (2016).

    PubMed  Google Scholar 

  129. Ghosh, A. K. et al. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis. J. Invest. Dermatol. 133, 1302–1310 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Smoliga, J. M., Vang, O. & Baur, J. A. Challenges of translating basic research into therapeutics: resveratrol as an example. J. Gerontol. A Biol. Sci. Med. Sci. 67, 158–167 (2012).

    PubMed  Google Scholar 

  131. Xiao, X. et al. EZH2 enhances the differentiation of fibroblasts into myofibroblasts in idiopathic pulmonary fibrosis. Physiol. Rep. 4, e12915 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Zeybel, M. et al. A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin A. Mol. Ther. 25, 218–231 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ciechomska, M. et al. Histone demethylation and toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via Fra-2. Arthritis Rheumatol. 68, 1493–1504 (2016).

    CAS  PubMed  Google Scholar 

  134. Kramer, M. et al. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann. Rheum. Dis. 72, 614–620 (2013).

    PubMed  Google Scholar 

  135. Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 728–736 (2014).

    CAS  PubMed  Google Scholar 

  136. Tang, X. et al. Assessment of Brd4 inhibition in idiopathic pulmonary fibrosis lung fibroblasts and in vivo models of lung fibrosis. Am. J. Pathol. 183, 470–479 (2013).

    CAS  PubMed  Google Scholar 

  137. O’Reilly, S. MicroRNAs in fibrosis: opportunities and challenges. Arthritis Res. Ther. 18, 11 (2016).

    PubMed  PubMed Central  Google Scholar 

  138. Tanaka, S. et al. Alteration of circulating miRNAs in SSc: miR-30b regulates the expression of PDGF receptor beta. Rheumatol. 52, 1963–1972 (2013).

    CAS  Google Scholar 

  139. Gallant-Behm, C. L. et al. Regulation of ECM production and fibrosis by MRG-201, a mimic of microRNA miR-29. Wound Repair Regener. 24, A9 (2016).

    Google Scholar 

  140. Gallant-Behm, C. L. et al. Pharmacodynamic activity of a microRNA-29b mimic (MRG-201) in human skin incisions. J. Investigative Dermatol. 137, B4 (2017).

    Google Scholar 

  141. Kader, F. & Ghai, M. DNA methylation-based variation between human populations. Mol. Genet. Genom. 292, 5–35 (2017).

    CAS  Google Scholar 

  142. Christopher, A. F. et al. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect. Clin. Res. 7, 68–74 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Guinea-Viniegra, J. et al. Targeting miR-21 to treat psoriasis. Sci. Transl Med. 6, 225re1 (2014).

    PubMed  Google Scholar 

  144. Xu, P., Hu, G., Luo, C. & Liang, Z. DNA methyltransferase inhibitors: an updated patent review (2012–2015). Expert Opin. Ther. Pat. 26, 1017–1030 (2016).

    CAS  PubMed  Google Scholar 

  145. Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 63, 1452–1458 (2011).

    CAS  PubMed  Google Scholar 

  146. King, T. E. Jr., Noble, P. W. & Bradford, W. Z. Treatments for idiopathic pulmonary fibrosis. N. Engl. J. Med. 371, 783–784 (2014).

    CAS  PubMed  Google Scholar 

  147. Marcellin, P. et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 381, 468–475 (2013).

    CAS  PubMed  Google Scholar 

  148. Liaw, Y. F. Reversal of cirrhosis: an achievable goal of hepatitis B antiviral therapy. J. Hepatol. 59, 880–881 (2013).

    PubMed  Google Scholar 

  149. Zeisberg, M. & Kalluri, R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304, C216–C225 (2013).

    CAS  PubMed  Google Scholar 

  150. Tang, L., Chen, B., Ma, B. & Nie, S. Association between IRF5 polymorphisms and autoimmune diseases: a meta-analysis. Genet. Mol. Res. 13, 4473–4485 (2014).

    CAS  PubMed  Google Scholar 

  151. Wang, J. et al. Association of the IRF5 SNP rs2004640 with systemic sclerosis in Han Chinese. Int. J. Immunopathol. Pharmacol. 27, 635–638 (2014).

    CAS  PubMed  Google Scholar 

  152. Zhao, W. et al. The status of pulmonary fibrosis in systemic sclerosis is associated with IRF5, STAT4, IRAK1, and CTGF polymorphisms. Rheumatol. Int. 37, 1303–1310 (2017).

    CAS  PubMed  Google Scholar 

  153. Luo, H., Zhu, H., Zhou, B., Xiao, X. & Zuo, X. MicroRNA-130b regulates scleroderma fibrosis by targeting peroxisome proliferator-activated receptor gamma. Mod. Rheumatol. 25, 595–602 (2015).

    CAS  PubMed  Google Scholar 

  154. Nakayama, W. et al. Dysregulated interleukin-23 signalling contributes to the increased collagen production in scleroderma fibroblasts via balancing microRNA expression. Rheumatol. 56, 145–155 (2017).

    Google Scholar 

  155. Neveu, W. A., Mills, S. T., Staitieh, B. S. & Sueblinvong, V. TGF-β1 epigenetically modifies Thy-1 expression in primary lung fibroblasts. Am. J. Physiol. Cell Physiol. 309, C616–C626 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Palumbo-Zerr, K. et al. Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat. Med. 21, 150–158 (2015).

    CAS  PubMed  Google Scholar 

  157. Urban, J. R. & King, B. Divalproex sodium: a potential therapy for scleroderma digital ulcers. JAAD Case Rep. 1, 44–45 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. Hinchcliff, M. et al. Mycophenolate mofetil treatment of systemic sclerosis reduces myeloid cell numbers and attenuates the inflammatory gene signature in skin. J. Invest. Dermatol. 138, 1301–1310 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Namas, R. et al. Efficacy of mycophenolate mofetil and oral cyclophosphamide on skin thickness: post hoc analyses from two randomized placebo-controlled trials. Arthritis Care Res. (Hoboken) 70, 439–444 (2018).

    CAS  Google Scholar 

  160. Volkmann, E. R. et al. Mycophenolate mofetil versus placebo for systemic sclerosis-related interstitial lung disease: an analysis of scleroderma lung studies I and II. Arthritis Rheumatol. 69, 1451–1460 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Tashkin, D. P. et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 4, 708–719 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Reviewer information

Nature Reviews Rheumatology thanks Y. Asano, M. Whitfield and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

C.A., W.M., M.v.d.K. and E.C. researched data for the article. C.A., W.M., M.v.d.K., E.C. and T.R.D.J.R. wrote the article. C.A., W.M., K.A.R. and T.R.D.J.R. made substantial contributions to discussion of content. All authors reviewed and/or edited the manuscript before submission. M.v.d.K. and E.C. contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Timothy R. D. J. Radstake.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

DNA methylation

An epigenetic change to DNA that conventionally creates a close, inactive chromatin state that results in transcriptional repression.

Histone post-translational modifications

Chemical modifications to histone tails (such as acetylation and methylation) that influence the accessibility of the DNA to the transcription machinery, thereby allowing or repressing gene expression.

Immunochip

Single nucleotide polymorphism microarrays designed to replicate and establish statistically significant genome-wide association study loci associated with autoimmune and inflammatory disorders.

MicroRNA

A short non-coding RNA of 18–24 nucleotides in length that regulates gene expression by binding to its complementary sequence within a target mRNA.

Long non-coding RNA

A long non-coding RNA ~200 nucleotides in length that functions as a molecular scaffold to regulate gene expression at the transcriptional, post-transcriptional and epigenetic levels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angiolilli, C., Marut, W., van der Kroef, M. et al. New insights into the genetics and epigenetics of systemic sclerosis. Nat Rev Rheumatol 14, 657–673 (2018). https://doi.org/10.1038/s41584-018-0099-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0099-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing