Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunoneuropsychiatry — novel perspectives on brain disorders

Abstract

Immune processes have a vital role in CNS homeostasis, resilience and brain reserve. Our cognitive and social abilities rely on a highly sensitive and fine-tuned equilibrium of immune responses that involve both innate and adaptive immunity. Autoimmunity, chronic inflammation, infection and psychosocial stress can tip the scales towards disruption of higher-order networks. However, not only classical neuroinflammatory diseases, such as multiple sclerosis and autoimmune encephalitis, are caused by immune dysregulation that affects CNS function. Recent insight indicates that similar processes are involved in psychiatric diseases such as schizophrenia, autism spectrum disorder, bipolar disorder and depression. Pathways that are common to these disorders include microglial activation, pro-inflammatory cytokines, molecular mimicry, anti-neuronal autoantibodies, self-reactive T cells and disturbance of the blood–brain barrier. These discoveries challenge our traditional classification of neurological and psychiatric diseases. New clinical paths are required to identify subgroups of neuropsychiatric disorders that are phenotypically distinct but pathogenically related and to pave the way for mechanism-based immune treatments. Combined expertise from neurologists and psychiatrists will foster translation of these paths into clinical practice. The aim of this Review is to highlight outstanding findings that have transformed our understanding of neuropsychiatric diseases and to suggest new diagnostic and therapeutic criteria for the emerging field of immunoneuropsychiatry.

Key points

  • At the interface of neurological and psychiatric disorders, immune processes are major factors in CNS health and disease; the immune system contributes to CNS homeostasis, resilience and brain reserve.

  • Although a certain level of neuroimmune interplay is required for optimal brain functioning, chronic inflammation and latent infections can cause higher-order network disturbances, resulting in cognitive and behavioural impairment.

  • Psychosocial stress correlates with inflammatory processes in the CNS.

  • Immune dysregulation plays a role not only in classical autoimmune brain diseases such as multiple sclerosis and autoimmune encephalitis but also in psychiatric disorders such as schizophrenia, autism spectrum disorder, bipolar disorder and depression.

  • Immune treatments are emerging as therapeutic options for subgroups of patients with brain disorders that are associated with an inflammatory phenotype.

  • New diagnostic and therapeutic criteria are required to translate immunopathogenic findings into individualized treatment options for patients with neuropsychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The interplay between the immune system and the CNS.
Fig. 2: Overlap of neuropsychiatric disorders.
Fig. 3: A proposed clinical pathway for patients with new-onset neuropsychiatric symptoms.

Similar content being viewed by others

References

  1. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    CAS  PubMed  Google Scholar 

  2. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    CAS  PubMed  Google Scholar 

  3. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    CAS  PubMed  Google Scholar 

  4. Sanchez-Alcaniz, J. A. et al. Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 69, 77–90 (2011).

    CAS  PubMed  Google Scholar 

  5. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pocock, J. M. & Kettenmann, H. Neurotransmitter receptors on microglia. Trends Neurosci. 30, 527–535 (2007).

    CAS  PubMed  Google Scholar 

  7. Antonucci, F. et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 31, 1231–1240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Beattie, E. C. et al. Control of synaptic strength by glial TNFα. Science 295, 2282–2285 (2002).

    CAS  PubMed  Google Scholar 

  9. Gertig, U. & Hanisch, U. K. Microglial diversity by responses and responders. Front. Cell Neurosci. 8, 101 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Ellwardt, E., Walsh, J. T., Kipnis, J. & Zipp, F. Understanding the role of T cells in CNS homeostasis. Trends Immunol. 37, 154–165 (2016).

    CAS  PubMed  Google Scholar 

  11. Engelhardt, B. & Ransohoff, R. M. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 33, 579–589 (2012).

    CAS  PubMed  Google Scholar 

  12. Schwartz, M. & Deczkowska, A. Neurological disease as a failure of brain-immune crosstalk: the multiple faces of neuroinflammation. Trends Immunol. 37, 668–679 (2016).

    CAS  PubMed  Google Scholar 

  13. Strominger, I. et al. The choroid plexus functions as a niche for T-cell stimulation within the central nervous system. Front. Immunol. 9, 1066 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Filiano, A. J. et al. Unexpected role of interferon-gamma in regulating neuronal connectivity and social behaviour. Nature 535, 425–429 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Derecki, N. C. et al. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med. 207, 1067–1080 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kipnis, J., Cohen, H., Cardon, M., Ziv, Y. & Schwartz, M. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc. Natl Acad. Sci. USA 101, 8180–8185 (2004). This study shows that a lack of mature T cells causes cognitive and behavioural impairment in mice, underlining the role of adaptive immunity for normal CNS function.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

    CAS  PubMed  Google Scholar 

  18. Walsh, J. T. et al. MHCII-independent CD4+ T cells protect injured CNS neurons via IL-4. J. Clin. Invest. 125, 699–714 (2015).

    PubMed  PubMed Central  Google Scholar 

  19. Vogelaar, C. F. et al. Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation. Sci. Transl Med. 10, eaao2304 (2018). This study reveals a beneficial effect of intrathecal IL-4 treatment on progression in experimental autoimmune encephalomyelitis, thereby highlighting a new pathway of neuroimmune interplay as a potential therapeutic target.

    PubMed  Google Scholar 

  20. Radjavi, A., Smirnov, I. & Kipnis, J. Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav. Immun. 35, 58–63 (2014).

    CAS  PubMed  Google Scholar 

  21. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl Med. 4, 147ra111 (2012).

    PubMed  PubMed Central  Google Scholar 

  22. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  23. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). This article presents the first description of the re-discovery of the meningeal lymphatic system.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife 6, e29738 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Traka, M., Podojil, J. R., McCarthy, D. P., Miller, S. D. & Popko, B. Oligodendrocyte death results in immune-mediated CNS demyelination. Nat. Neurosci. 19, 65–74 (2016).

    CAS  PubMed  Google Scholar 

  26. D’Mello, C. & Swain, M. G. Immune-to-brain communication pathways in inflammation-associated sickness and depression. Curr. Top. Behav. Neurosci. 31, 73–94 (2017).

    PubMed  Google Scholar 

  27. Kelley, K. W. et al. Cytokine-induced sickness behavior. Brain Behav. Immun. 17 (Suppl. 1), 112–118 (2003).

    Google Scholar 

  28. Neilley, L. K., Goodin, D. S., Goodkin, D. E. & Hauser, S. L. Side effect profile of interferon beta-1b in MS: results of an open label trial. Neurology 46, 552–554 (1996).

    CAS  PubMed  Google Scholar 

  29. Tarr, A. J., Liu, X., Reed, N. S. & Quan, N. Kinetic characteristics of euflammation: the induction of controlled inflammation without overt sickness behavior. Brain Behav. Immun. 42, 96–108 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Larochelle, C., Uphaus, T., Prat, A. & Zipp, F. Secondary progression in multiple sclerosis: neuronal exhaustion or distinct pathology? Trends Neurosci. 39, 325–339 (2016).

    CAS  PubMed  Google Scholar 

  31. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000).

    CAS  PubMed  Google Scholar 

  32. Marrie, R. A. et al. Increased incidence of psychiatric disorders in immune-mediated inflammatory disease. J. Psychosom. Res. 101, 17–23 (2017).

    PubMed  Google Scholar 

  33. Perry, V. H., Nicoll, J. A. & Holmes, C. Microglia in neurodegenerative disease. Nat. Rev. Neurol. 6, 193–201 (2010).

    PubMed  Google Scholar 

  34. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Stranahan, A. M., Hao, S., Dey, A., Yu, X. & Baban, B. Blood-brain barrier breakdown promotes macrophage infiltration and cognitive impairment in leptin receptor-deficient mice. J. Cereb. Blood Flow Metab. 36, 2108–2121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guillemot-Legris, O. & Muccioli, G. G. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 40, 237–253 (2017).

    CAS  PubMed  Google Scholar 

  37. Benros, M. E. et al. Autoimmune diseases and severe infections as risk factors for schizophrenia: a 30-year population-based register study. Am. J. Psychiatry 168, 1303–1310 (2011). This large Danish longitudinal register shows that both autoimmune disease and prior hospitalization for infection increase the risk of schizophrenia on an epidemiological level.

    PubMed  Google Scholar 

  38. Khandaker, G. M. et al. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2, 258–270 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Canetta, S. et al. Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am. J. Psychiatry 171, 960–968 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Atladottir, H. O. et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 40, 1423–1430 (2010).

    PubMed  Google Scholar 

  41. Orlovska, S. et al. Association of streptococcal throat infection with mental disorders: testing key aspects of the PANDAS hypothesis in a nationwide study. JAMA Psychiatry 74, 740–746 (2017).

    Google Scholar 

  42. Zomorrodi, A. & Wald, E. R. Sydenham’s chorea in western Pennsylvania. Pediatrics 117, e675–e679 (2006).

    PubMed  Google Scholar 

  43. Swedo, S. E. et al. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am. J. Psychiatry 155, 264–271 (1998).

    CAS  PubMed  Google Scholar 

  44. Bronze, M. S. & Dale, J. B. Epitopes of streptococcal M proteins that evoke antibodies that cross-react with human brain. J. Immunol. 151, 2820–2828 (1993).

    CAS  PubMed  Google Scholar 

  45. Singer, H. S., Gause, C., Morris, C. & Lopez, P. Serial immune markers do not correlate with clinical exacerbations in pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Pediatrics 121, 1198–1205 (2008).

    PubMed  Google Scholar 

  46. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02889016 (2016).

  47. Kapur, N. et al. Herpes simplex encephalitis: long term magnetic resonance imaging and neuropsychological profile. J. Neurol. Neurosurg. Psychiatry 57, 1334–1342 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Almanzar, G. et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J. Virol. 79, 3675–3683 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Katan, M. et al. Infectious burden and cognitive function: the Northern Manhattan Study. Neurology 80, 1209–1215 (2013). This cohort study shows that infectious burden measured as serological exposure to common pathogens was associated with cognitive impairment independent of cardiovascular risk profile.

    PubMed  PubMed Central  Google Scholar 

  50. Hamdani, N. et al. Effects of cumulative herpesviridae and Toxoplasma gondii infections on cognitive function in healthy, bipolar, and schizophrenia subjects. J. Clin. Psychiatry 78, e18–e27 (2017).

    PubMed  Google Scholar 

  51. Kamminga, J., Cysique, L. A., Lu, G., Batchelor, J. & Brew, B. J. Validity of cognitive screens for HIV-associated neurocognitive disorder: a systematic review and an informed screen selection guide. Curr. HIV/AIDS Rep. 10, 342–355 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Zhang, C. J. et al. TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J. Clin. Invest. 128, 5399–5412 (2018).

    PubMed  PubMed Central  Google Scholar 

  53. Heneka, M. T., McManus, R. M. & Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci. 19, 610–621 (2018).

    CAS  PubMed  Google Scholar 

  54. Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332–338 (2018). This study shows that peripheral inflammatory stimuli induce differential epigenetic modulation of brain-resident microglia, influencing symptoms in a mouse model of AD; these findings provide a mechanistic link between inflammation, innate immunity and neuropsychiatric disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lovheim, H., Gilthorpe, J., Adolfsson, R., Nilsson, L. G. & Elgh, F. Reactivated herpes simplex infection increases the risk of Alzheimer’s disease. Alzheimers Dement. 11, 593–599 (2015).

    PubMed  Google Scholar 

  56. Fulop, T., Itzhaki, R. F., Balin, B. J., Miklossy, J. & Barron, A. E. Role of microbes in the development of Alzheimer’s disease: state of the art - an International Symposium presented at the 2017 IAGG Congress in San Francisco. Front. Genet. 9, 362 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Wozniak, M. A., Mee, A. P. & Itzhaki, R. F. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J. Pathol. 217, 131–138 (2009).

    CAS  PubMed  Google Scholar 

  58. O’Connell, D. & Liang, C. Autophagy interaction with herpes simplex virus type-1 infection. Autophagy 12, 451–459 (2016).

    PubMed  PubMed Central  Google Scholar 

  59. Martin, C. et al. Inflammatory and neurodegeneration markers during asymptomatic HSV-1 reactivation. J. Alzheimers Dis. 39, 849–859 (2014).

    CAS  PubMed  Google Scholar 

  60. Brown, G. C. & Neher, J. J. Inflammatory neurodegeneration and mechanisms of microglial killing of neurons. Mol. Neurobiol. 41, 242–247 (2010).

    CAS  PubMed  Google Scholar 

  61. Armangue, T. et al. Frequency, symptoms, risk factors, and outcomes of autoimmune encephalitis after herpes simplex encephalitis: a prospective observational study and retrospective analysis. Lancet Neurol. 17, 760–772 (2018). This combined prospective observational study and retrospective analysis characterizes the frequency and the natural course of autoimmune encephalitis after herpes simplex encephalitis.

    PubMed  PubMed Central  Google Scholar 

  62. Carta, M. G. et al. The risk of bipolar disorders in multiple sclerosis. J. Affect. Disord. 155, 255–260 (2014).

    CAS  PubMed  Google Scholar 

  63. Feinstein, A., Magalhaes, S., Richard, J. F., Audet, B. & Moore, C. The link between multiple sclerosis and depression. Nat. Rev. Neurol. 10, 507–517 (2014).

    PubMed  Google Scholar 

  64. Patti, F. Treatment of cognitive impairment in patients with multiple sclerosis. Expert Opin. Investig. Drugs 21, 1679–1699 (2012).

    CAS  PubMed  Google Scholar 

  65. Ellwardt, E. et al. Maladaptive cortical hyperactivity upon recovery from experimental autoimmune encephalomyelitis. Nat. Neurosci. 21, 1392–1403 (2018). This study identifies the emergence of cortical network hyperexcitability and elevated anxiety in remission after neuroinflammatory attack to the brain; this network instability with anxiety behaviour, also known in patients with MS, represents the early stages of neurodegeneration.

    CAS  PubMed  Google Scholar 

  66. Pitteri, M., Romualdi, C., Magliozzi, R., Monaco, S. & Calabrese, M. Cognitive impairment predicts disability progression and cortical thinning in MS: an 8-year study. Mult. Scler. 23, 848–854 (2017).

    PubMed  Google Scholar 

  67. Potagas, C. et al. Cognitive impairment in different MS subtypes and clinically isolated syndromes. J. Neurol. Sci. 267, 100–106 (2008).

    PubMed  Google Scholar 

  68. Ruano, L. et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult. Scler. 23, 1258–1267 (2017).

    PubMed  Google Scholar 

  69. Di Filippo, M., Portaccio, E., Mancini, A. & Calabresi, P. Multiple sclerosis and cognition: synaptic failure and network dysfunction. Nat. Rev. Neurosci. 19, 599–609 (2018).

    PubMed  Google Scholar 

  70. Amato, M. P. et al. Benign multiple sclerosis: cognitive, psychological and social aspects in a clinical cohort. J. Neurol. 253, 1054–1059 (2006).

    PubMed  Google Scholar 

  71. Nylander, A. & Hafler, D. A. Multiple sclerosis. J. Clin. Invest. 122, 1180–1188 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Viglietta, V., Baecher-Allan, C., Weiner, H. L. & Hafler, D. A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J. Exp. Med. 199, 971–979 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hauser, S. L. et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 376, 221–234 (2017).

    CAS  PubMed  Google Scholar 

  74. McKay, K. A., Jahanfar, S., Duggan, T., Tkachuk, S. & Tremlett, H. Factors associated with onset, relapses or progression in multiple sclerosis: a systematic review. Neurotoxicology 61, 189–212 (2017).

    PubMed  Google Scholar 

  75. Dutta, R. et al. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann. Neurol. 69, 445–454 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liblau, R. S., Gonzalez-Dunia, D., Wiendl, H. & Zipp, F. Neurons as targets for T cells in the nervous system. Trends Neurosci. 36, 315–324 (2013).

    CAS  PubMed  Google Scholar 

  77. Kebir, H. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med. 13, 1173–1175 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Campbell, G. R. et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann. Neurol. 69, 481–492 (2011).

    CAS  PubMed  Google Scholar 

  79. Calabrese, M. et al. Cortical lesion load associates with progression of disability in multiple sclerosis. Brain 135, 2952–2961 (2012).

    PubMed  Google Scholar 

  80. Bellmann-Strobl, J. et al. Poor PASAT performance correlates with MRI contrast enhancement in multiple sclerosis. Neurology 73, 1624–1627 (2009).

    CAS  PubMed  Google Scholar 

  81. Andreassen, O. A. et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol. Psychiatry 20, 207–214 (2015).

    CAS  PubMed  Google Scholar 

  82. Charalambous, T. et al. Structural network disruption markers explain disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 90, 219–226 (2019).

    PubMed  Google Scholar 

  83. Fleischer, V. et al. Graph theoretical framework of brain networks in multiple sclerosis: a review of concepts. Neuroscience https://doi.org/10.1016/j.neuroscience.2017.10.033 (2017).

    Article  PubMed  Google Scholar 

  84. Dong, D., Wang, Y., Chang, X., Luo, C. & Yao, D. Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr. Bull. 44, 168–181 (2018).

    PubMed  Google Scholar 

  85. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Armangue, T. et al. Autoimmune post-herpes simplex encephalitis of adults and teenagers. Neurology 85, 1736–1743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bien, C. G. et al. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135, 1622–1638 (2012).

    PubMed  Google Scholar 

  88. Petit-Pedrol, M. et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: a case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 13, 276–286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Haselmann, H. et al. Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron 100, 91–105 (2018).

    CAS  PubMed  Google Scholar 

  90. Dalmau, J., Lancaster, E., Martinez-Hernandez, E., Rosenfeld, M. R. & Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 10, 63–74 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hughes, E. G. et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. 30, 5866–5875 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Haggerty, G. C., Forney, R. B. & Johnson, J. M. The effect of a single administration of phencyclidine on behavior in the rat over a 21-day period. Toxicol. Appl. Pharmacol. 75, 444–453 (1984).

    CAS  PubMed  Google Scholar 

  93. DeGiorgio, L. A. et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 7, 1189–1193 (2001).

    CAS  PubMed  Google Scholar 

  94. Nestor, J. et al. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J. Exp. Med. 215, 2554–2566 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Hammer, C. et al. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. Mol. Psychiatry 19, 1143–1149 (2014).

    CAS  PubMed  Google Scholar 

  96. Dahm, L. et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann. Neurol. 76, 82–94 (2014).

    CAS  PubMed  Google Scholar 

  97. Jezequel, J. et al. Dynamic disorganization of synaptic NMDA receptors triggered by autoantibodies from psychotic patients. Nat. Commun. 8, 1791 (2017). This study reveals differential effects of autoantibodies against the glutamate NMDA receptor on synaptic transmission and long-term potentiation in patients with psychosis versus healthy controls, providing a mechanistic framework for different clinical outcomes despite similar autoantibodies.

    PubMed  PubMed Central  Google Scholar 

  98. Kantrowitz, J. & Javitt, D. C. Glutamatergic transmission in schizophrenia: from basic research to clinical practice. Curr. Opin. Psychiatry 25, 96–102 (2012).

    PubMed  PubMed Central  Google Scholar 

  99. Bergink, V., Gibney, S. M. & Drexhage, H. A. Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biol. Psychiatry 75, 324–331 (2014).

    CAS  PubMed  Google Scholar 

  100. Cullen, A. E. et al. Associations between non-neurological autoimmune disorders and psychosis: a meta-analysis. Biol. Psychiatry 85, 35–48 (2018).

    PubMed  Google Scholar 

  101. Siegmann, E. M. et al. Association of depression and anxiety disorders with autoimmune thyroiditis: a systematic review and meta-analysis. JAMA Psychiatry 75, 577–584 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Sommer, I. E. et al. Severe chronic psychosis after allogeneic SCT from a schizophrenic sibling. Bone Marrow Transplant. 50, 153–154 (2015).

    CAS  PubMed  Google Scholar 

  103. Dahan, S. et al. The relationship between serum cytokine levels and degree of psychosis in patients with schizophrenia. Psychiatry Res. 268, 467–472 (2018).

    CAS  PubMed  Google Scholar 

  104. Haapakoski, R., Mathieu, J., Ebmeier, K. P., Alenius, H. & Kivimaki, M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 49, 206–215 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Black, C. & Miller, B. J. Meta-analysis of cytokines and chemokines in suicidality: distinguishing suicidal versus nonsuicidal patients. Biol. Psychiatry 78, 28–37 (2015).

    CAS  PubMed  Google Scholar 

  106. Al-Ayadhi, L. Y. & Mostafa, G. A. Elevated serum levels of interleukin-17A in children with autism. J. Neuroinflamm. 9, 158 (2012).

    CAS  Google Scholar 

  107. Passos, I. C. et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2, 1002–1012 (2015).

    PubMed  Google Scholar 

  108. Bulzacka, E. et al. Chronic peripheral inflammation is associated with cognitive impairment in schizophrenia: results from the multicentric FACE-SZ dataset. Schizophr. Bull. 42, 1290–1302 (2016).

    PubMed  PubMed Central  Google Scholar 

  109. Rademakers, R. et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat. Genet. 44, 200–205 (2011).

    PubMed  PubMed Central  Google Scholar 

  110. Tong, L. et al. Microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem. Res. 42, 2698–2711 (2017).

    CAS  PubMed  Google Scholar 

  111. Bloomfield, P. S. et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am. J. Psychiatry 173, 44–52 (2016). This PET imaging study shows that patients with schizophrenia and individuals with a high risk of psychosis exhibit increased microglial activity, indicating a connection between neuroinflammation and the risk of psychosis.

    PubMed  Google Scholar 

  112. Wachholz, S. et al. Microglia activation is associated with IFN-alpha induced depressive-like behavior. Brain Behav. Immun. 55, 105–113 (2016).

    CAS  PubMed  Google Scholar 

  113. Norden, D. M., Muccigrosso, M. M. & Godbout, J. P. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology 96, 29–41 (2015).

    CAS  PubMed  Google Scholar 

  114. Smith, S. E., Li, J., Garbett, K., Mirnics, K. & Patterson, P. H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci. 27, 10695–10702 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016). The results of this study indicate that the development of ASD-like phenotypes in offspring in the murine model of maternal immune activation is mediated by T H 17 cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Shin Yim, Y. et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature 549, 482–487 (2017).

    PubMed  Google Scholar 

  117. Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017). This study shows that the production of IL-17 in the maternal immune activation model in mice depends on the composition of maternal intestinal bacteria, underlining the role of the gut–immune–brain axis.

    PubMed  PubMed Central  Google Scholar 

  118. Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl Acad. Sci. USA 114, 10713–10718 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. de Magistris, L. et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatr. Gastroenterol. Nutr. 51, 418–424 (2010).

    PubMed  Google Scholar 

  120. Lombardo, M. V. et al. Maternal immune activation dysregulation of the fetal brain transcriptome and relevance to the pathophysiology of autism spectrum disorder. Mol. Psychiatry 23, 1001–1013 (2018).

    CAS  PubMed  Google Scholar 

  121. Zimmerman, A. W. et al. Maternal antibrain antibodies in autism. Brain Behav. Immun. 21, 351–357 (2007).

    CAS  PubMed  Google Scholar 

  122. Braunschweig, D. et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3, e277 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Bauman, M. D. et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry 3, e278 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Brimberg, L. et al. Caspr2-reactive antibody cloned from a mother of an ASD child mediates an ASD-like phenotype in mice. Mol. Psychiatry 21, 1663–1671 (2016). This study describes the isolation and characterization of monoclonal brain-reactive antibodies from a mother of a child with ASD.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

    PubMed Central  Google Scholar 

  126. Trowsdale, J. & Knight, J. C. Major histocompatibility complex genomics and human disease. Annu. Rev. Genomics Hum. Genet. 14, 301–323 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Dendrou, C. A., Petersen, J., Rossjohn, J. & Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 18, 325–339 (2018).

    CAS  PubMed  Google Scholar 

  128. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Prasad, K. M. et al. Neuropil contraction in relation to Complement C4 gene copy numbers in independent cohorts of adolescent-onset and young adult-onset schizophrenia patients-a pilot study. Transl Psychiatry 8, 134 (2018).

    PubMed  PubMed Central  Google Scholar 

  130. Kury, P. et al. Human endogenous retroviruses in neurological diseases. Trends Mol. Med. 24, 379–394 (2018).

    PubMed  PubMed Central  Google Scholar 

  131. Perron, H. et al. Molecular characteristics of human endogenous retrovirus type-W in schizophrenia and bipolar disorder. Transl Psychiatry 2, e201 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Melamed, I. R., Heffron, M., Testori, A. & Lipe, K. A pilot study of high-dose intravenous immunoglobulin 5% for autism: impact on autism spectrum and markers of neuroinflammation. Autism Res. 11, 421–433 (2018).

    PubMed  Google Scholar 

  133. Connery, K. et al. Intravenous immunoglobulin for the treatment of autoimmune encephalopathy in children with autism. Transl Psychiatry 8, 148 (2018). This article and that by Melamed et al. (2018) describe pilot studies that provided the first evidence for a beneficial effect of intravenous immunoglobulin for the treatment of children with ASD and signs of inflammation.

    PubMed  PubMed Central  Google Scholar 

  134. Swedo, S. E., Frankovich, J. & Murphy, T. K. Overview of treatment of pediatric acute-onset neuropsychiatric syndrome. J. Child Adolesc. Psychopharmacol. 27, 562–565 (2017).

    PubMed  PubMed Central  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03093064 (2017).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02874573 (2018).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02034474 (2018).

  138. Miyaoka, T. et al. Remission of psychosis in treatment-resistant schizophrenia following bone marrow transplantation: a case report. Front. Psychiatry 8, 174 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Dawson, G. et al. Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: results of a single-center phase I open-label trial. Stem Cells Transl Med. 6, 1332–1339 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Hannestad, J., DellaGioia, N. & Bloch, M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36, 2452–2459 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Platten, M. et al. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310, 850–855 (2005).

    CAS  PubMed  Google Scholar 

  142. Kohler, O. et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71, 1381–1391 (2014).

    PubMed  Google Scholar 

  143. Molina-Hernandez, M., Tellez-Alcantara, N. P., Perez-Garcia, J., Olivera-Lopez, J. I. & Jaramillo-Jaimes, M. T. Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog. Neuropsychopharmacol. Biol. Psychiatry 32, 380–386 (2008).

    CAS  PubMed  Google Scholar 

  144. Rosenblat, J. D. & McIntyre, R. S. Efficacy and tolerability of minocycline for depression: a systematic review and meta-analysis of clinical trials. J. Affect. Disord. 227, 219–225 (2018). This systematic review and meta-analysis provides a proof of concept for the antidepressant effects of minocycline.

    CAS  PubMed  Google Scholar 

  145. Ghaleiha, A. et al. Minocycline as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind placebo-controlled trial. J. Child Adolesc. Psychopharmacol. 26, 784–791 (2016).

    CAS  PubMed  Google Scholar 

  146. Pardo, C. A. et al. A pilot open-label trial of minocycline in patients with autism and regressive features. J. Neurodev. Disord. 5, 9 (2013).

    PubMed  PubMed Central  Google Scholar 

  147. Raison, C. L. et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70, 31–41 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kalman, B. Autoimmune encephalitides: a broadening field of treatable conditions. Neurologist 22, 1–13 (2017).

    PubMed  Google Scholar 

  149. Howes, O. D. & McCutcheon, R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 7, e1024 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Fonken, L. K., Frank, M. G., Gaudet, A. D. & Maier, S. F. Stress and aging act through common mechanisms to elicit neuroinflammatory priming. Brain Behav. Immun. 73, 133–148 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M. & Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 21, 642–649 (2016).

    CAS  PubMed  Google Scholar 

  152. Danese, A. et al. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch. Gen. Psychiatry 65, 409–415 (2008).

    PubMed  PubMed Central  Google Scholar 

  153. Menard, C. et al. Social stress induces neurovascular pathology promoting depression. Nat. Neurosci. 20, 1752–1760 (2017). This study reveals mechanistic links between psychosocial stress and depression via disruption of BBB integrity by downregulation of claudin 5 in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, J. et al. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat. Commun. 9, 477 (2018).

    PubMed  PubMed Central  Google Scholar 

  155. Lewitus, G. M., Cohen, H. & Schwartz, M. Reducing post-traumatic anxiety by immunization. Brain Behav. Immun. 22, 1108–1114 (2008).

    CAS  PubMed  Google Scholar 

  156. Cohen, H. et al. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. J. Neurobiol. 66, 552–563 (2006).

    PubMed  Google Scholar 

  157. Lewitus, G. M. et al. Vaccination as a novel approach for treating depressive behavior. Biol. Psychiatry 65, 283–288 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Ernest, R. Gilchrist and S. Jennrich (all at the Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany) for proofreading the manuscript. The authors acknowledge financial support for the underlying original work from the German Research Foundation (DFG; CRC-TR 128, CRC 1080 and CRC 1292 to F.Z.) and from the Agence Nationale de la Recherche (ANR; I-GIVE Samenta 2013; 13-SAMA-0004-01), the Institut National de la Recherche Médicale and Fondation FondaMental (to M.L.). The views expressed are those of the authors.

Reviewer information

Nature Reviews Neurology thanks D. Agalliu and other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the article, performed literature searches, wrote the article and reviewed and edited the manuscript. K.P. designed the display items.

Corresponding author

Correspondence to Frauke Zipp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pape, K., Tamouza, R., Leboyer, M. et al. Immunoneuropsychiatry — novel perspectives on brain disorders. Nat Rev Neurol 15, 317–328 (2019). https://doi.org/10.1038/s41582-019-0174-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0174-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing