Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neuroinflammation in frontotemporal dementia

Abstract

Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.

Key points

  • Neuroinflammation is a major contributor to the pathogenic process in frontotemporal dementia (FTD).

  • Exploration of neuroinflammatory pathways, immune-mediated mechanisms and the use of immunomodulation as a disease-modification strategy are promising research directions in this setting.

  • Growing understanding of the complexity of microglial subpopulations provides an opportunity to explore the phenotypic landscape of microglia-driven neuroinflammation in FTD.

  • Replication and validation of previous studies in human FTD using appropriate controls, independent cohorts and quantitative methods is pivotal for the identification of new treatment targets and drug and biomarker candidates.

  • More knowledge is required on the context (cell type, timing of assessment and disease stage) of FTD-related gene effects on neuroinflammation.

  • A combination of clinical biomarker discovery and studies of patients with FTD carrying mutations that target a specific protein or underlying pathology will be essential in future investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuroinflammation and immune-mediated mechanisms in FTD.

Similar content being viewed by others

References

  1. Hodges, J. R. & Miller, B. The classification, genetics and neuropathology of frontotemporal dementia. Introduction to the special topic papers: part I. Neurocase 7, 31–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. McKhann, G. M. et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch. Neurol. 58, 1803–1809 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Burrell, J. R. et al. The frontotemporal dementia–motor neuron disease continuum. Lancet 388, 919–931 (2016).

    Article  PubMed  Google Scholar 

  4. Hogan, D. B. et al. The prevalence and incidence of frontotemporal dementia: a systematic review. Can. J. Neurol. Sci. 43 (Suppl. 1), 96–109 (2016).

    Article  Google Scholar 

  5. Coyle-Gilchrist, I. T. et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 86, 1736–1743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ratnavalli, E., Brayne, C., Dawson, K. & Hodges, J. R. The prevalence of frontotemporal dementia. Neurology 58, 1615–1621 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hodges, J. R. & Piguet, O. Progress and challenges in frontotemporal dementia research: a 20-year review. J. Alzheimers Dis. 62, 1467–1480 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahmed, R. M. et al. Mouse models of frontotemporal dementia: a comparison of phenotypes with clinical symptomatology. Neurosci. Biobehav. Rev. 74, 126–138 (2017).

    Article  PubMed  Google Scholar 

  9. Ittner, L. M. et al. FTD and ALS — translating mouse studies into clinical trials. Nat. Rev. Neurol. 11, 360–366 (2015).

    Article  PubMed  Google Scholar 

  10. Dawson, T. M., Golde, T. E. & Lagier-Tourenne, C. Animal models of neurodegenerative diseases. Nat. Neurosci. 21, 1370–1379 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ferrari, R. et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 13, 686–699 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Broce, I. et al. Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLOS Med. 15, e1002487 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Miller, Z. A. et al. TDP-43 frontotemporal lobar degeneration and autoimmune disease. J. Neurol. Neurosurg. Psychiatry 84, 956–962 (2013).

    Article  PubMed  Google Scholar 

  14. Miller, Z. A. et al. Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: completing the picture. Neurol. Neuroimmunol. Neuroinflamm. 3, e301 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cerami, C., Iaccarino, L. & Perani, D. Molecular imaging of neuroinflammation in neurodegenerative dementias: the role of in vivo PET imaging. Int. J. Mol. Sci. 18, E993 (2017).

    Article  PubMed  CAS  Google Scholar 

  16. Wyss-Coray, T. & Mucke, L. Inflammation in neurodegenerative disease — a double-edged sword. Neuron 35, 419–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Pasqualetti, G., Brooks, D. J. & Edison, P. The role of neuroinflammation in dementias. Curr. Neurol. Neurosci. Rep. 15, 17 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Heneka, M. T., Kummer, M. P. & Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 14, 463–477 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Mrak, R. E. & Griffin, W. S. Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J. Neuropathol. Exp. Neurol. 66, 683–686 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Imamura, K. et al. Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol. 109, 141–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Morales, I., Guzman-Martinez, L., Cerda-Troncoso, C., Farias, G. A. & Maccioni, R. B. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci. 8, 112 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Sochocka, M., Diniz, B. S. & Leszek, J. Inflammatory response in the CNS: friend or foe? Mol. Neurobiol. 54, 8071–8089 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Heneka, M. T. et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gratwicke, J., Jahanshahi, M. & Foltynie, T. Parkinson’s disease dementia: a neural networks perspective. Brain 138, 1454–1476 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. McGeer, P. L. & McGeer, E. G. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26, 459–470 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Chitnis, T. & Weiner, H. L. CNS inflammation and neurodegeneration. J. Clin. Invest. 127, 3577–3587 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Rubartelli, A. & Lotze, M. T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 28, 429–436 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. DiSabato, D. J., Quan, N. & Godbout, J. P. Neuroinflammation: the devil is in the details. J. Neurochem. 139 (Suppl. 2), 136–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwartz, M. & Baruch, K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 33, 7–22 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Glass, C. K., Saijo, K., Winner, B., Marchetto, M. C. & Gage, F. H. Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918–934 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramesh, G., MacLean, A. G. & Philipp, M. T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013, 480739 (2013).

    PubMed  PubMed Central  Google Scholar 

  34. González, H., Elgueta, D., Montoya, A. & Pacheco, R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 274, 1–13 (2014).

    Article  PubMed  CAS  Google Scholar 

  35. Meeter, L. H., Kaat, L. D., Rohrer, J. D. & van Swieten, J. C. Imaging and fluid biomarkers in frontotemporal dementia. Nat. Rev. Neurol. 13, 406–419 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Skaper, S. D., Giusti, P. & Facci, L. Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J. 26, 3103–3117 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Carrano, A. et al. Neuroinflammation and blood–brain barrier changes in capillary amyloid angiopathy. Neurodegener. Dis. 10, 329–331 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Bowman, G. L. et al. Blood–brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement. 14, 1640–1650 (2018).

    Article  PubMed  Google Scholar 

  39. Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zlokovic, B. V. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Cagnin, A., Rossor, M., Sampson, E. L., Mackinnon, T. & Banati, R. B. In vivo detection of microglial activation in frontotemporal dementia. Ann. Neurol. 56, 894–897 (2004).

    Article  PubMed  Google Scholar 

  42. Lant, S. B. et al. Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol. Appl. Neurobiol. 40, 686–696 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Taipa, R. et al. Patterns of microglial cell activation in Alzheimer disease and frontotemporal lobar degeneration. Neurodegener. Dis. 17, 145–154 (2017).

    Article  PubMed  Google Scholar 

  44. Kersaitis, C., Halliday, G. M. & Kril, J. J. Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without Pick bodies. Acta Neuropathol. 108, 515–523 (2004).

    Article  PubMed  Google Scholar 

  45. Arnold, S. E., Han, L. Y., Clark, C. M., Grossman, M. & Trojanowski, J. Q. Quantitative neurohistological features of frontotemporal degeneration. Neurobiol. Aging 21, 913–919 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Alberici, A. et al. Autoimmunity and frontotemporal dementia. Curr. Alzheimer Res. 15, 602–609 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Bohlen, C. J. et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94, 759–773 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Spiller, K. J. et al. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat. Neurosci. 21, 329–340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sandiego, C. M. et al. Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc. Natl Acad. Sci. USA 112, 12468–12473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, E. J. & Yu, S. W. Translocator protein 18 kDa (TSPO): old dogma, new mice, new structure, and new questions for neuroprotection. Neural Regen. Res. 10, 878–880 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Notter, T. et al. Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia. Mol. Psychiatry 23, 323–334 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Narayan, N. et al. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory ‘M1’ human macrophages. PLOS ONE 12, e0185767 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Beckers, L. et al. Increased expression of translocator protein (TSPO) marks pro-inflammatory microglia but does not predict neurodegeneration. Mol. Imaging Biol. 20, 94–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Owen, D. R. et al. Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. J. Cereb. Blood Flow Metab. 37, 2679–2690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Woollacott, I. O. C. et al. Pathological correlates of white matter hyperintensities in a case of progranulin mutation associated frontotemporal dementia. Neurocase 24, 166–174 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bellucci, A., Bugiani, O., Ghetti, B. & Spillantini, M. G. Presence of reactive microglia and neuroinflammatory mediators in a case of frontotemporal dementia with P301S mutation. Neurodegener. Dis. 8, 221–229 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brettschneider, J. et al. Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLOS ONE 7, e39216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, e1738–e1746 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Satoh, J. et al. TMEM119 marks a subset of microglia in the human brain. Neuropathology 36, 39–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Umoh, M. E. et al. A proteomic network approach across the ALS–FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol. Med. 10, 48–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Friedman, B. A. et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep. 22, 832–847 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz, M., Butovsky, O. & Kipnis, J. Does inflammation in an autoimmune disease differ from inflammation in neurodegenerative diseases? Possible implications for therapy. J. Neuroimmune Pharmacol. 1, 4–10 (2006).

    Article  PubMed  Google Scholar 

  65. de Haan, P., Klein, H. C. & ‘t Hart, B. A. Autoimmune aspects of neurodegenerative and psychiatric diseases: a template for innovative therapy. Front. Psychiatry 8, 46 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Kortvelyessy, P. et al. Biomarkers of neurodegeneration in autoimmune-mediated encephalitis. Front. Neurol. 9, 668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Graus, F. et al. Neuronal surface antigen antibodies in limbic encephalitis: clinical-immunologic associations. Neurology 71, 930–936 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sabater, L. et al. A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol. 13, 575–586 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Borroni, B. et al. Autoimmune frontotemporal dementia: a new nosological entity? Alzheimer Dis. Assoc. Disord. 31, 259–262 (2017).

    Article  PubMed  Google Scholar 

  70. Borroni, B. et al. Anti-AMPA GluA3 antibodies in frontotemporal dementia: a new molecular target. Sci. Rep. 7, 6723 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Younes, K., Lepow, L. A., Estrada, C. & Schulz, P. E. Auto-antibodies against P/Q and N-type voltage-dependent calcium channels mimicking frontotemporal dementia. SAGE Open Med. Case Rep. 6, 205031317750928X (2018).

    Google Scholar 

  72. Cavazzana, I. et al. Antinuclear antibodies in frontotemporal dementia: the tip’s of autoimmunity iceberg? J. Neuroimmunol. 325, 61–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Yamamoto, Y. et al. Increased serum GP88 (progranulin) concentrations in rheumatoid arthritis. Inflammation 37, 1806–1813 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, J. et al. Serum progranulin irrelated with Breg cell levels, but elevated in RA patients, reflecting high disease activity. Rheumatol. Int. 36, 359–364 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, N., Yang, N., Chen, Q., Qiu, F. & Li, X. Upregulated expression level of the growth factor, progranulin, is associated with the development of primary Sjögren’s syndrome. Exp. Ther. Med. 8, 1643–1647 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, K. et al. Progranulin is preferentially expressed in patients with psoriasis vulgaris and protects mice from psoriasis-like skin inflammation. Immunology 145, 279–287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jian, J., Li, G., Hettinghouse, A. & Liu, C. Progranulin: a key player in autoimmune diseases. Cytokine 101, 48–55 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Pottier, C. et al. Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol. 137, 879–899 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Piguet, O. Neurodegenerative disease: frontotemporal dementia — time to target inflammation? Nat. Rev. Neurol. 9, 304–305 (2013).

    Article  PubMed  Google Scholar 

  80. Lan, Y., Sullivan, P. M. & Hu, F. SMCR8 negatively regulates AKT and MTORC1 signaling to modulate lysosome biogenesis and tissue homeostasis. Autophagy 15, 871–885 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Katisko, K. et al. Prevalence of immunological diseases in a Finnish frontotemporal lobar degeneration cohort with the C9orf72 repeat expansion carriers and non-carriers. J. Neuroimmunol. 321, 29–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Burrell, J. R. & Hodges, J. R. Could immunological mechanisms trigger neurodegeneration in frontotemporal dementia? J. Neurol. Neurosurg. Psychiatry 84, 946 (2013).

    Article  PubMed  Google Scholar 

  83. Pottier, C., Ravenscroft, T. A., Sanchez-Contreras, M. & Rademakers, R. Genetics of FTLD: overview and what else we can expect from genetic studies. J. Neurochem. 138 (Suppl. 1), 32–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Cirulli, E. T. et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Freischmidt, A. et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci. 18, 631–636 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Su, W. H. et al. The rs75932628 and rs2234253 polymorphisms of the TREM2 gene were associated with susceptibility to frontotemporal lobar degeneration in Caucasian populations. Ann. Hum. Genet. 82, 177–185 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Baker, M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Cruts, M. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Smith, K. R. et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am. J. Hum. Genet. 90, 1102–1107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Almeida, M. R. et al. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol. Aging 41, 200.e1–200.e5 (2016).

    Article  CAS  Google Scholar 

  91. Castaneda, J. A., Lim, M. J., Cooper, J. D. & Pearce, D. A. Immune system irregularities in lysosomal storage disorders. Acta Neuropathol. 115, 159–174 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Van Damme, P. et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J. Cell Biol. 181, 37–41 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Tapia, L. et al. Progranulin deficiency decreases gross neural connectivity but enhances transmission at individual synapses. J. Neurosci. 31, 11126–11132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Petkau, T. L. et al. Synaptic dysfunction in progranulin-deficient mice. Neurobiol. Dis. 45, 711–722 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Bateman, A., Belcourt, D., Bennett, H., Lazure, C. & Solomon, S. Granulins, a novel class of peptide from leukocytes. Biochem. Biophys. Res. Commun. 173, 1161–1168 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Moisse, K. et al. Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: implications for TDP-43 in the physiological response to neuronal injury. Brain Res. 1249, 202–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Naphade, S. B. et al. Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol. 119, 123–133 (2010).

    Article  CAS  PubMed  Google Scholar 

  98. Tanaka, Y., Matsuwaki, T., Yamanouchi, K. & Nishihara, M. Exacerbated inflammatory responses related to activated microglia after traumatic brain injury in progranulin-deficient mice. Neuroscience 231, 49–60 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Martens, L. H. et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J. Clin. Invest. 122, 3955–3959 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yin, F. et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J. Exp. Med. 207, 117–128 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Altmann, C. et al. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling. Mol. Neurodegener. 11, 69 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Lui, H. et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165, 921–935 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Filiano, A. J. et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J. Neurosci. 33, 5352–5361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bossu, P. et al. Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. J. Neuroinflamm. 8, 65 (2011).

    Article  CAS  Google Scholar 

  105. Galimberti, D. et al. Inflammatory molecules in frontotemporal dementia: cerebrospinal fluid signature of progranulin mutation carriers. Brain Behav. Immun. 49, 182–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Milanesi, E. et al. Molecular signature of disease onset in granulin mutation carriers: a gene expression analysis study. Neurobiol. Aging 34, 1837–1845 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Zhu, J. et al. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111, 867–878 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Pickford, F. et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am. J. Pathol. 178, 284–295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Suh, H. S., Choi, N., Tarassishin, L. & Lee, S. C. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLOS ONE 7, e35115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Moens, T. G., Partridge, L. & Isaacs, A. M. Genetic models of C9orf72: what is toxic? Curr. Opin. Genet. Dev. 44, 92–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Therrien, M., Rouleau, G. A., Dion, P. A. & Parker, J. A. Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLOS ONE 8, e83450 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ciura, S. et al. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann. Neurol. 74, 180–187 (2013).

    CAS  PubMed  Google Scholar 

  115. Atanasio, A. et al. C9orf72 ablation causes immune dysregulation characterized by leukocyte expansion, autoantibody production, and glomerulonephropathy in mice. Sci. Rep. 6, 23204 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. O’Rourke, J. G. et al. C9orf72 is required for proper macrophage and microglial function in mice. Science 351, 1324–1329 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Burberry, A. et al. Loss-of-function mutations in the C9ORF72 mouse ortholog cause fatal autoimmune disease. Sci. Transl Med. 8, 347ra93 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sudria-Lopez, E. et al. Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathol. 132, 145–147 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schludi, M. H. et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol. 134, 241–254 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chew, J. et al. Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science 348, 1151–1154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jiang, J. et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu, Y. et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD. Neuron 90, 521–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  123. Zhang, Y. J. et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19, 668–677 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ahmad, L., Zhang, S. Y., Casanova, J. L. & Sancho-Shimizu, V. Human TBK1: a gatekeeper of neuroinflammation. Trends Mol. Med. 22, 511–527 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fitzgerald, K. A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Bonnard, M. et al. Deficiency of T2K leads to apoptotic liver degeneration and impaired NF-κB-dependent gene transcription. EMBO J. 19, 4976–4985 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Oakes, J. A., Davies, M. C. & Collins, M. O. TBK1: a new player in ALS linking autophagy and neuroinflammation. Mol. Brain 10, 5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Fingert, J. H. et al. Copy number variations on chromosome 12q14 in patients with normal tension glaucoma. Hum. Mol. Genet. 20, 2482–2494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ritch, R. et al. TBK1 gene duplication and normal-tension glaucoma. JAMA Ophthalmol. 132, 544–548 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Awadalla, M. S. et al. Copy number variations of TBK1 in Australian patients with primary open-angle glaucoma. Am. J. Ophthalmol. 159, 124–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Herman, M. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J. Exp. Med. 209, 1567–1582 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yu, J. et al. Regulation of T cell activation and migration by the kinase TBK1 during neuroinflammation. Nat. Commun. 6, 6074 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Maruyama, H. et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465, 223–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Fecto, F. et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 68, 1440–1446 (2011).

    Article  PubMed  Google Scholar 

  136. Rubino, E. et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 79, 1556–1562 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pottier, C. et al. Whole-genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol. 130, 77–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pilli, M. et al. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223–234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Sessa, G. et al. Distribution and signaling of TREM2/DAP12, the receptor system mutated in human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy dementia. Eur. J. Neurosci. 20, 2617–2628 (2004).

    Article  PubMed  Google Scholar 

  142. Jay, T. R., von Saucken, V. E. & Landreth, G. E. TREM2 in neurodegenerative diseases. Mol. Neurodegener. 12, 56 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Yeh, F. L., Hansen, D. V. & Sheng, M. TREM2, microglia, and neurodegenerative diseases. Trends Mol. Med. 23, 512–533 (2017).

    Article  CAS  PubMed  Google Scholar 

  144. Sieber, M. W. et al. Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLOS ONE 8, e52982 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kawabori, M. et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 35, 3384–3396 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Saber, M., Kokiko-Cochran, O., Puntambekar, S. S., Lathia, J. D. & Lamb, B. T. Triggering receptor expressed on myeloid cells 2 deficiency alters acute macrophage distribution and improves recovery after traumatic brain injury. J. Neurotrauma 34, 423–435 (2017).

    Article  PubMed  Google Scholar 

  147. Hsieh, C. L. et al. A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J. Neurochem. 109, 1144–1156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Poliani, P. L. et al. TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mazaheri, F. et al. TREM2 deficiency impairs chemotaxis and microglial responses to neuronal injury. EMBO Rep. 18, 1186–1198 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, Y. et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Paloneva, J. et al. Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am. J. Hum. Genet. 71, 656–662 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Verloes, A. et al. Nasu–Hakola syndrome: polycystic lipomembranous osteodysplasia with sclerosing leucoencephalopathy and presenile dementia. J. Med. Genet. 34, 753–757 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Satoh, J. I., Kino, Y., Yanaizu, M. & Saito, Y. Alzheimer’s disease pathology in Nasu–Hakola disease brains. Intractable Rare Dis. Res. 7, 32–36 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Gratuze, M., Leyns, C. E. G. & Holtzman, D. M. New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener. 13, 66 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Guerreiro, R. J. et al. Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol. 70, 78–84 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Giraldo, M. et al. Variants in triggering receptor expressed on myeloid cells 2 are associated with both behavioral variant frontotemporal lobar degeneration and Alzheimer’s disease. Neurobiol. Aging 34, 2077.e11–2077.e18 (2013).

    Article  CAS  Google Scholar 

  157. Le Ber, I. et al. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia. Neurobiol. Aging 35, 2419.e23–2419.e25 (2014).

    Article  CAS  Google Scholar 

  158. Lu, Y., Liu, W. & Wang, X. TREM2 variants and risk of Alzheimer’s disease: a meta-analysis. Neurol. Sci. 36, 1881–1888 (2015).

    Article  PubMed  Google Scholar 

  159. Jiang, T. et al. Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol. Aging 36, 3176–3186 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Leyns, C. E. G. et al. TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc. Natl Acad. Sci. USA 114, 11524–11529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kleinberger, G. et al. The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J. 36, 1837–1853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Zetterberg, H., van Swieten, J. C., Boxer, A. L. & Rohrer, J. D. Review: fluid biomarkers for frontotemporal dementias. Neuropathol. Appl. Neurobiol. 45, 81–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Borroni, B. et al. Biological, neuroimaging, and neurophysiological markers in frontotemporal dementia: three faces of the same coin. J. Alzheimers Dis. 62, 1113–1123 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Rohrer, J. D. et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 14, 253–262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Ghidoni, R., Benussi, L., Glionna, M., Franzoni, M. & Binetti, G. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 71, 1235–1239 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Finch, N. et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132, 583–591 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Schofield, E. C. et al. Low serum progranulin predicts the presence of mutations: a prospective study. J. Alzheimers Dis. 22, 981–984 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Galimberti, D. et al. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiol. Aging 62, 245.e9–245.e12 (2018).

    Article  CAS  Google Scholar 

  169. Kortvelyessy, P., Heinze, H. J., Prudlo, J. & Bittner, D. CSF biomarkers of neurodegeneration in progressive non-fluent aphasia and other forms of frontotemporal dementia: clues for pathomechanisms? Front. Neurol. 9, 504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Galimberti, D., Fenoglio, C. & Scarpini, E. Progranulin as a therapeutic target for dementia. Expert Opin. Ther. Targets 22, 579–585 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Alberici, A. et al. Results from a pilot study on amiodarone administration in monogenic frontotemporal dementia with granulin mutation. Neurol. Sci. 35, 1215–1219 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Holler, C. J. et al. Trehalose upregulates progranulin expression in human and mouse models of GRN haploinsufficiency: a novel therapeutic lead to treat frontotemporal dementia. Mol. Neurodegener. 11, 46 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Lee, W. C. et al. Targeted manipulation of the sortilin–progranulin axis rescues progranulin haploinsufficiency. Hum. Mol. Genet. 23, 1467–1478 (2014).

    Article  CAS  PubMed  Google Scholar 

  174. Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Woollacott, I. O. C. et al. Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. Alzheimers Res. Ther. 10, 79 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Dembic, Z. in The Cytokines of the Immune System 57–98 (Academic Press, 2015).

  177. Hu, W. T. et al. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 75, 2079–2086 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sjögren, M., Folkesson, S., Blennow, K. & Tarkowski, E. Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications. J. Neurol. Neurosurg. Psychiatry 75, 1107–1111 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Gibbons, L. et al. Plasma levels of progranulin and interleukin-6 in frontotemporal lobar degeneration. Neurobiol. Aging 36, 16030–16034 (2015).

    Article  CAS  Google Scholar 

  180. Nilsson, C., Landqvist Waldo, M., Nilsson, K., Santillo, A. & Vestberg, S. Age-related incidence and family history in frontotemporal dementia: data from the Swedish Dementia Registry. PLOS ONE 9, e94901 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Reitz, C., Brayne, C. & Mayeux, R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7, 137–152 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Wehrspaun, C. C., Haerty, W. & Ponting, C. P. Microglia recapitulate a hematopoietic master regulator network in the aging human frontal cortex. Neurobiol. Aging 36, 2443.e9–2443.e20 (2015).

    Article  CAS  Google Scholar 

  183. Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Lukiw, W. J. Gene expression profiling in fetal, aged, and Alzheimer hippocampus: a continuum of stress-related signaling. Neurochem. Res. 29, 1287–1297 (2004).

    Article  CAS  PubMed  Google Scholar 

  185. Sheng, J. G., Mrak, R. E. & Griffin, W. S. Enlarged and phagocytic, but not primed, interleukin-1α-immunoreactive microglia increase with age in normal human brain. Acta Neuropathol. 95, 229–234 (1998).

    Article  CAS  PubMed  Google Scholar 

  186. Werry, E. L., Enjeti, S., Halliday, G. M., Sachdev, P. S. & Double, K. L. Effect of age on proliferation-regulating factors in human adult neurogenic regions. J. Neurochem. 115, 956–964 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Rawji, K. S. et al. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system. Brain 139, 653–661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Reu, P. et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 20, 779–784 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Askew, K. et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 18, 391–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Posfai, B., Cserep, C., Orsolits, B. & Denes, A. New insights into microglia–neuron interactions: a neuron’s perspective. Neuroscience 405, 103–117 (2018).

    Article  PubMed  CAS  Google Scholar 

  193. Bu, X. L. et al. A study on the association between infectious burden and Alzheimer’s disease. Eur. J. Neurol. 22, 1519–1525 (2015).

    Article  PubMed  Google Scholar 

  194. Lauridsen, J. K. et al. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex. Transl Psychiatry 7, e1044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Rosso, S. M. et al. Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case–control study. J. Neurol. Neurosurg. Psychiatry 74, 1574–1576 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang, H. K. et al. Traumatic brain injury causes frontotemporal dementia and TDP-43 proteolysis. Neuroscience 300, 94–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Soreq, L. et al. Major shifts in glial regional identity are a transcriptional hallmark of human brain aging. Cell Rep. 18, 557–570 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Olah, M. et al. A transcriptomic atlas of aged human microglia. Nat. Commun. 9, 539 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Cribbs, D. H. et al. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J. Neuroinflamm. 9, 179 (2012).

    Article  CAS  Google Scholar 

  200. Streit, W. J., Sammons, N. W., Kuhns, A. J. & Sparks, D. L. Dystrophic microglia in the aging human brain. Glia 45, 208–212 (2004).

    Article  PubMed  Google Scholar 

  201. Tay, T. L. et al. Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front. Mol. Neurosci. 10, 421 (2017).

    Article  PubMed  CAS  Google Scholar 

  202. Streit, W. J., Braak, H., Xue, Q. S. & Bechmann, I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 118, 475–485 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chinta, S. J. et al. Cellular senescence and the aging brain. Exp. Gerontol. 68, 3–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Jyothi, H. J. et al. Aging causes morphological alterations in astrocytes and microglia in human substantia nigra pars compacta. Neurobiol. Aging 36, 3321–3333 (2015).

    Article  CAS  PubMed  Google Scholar 

  206. David, J. P. et al. Glial reaction in the hippocampal formation is highly correlated with aging in human brain. Neurosci. Lett. 235, 53–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  207. Nichols, N. R., Day, J. R., Laping, N. J., Johnson, S. A. & Finch, C. E. GFAP mRNA increases with age in rat and human brain. Neurobiol. Aging 14, 421–429 (1993).

    Article  CAS  PubMed  Google Scholar 

  208. Campuzano, O., Castillo-Ruiz, M. M., Acarin, L., Castellano, B. & Gonzalez, B. Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 87, 2484–2497 (2009).

    Article  CAS  PubMed  Google Scholar 

  209. Krabbe, G. et al. Microglial NFκB–TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc. Natl Acad. Sci. USA 114, 5029–5034 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Arrant, A. E., Onyilo, V. C., Unger, D. E. & Roberson, E. D. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J. Neurosci. 38, 2341–2358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Brelstaff, J., Tolkovsky, A. M., Ghetti, B., Goedert, M. & Spillantini, M. G. Living neurons with tau filaments aberrantly expose phosphatidylserine and are phagocytosed by microglia. Cell Rep. 24, 1939–1948 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Geloso, M. C. et al. The dual role of microglia in ALS: mechanisms and therapeutic approaches. Front. Aging Neurosci. 9, 242 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Krasemann, S. et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Ajami, B. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21, 541–551 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Santos, R. R. et al. Reduced frequency of T lymphocytes expressing CTLA-4 in frontotemporal dementia compared to Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 48, 1–5 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Galimberti, D. et al. Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer’s disease and frontotemporal lobar degeneration. J. Neurol. 255, 539–544 (2008).

    Article  CAS  PubMed  Google Scholar 

  217. Galimberti, D. et al. Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration. Neurology 66, 146–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Rentzos, M. et al. Interleukin-12 is reduced in cerebrospinal fluid of patients with Alzheimer’s disease and frontotemporal dementia. J. Neurol. Sci. 249, 110–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  219. Torres, K. C. et al. Decreased expression of CCL3 in monocytes and CCR5 in lymphocytes from frontotemporal dementia as compared with Alzheimer’s disease patients. J. Neuropsychiatry Clin. Neurosci. 24, 2 (2012).

    Article  Google Scholar 

  220. Galimberti, D. et al. MCP-1 A-2518G polymorphism: effect on susceptibility for frontotemporal lobar degeneration and on cerebrospinal fluid MCP-1 levels. J. Alzheimers Dis. 17, 125–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  221. Busse, M. et al. Alterations in the peripheral immune system in dementia. J. Alzheimers Dis. 58, 1303–1313 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Teunissen, C. E. et al. Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement. 2, 86–94 (2016).

    Google Scholar 

  223. Kokiko-Cochran, O. N. et al. Traumatic brain injury in hTau model mice: enhanced acute macrophage response and altered long-term recovery. J. Neurotrauma 35, 73–84 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Clayton, E. L. et al. Early microgliosis precedes neuronal loss and behavioural impairment in mice with a frontotemporal dementia-causing CHMP2B mutation. Hum. Mol. Genet. 26, 873–887 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Dec, E. et al. Cytokine profiling in patients with VCP-associated disease. Clin. Transl Sci. 7, 29–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  226. Li, J.-M. M., Wu, H., Zhang, W., Blackburn, M. R. & Jin, J. The p97–UFD1L–NPL4 protein complex mediates cytokine-induced IκBα proteolysis. Mol. Cell. Biol. 34, 335–347 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Nalbandian, A. et al. Activation of the NLRP3 inflammasome is associated with valosin-containing protein myopathy. Inflammation 40, 21–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  228. Sanz, L., Sanchez, P., Lallena, M. J., Diaz-Meco, M. T. & Moscat, J. The interaction of p62 with RIP links the atypical PKCs to NF-κB activation. EMBO J. 18, 3044–3053 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kratz, M. et al. Metabolic dysfunction drives a mechanistically distinct proinflammatory phenotype in adipose tissue macrophages. Cell Metab. 20, 614–625 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Munitic, I. et al. Optineurin insufficiency impairs IRF3 but not NF-κB activation in immune cells. J. Immunol. 191, 6231–6240 (2013).

    Article  CAS  PubMed  Google Scholar 

  231. Meena, N. P. et al. The TBK1-binding domain of optineurin promotes type I interferon responses. FEBS Lett. 590, 1498–1508 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Chew, T. S. et al. Optineurin deficiency in mice contributes to impaired cytokine secretion and neutrophil recruitment in bacteria-driven colitis. Dis. Model. Mech. 8, 817–829 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Wils, H. et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc. Natl Acad. Sci. USA 107, 3858–3863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Paolicelli, R. C. et al. TDP-43 depletion in microglia promotes amyloid clearance but also induces synapse loss. Neuron 95, 297–308 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Rhinn, H. & Abeliovich, A. Differential aging analysis in human cerebral cortex identifies variants in TMEM106B and GRN that regulate aging phenotypes. Cell Syst. 4, 404–415 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by the National Health and Medical Research Council of Australia (NHMRC) grant numbers 1132524, 1095127, 1140708 and 1081916 to G.M.H., J.J.K., O.P., M.C.K., J.R.H., L.M.I. and M.K. and by the University of Sydney. C.D.-S. is an NHMRC Boosting Dementia Research Leadership Fellow (NHMRC grant number 1138223); G.M.H. is an NHMRC Senior Principal Research Fellow (NHMRC grant number 1079679); L.M.I. is an NHMRC Principal Research Fellow (NHMRC grant number 1136241); O.P. is an NHMRC Senior Research Fellow (NHMRC grant number APP1103258); C.T.L. is an NHMRC Dementia Fellow (NHMRC grant number 1107657). The authors thank H. Cartwright from the Brain and Mind Centre, University of Sydney, Australia, for her assistance with figure design and creation.

Author information

Authors and Affiliations

Authors

Contributions

J.J.K., F.B., E.L.W., C.D.-S. and C.T.L. researched data for the manuscript. F.B., E.L.W. and C.D.-S. wrote the first draft. J.J.K., F.B., E.L.W., C.D.-S. and M.K. contributed substantially to discussions of the article content. J.J.K., O.P., L.M.I., G.M.H., J.R.H., M.C.K., C.T.L. and M.K. contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jillian J. Kril.

Ethics declarations

Competing interests

J.R.H. declares that he is an editorial board member of the journals Cognitive Neuropsychiatry, Aphasiology, Cognitive Neuropsychology, Nature Reviews Neurology, Journal of Alzheimer’s Disease, Acta Neuropsychologica, ALS-FTD Journal, Neurology and Clinical Neuroscience, Dementia Neurospsychologia; and has received research support from the National Health and Medical Research Council of Australia (NHMRC), the Australian Research Council and institutional support from the University of Sydney. M.C.K. declares that he serves as Editor-in-Chief of the Journal of Neurology, Neurosurgery and Psychiatry. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks M. Heneka, D. Galimberti, and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bright, F., Werry, E.L., Dobson-Stone, C. et al. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 15, 540–555 (2019). https://doi.org/10.1038/s41582-019-0231-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0231-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research