Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic drivers of cerebral blood flow dysfunction in TBI: a speculative synthesis

Abstract

Cerebral autoregulatory dysfunction after traumatic brain injury (TBI) is strongly linked to poor global outcome in patients at 6 months after injury. However, our understanding of the drivers of this dysfunction is limited. Genetic variation among individuals within a population gives rise to single-nucleotide polymorphisms (SNPs) that have the potential to influence a given patient’s cerebrovascular response to an injury. Associations have been reported between a variety of genetic polymorphisms and global outcome in patients with TBI, but few studies have explored the association between genetic variants and cerebrovascular function after injury. In this Review, we explore polymorphisms that might play an important part in cerebral autoregulatory capacity after TBI. We outline a variety of SNPs, their biological substrates and their potential role in mediating cerebrovascular reactivity. A number of candidate polymorphisms exist in genes that are involved in myogenic, endothelial, metabolic and neurogenic vascular responses to injury. Furthermore, polymorphisms in genes involved in inflammation, the central autonomic response and cortical spreading depression might drive cerebrovascular reactivity. Identification of candidate genes involved in cerebral autoregulation after TBI provides a platform and rationale for further prospective investigation of the link between genetic polymorphisms and autoregulatory function.

Key points

  • Impaired cerebral autoregulation after traumatic brain injury (TBI) is linked to poor global outcome; mechanisms involved in the regulation of cerebrovascular reactivity are complex, in both healthy and diseased states.

  • Single-nucleotide polymorphisms (SNPs) related to myogenic, endothelial, neurotransmitter and metabolic mechanisms of cerebrovascular biology are all likely to contribute to cerebral autoregulation and vascular reactivity in the setting of TBI.

  • Polymorphisms related to nitric oxide synthase and the renin–angiotensin system have been studied most extensively in relation to cerebral autoregulatory dysfunction; specific mutations are linked to impaired function.

  • Other polymorphisms related to the inflammatory response to TBI, central autonomic response and cortical spreading depression have the potential to affect cerebral autoregulation.

  • Future prospective multicentre Bayesian analyses of genotype data from TBI populations will be required to fully understand the potential mechanisms involved in impaired vascular reactivity and develop therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential role of genetic polymorphisms in the control of cerebral autoregulation.

Similar content being viewed by others

References

  1. Maas, A. I. R. & Menon, D. K. Integrated approaches to paediatric neurocritical care in traumatic brain injury. Lancet Neurol. 12, 26–28 (2013).

    PubMed  Google Scholar 

  2. Feigin, V. L. et al. Incidence of traumatic brain injury in New Zealand: a population-based study. Lancet Neurol. 12, 53–64 (2013).

    PubMed  Google Scholar 

  3. Gardner, A. J. & Zafonte, R. Neuroepidemiology of traumatic brain injury. Handb. Clin. Neurol. 138, 207–223 (2016).

    CAS  PubMed  Google Scholar 

  4. Rosenfeld, J. V. et al. Early management of severe traumatic brain injury. Lancet 380, 1088–1098 (2012).

    Google Scholar 

  5. Carney, N. et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 80, 6–15 (2017).

    PubMed  Google Scholar 

  6. Czosnyka, M. et al. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41, 11–17 (1997).

    CAS  PubMed  Google Scholar 

  7. Zeiler, F. A. et al. Critical thresholds of ICP derived continuous cerebrovascular reactivity indices for outcome prediction in non-craniectomized TBI patients: PRx, PAx and RAC. J. Neurotrauma 35, 1107–1115 (2018).

    PubMed  Google Scholar 

  8. Sorrentino, E. et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit. Care 16, 258–266 (2012).

    CAS  PubMed  Google Scholar 

  9. Zeiler, F. A. et al. Pressure autoregulation measurement techniques in adult traumatic brain injury, part II: a scoping review of continuous methods. J. Neurotrauma 34, 3224–3237 (2017).

    PubMed  Google Scholar 

  10. Zeiler, F. A. et al. Pressure autoregulation measurement techniques in adult traumatic brain injury, part I: a scoping review of intermittent/semi-intermittent methods. J. Neurotrauma 34, 3207–3223 (2017).

    PubMed  Google Scholar 

  11. Crawford, F. et al. Identification of plasma biomarkers of TBI outcome using proteomic approaches in an APOE mouse model. J. Neurotrauma 29, 246–260 (2012).

    PubMed  Google Scholar 

  12. Jiang, L. et al. Effects of ApoE on intracellular calcium levels and apoptosis of neurons after mechanical injury. Neuroscience 301, 375–383 (2015).

    CAS  PubMed  Google Scholar 

  13. McAllister, T. W. Neurobiological consequences of traumatic brain injury. Dialogues Clin. Neurosci. 13, 287–300 (2011).

    PubMed  PubMed Central  Google Scholar 

  14. Zeiler, F. A. et al. Genetic influences on patient oriented outcomes in TBI: a living systematic review of non-APOE single nucleotide polymorphisms. J. Neurotrauma. https://doi.org/10.1089/neu.2017.5583 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Janowitz, T. & Menon, D. K. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci. Transl. Med. 2, 27rv1 (2010).

    CAS  PubMed  Google Scholar 

  16. Stovell, M. G. et al. Assessing metabolism and injury in acute human traumatic brain injury with magnetic resonance spectroscopy: current and future applications. Front. Neurol. 8, 426 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. Bomba, L., Walter, K. & Soranzo, N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 18, 77 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Lassen, N. A. Cerebral blood flow and oxygen consumption in man. Physiol. Rev. 39, 183–238 (1959).

    CAS  PubMed  Google Scholar 

  19. Needham, E. et al. Cerebral perfusion pressure targets individualized to pressure-reactivity index in moderate to severe traumatic brain injury: a systematic review. J. Neurotrauma 34, 963–970 (2017).

    PubMed  Google Scholar 

  20. Donnelly, J. et al. Pressure reactivity-based optimal cerebral perfusion pressure in a traumatic brain injury cohort. Acta Neurochir. Suppl. 126, 209–212 (2018).

    CAS  PubMed  Google Scholar 

  21. Aries, M. J. H. et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit. Care Med. 40, 2456–2463 (2012).

    PubMed  Google Scholar 

  22. Winn, H. Youmans Neurological Surgery (Saunders, 2011).

  23. Paulson, O. B., Strandgaard, S. & Edvinsson, L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 2, 161–192 (1990).

    CAS  PubMed  Google Scholar 

  24. Yang, J. & Clark, J. W. On the roles of vascular smooth muscle contraction in cerebral blood flow autoregulation - a modeling perspective. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 7796–7799 (2015).

    Google Scholar 

  25. Aaslid, R. Cerebral autoregulation and vasomotor reactivity. Front. Neurol. Neurosci. 21, 216–228 (2006).

    PubMed  Google Scholar 

  26. Izzard, A. S. & Heagerty, A. M. Myogenic properties of brain and cardiac vessels and their relation to disease. Curr. Vasc. Pharmacol. 12, 829–835 (2014).

    CAS  PubMed  Google Scholar 

  27. Gebremedhin, D., Gopalakrishnan, S. & Harder, D. R. Endogenous events modulating myogenic regulation of cerebrovascular function. Curr. Vasc. Pharmacol. 12, 810–817 (2014).

    CAS  PubMed  Google Scholar 

  28. Koller, A. & Toth, P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J. Vasc. Res. 49, 375–389 (2012).

    PubMed  Google Scholar 

  29. Faraci, F. M., Baumbach, G. L. & Heistad, D. D. Myogenic mechanisms in the cerebral circulation. J. Hypertens. Suppl. 7, S61–S64 (1989).

    CAS  PubMed  Google Scholar 

  30. Terashvili, M., Pratt, P. F., Gebremedhin, D., Narayanan, J. & Harder, D. R. Reactive oxygen species cerebral autoregulation in health and disease. Pediatr. Clin. North Am. 53, 1029–1037 (2006).

    PubMed  PubMed Central  Google Scholar 

  31. Ma, L. et al. Transcranial Doppler-based assessment of cerebral autoregulation in critically ill children during diabetic ketoacidosis treatment. Pediatr. Crit. Care Med. 15, 742–749 (2014).

    PubMed  Google Scholar 

  32. Nakada, T. The molecular mechanisms of neural flow coupling: a new concept. J. Neuroimaging 25, 861–865 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Murkin, J. M. Cerebral autoregulation: the role of CO2 in metabolic homeostasis. Semin. Cardiothorac. Vasc. Anesth. 11, 269–273 (2007).

    PubMed  Google Scholar 

  34. Palmer, G. C. Neurochemical coupled actions of transmitters in the microvasculature of the brain. Neurosci. Biobehav. Rev. 10, 79–101 (1986).

    CAS  PubMed  Google Scholar 

  35. Hall, C. N. et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brian, J. E., Faraci, F. M. & Heistad, D. D. Recent insights into the regulation of cerebral circulation. Clin. Exp. Pharmacol. Physiol. 23, 449–457 (1996).

    CAS  PubMed  Google Scholar 

  37. Zeiler, F. A. et al. Cerebrospinal fluid and microdialysis cytokines in severe traumatic brain injury: a scoping systematic review. Front. Neurol. 8, 331 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. Zeiler, F. A. et al. Cerebrospinal fluid and microdialysis cytokines in aneurysmal subarachnoid hemorrhage: a scoping systematic review. Front. Neurol. 8, 379 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Gao, L., Smielewski, P., Czosnyka, M. & Ercole, A. Early asymmetric cardio-cerebral causality and outcome after severe traumatic brain injury. J. Neurotrauma 34, 2743–2752 (2017).

    PubMed  Google Scholar 

  40. Toth, P. et al. Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: pathomechanisms, perspectives, and therapeutic implications. Am. J. Physiol. Heart Circ. Physiol. 311, H1118–H1131 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Pramanik, K. et al. Dusp-5 and Snrk-1 coordinately function during vascular development and disease. Blood 113, 1184–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fan, F. et al. Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats. PLoS ONE 9, e112878 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Islam, M. (ed.) Transient Receptor Potential Channels (Advances in Experimental Medicine and Biology) (Springer, 2011).

  44. Zeiler, F. A. NMDA receptor antagonism in refractory status epilepticus: right idea, wrong target? Brain Disord. Ther. 4, 195 (2015).

    Google Scholar 

  45. Ren, L. et al. Quantitative analysis of mouse dural afferent neurons expressing TRPM8, VGLUT3, and NF200. Headache 58, 88–101 (2018).

    PubMed  Google Scholar 

  46. Kim, Y. S., Kim, T. H., McKemy, D. D. & Bae, Y. C. Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience 303, 378–388 (2015).

    CAS  PubMed  Google Scholar 

  47. Griessenauer, C. J. et al. Associations of renin–angiotensin system genetic polymorphisms and clinical course after aneurysmal subarachnoid hemorrhage. J. Neurosurg. 126, 1585–1597 (2017).

    PubMed  Google Scholar 

  48. Griessenauer, C. J. et al. Associations between endothelin polymorphisms and aneurysmal subarachnoid hemorrhage, clinical vasospasm, delayed cerebral ischemia, and functional outcome. J. Neurosurg. 128, 1311–1317 (2017).

    PubMed  Google Scholar 

  49. Hajjar, I. et al. Renin angiotensin system gene polymorphisms and cerebral blood flow regulation: the MOBILIZE Boston study. Stroke 41, 635–640 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dardiotis, E. et al. Effect of angiotensin-converting enzyme tag single nucleotide polymorphisms on the outcome of patients with traumatic brain injury. Pharmacogenet. Genom. 25, 485–490 (2015).

    CAS  Google Scholar 

  51. Ariza, M. et al. Influence of angiotensin-converting enzyme polymorphism on neuropsychological subacute performance in moderate and severe traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 18, 39–44 (2006).

    CAS  PubMed  Google Scholar 

  52. Levinsson, A., Olin, A.-C., Björck, L., Rosengren, A. & Nyberg, F. Nitric oxide synthase (NOS) single nucleotide polymorphisms are associated with coronary heart disease and hypertension in the INTERGENE study. Nitric Oxide 39, 1–7 (2014).

    CAS  PubMed  Google Scholar 

  53. Lin, C.-L. et al. Attenuation of experimental subarachnoid hemorrhage- induced cerebral vasospasm by the adenosine A2A receptor agonist CGS 21680. J. Neurosurg. 106, 436–441 (2007).

    PubMed  Google Scholar 

  54. Szpecht, D., Gadzinowski, J., Seremak-Mrozikiewicz, A., Kurzawinska, G. & Szymankiewicz, M. Role of endothelial nitric oxide synthase and endothelin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Sci. Rep. 7, 42541 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Robertson, C. S. et al. Variants of the endothelial nitric oxide gene and cerebral blood flow after severe traumatic brain injury. J. Neurotrauma 28, 727–737 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Rosalind Lai, P. M. & Du, R. Role of genetic polymorphisms in predicting delayed cerebral ischemia and radiographic vasospasm after aneurysmal subarachnoid hemorrhage: a meta-analysis. World Neurosurg. 84, 933–941 (2015).

    PubMed  Google Scholar 

  57. Hendrix, P. et al. Endothelial nitric oxide synthase polymorphism is associated with delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage. World Neurosurg. 101, 514–519 (2017).

    PubMed  Google Scholar 

  58. Kondratieva, N. et al. Biomarkers of migraine: part 1 — genetic markers. J. Neurol. Sci. 369, 63–76 (2016).

    CAS  PubMed  Google Scholar 

  59. Lin, C. L. et al. The effect of an adenosine A1 receptor agonist in the treatment of experimental subarachnoid hemorrhage-induced cerebrovasospasm. Acta Neurochir. 148, 873–879 (2006).

    CAS  Google Scholar 

  60. Padmanabhan, S., Aman, A. & Dominiczak, A. F. Genomics of hypertension. Pharmacol. Res. 121, 219–229 (2017).

    CAS  PubMed  Google Scholar 

  61. Gupta, R. M. et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell 170, 522–533 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Machida, T., Iizuka, K. & Hirafuji, M. 5-Hydroxytryptamine and its receptors in systemic vascular walls. Biol. Pharm. Bull. 36, 1416–1419 (2013).

    CAS  PubMed  Google Scholar 

  63. Gamoh, S., Hisa, H. & Yamamoto, R. 5-Hydroxytryptamine receptors as targets for drug therapies of vascular-related diseases. Biol. Pharm. Bull. 36, 1410–1415 (2013).

    CAS  PubMed  Google Scholar 

  64. Winkler, E. A. et al. COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury. Neurogenetics 17, 31–41 (2016).

    CAS  PubMed  Google Scholar 

  65. Winkler, E. A. et al. COMT Val158Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury. J. Clin. Neurosci. 35, 109–116 (2017).

    CAS  PubMed  Google Scholar 

  66. Lipsky, R. H. et al. Association of COMT Val158Met genotype with executive functioning following traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 17, 465–471 (2005).

    CAS  PubMed  Google Scholar 

  67. Binder, D. K. & Scharfman, H. E. Brain-derived neurotrophic factor. Growth Factors 22, 123–131 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, S.-P. et al. Brain-derived neurotrophic factor gene Val66Met polymorphism modulates reversible cerebral vasoconstriction syndromes. PLoS ONE 6, e18024 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kasselman, L. J. et al. BDNF: a missing link between sympathetic dysfunction and inflammatory disease? J. Neuroimmunol. 175, 118–127 (2006).

    CAS  PubMed  Google Scholar 

  70. Failla, M. D. et al. Variation in the BDNF gene interacts with age to predict mortality in a prospective, longitudinal cohort with severe TBI. Neurorehabil. Neural Repair 29, 234–246 (2015).

    PubMed  Google Scholar 

  71. Bagnato, S. et al. Brain-derived neurotrophic factor (Val66Met) polymorphism does not influence recovery from a post-traumatic vegetative state: a blinded retrospective multi-centric study. J. Neurotrauma 29, 2050–2059 (2012).

    PubMed  Google Scholar 

  72. Krueger, F. et al. The role of the Met66 brain-derived neurotrophic factor allele in the recovery of executive functioning after combat-related traumatic brain injury. J. Neurosci. 31, 598–606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McAllister, T. W. et al. Polymorphisms in the brain-derived neurotrophic factor gene influence memory and processing speed one month after brain injury. J. Neurotrauma 29, 1111–1118 (2012).

    PubMed  PubMed Central  Google Scholar 

  74. Jing, D., Lee, F. S. & Ninan, I. The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum. Neuropharmacology 112, 84–93 (2017).

    CAS  PubMed  Google Scholar 

  75. Lemos, C. et al. BDNF and CGRP interaction: implications in migraine susceptibility. Cephalalgia 30, 1375–1382 (2010).

    PubMed  Google Scholar 

  76. Failla, M. D. et al. Variants of SLC6A4 in depression risk following severe TBI. Brain Inj. 27, 696–706 (2013).

    PubMed  Google Scholar 

  77. Pardini, M. et al. Prefrontal cortex lesions and MAO-A modulate aggression in penetrating traumatic brain injury. Neurology 76, 1038–1045 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bano, D. & Ankarcrona, M. Beyond the critical point: an overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci. Lett. 663, 79–85 (2018).

    CAS  PubMed  Google Scholar 

  79. Sutherland, H. G. & Griffiths, L. R. Genetics of migraine: insights into the molecular basis of migraine disorders. Headache 57, 537–569 (2017).

    PubMed  Google Scholar 

  80. Timofeev, I. et al. Interaction between brain chemistry and physiology after traumatic brain injury: impact of autoregulation and microdialysis catheter location. J. Neurotrauma 28, 849–860 (2011).

    PubMed  PubMed Central  Google Scholar 

  81. Zeiler, F. A. et al. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir. 159, 2245–2273 (2017).

    Google Scholar 

  82. Kanai, Y. et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol. Aspects Med. 34, 108–120 (2013).

    CAS  PubMed  Google Scholar 

  83. Madura, S. A. et al. Genetic variation in SLC17A7 promoter associated with response to sport-related concussions. Brain Inj. 30, 908–913 (2016).

    PubMed  Google Scholar 

  84. McDevitt, J. et al. Association between GRIN2A promoter polymorphism and recovery from concussion. Brain Inj. 29, 1674–1681 (2015).

    PubMed  Google Scholar 

  85. Stam, A. H. et al. Early seizures and cerebral oedema after trivial head trauma associated with the CACNA1A S218L mutation. J. Neurol. Neurosurg. Psychiatry 80, 1125–1129 (2009).

    CAS  PubMed  Google Scholar 

  86. Barron, J. T. & Nair, A. Lactate depresses sarcolemmal permeability of Ca2+ in intact arterial smooth muscle. Life Sci. 74, 651–662 (2003).

    CAS  PubMed  Google Scholar 

  87. Doll, D. N. et al. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood–brain barrier. Stroke 46, 1681–1689 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Brady, K. M. et al. Continuous measurement of autoregulation by spontaneous fluctuations in cerebral perfusion pressure: comparison of 3 methods. Stroke 39, 2531–2537 (2008).

    PubMed  PubMed Central  Google Scholar 

  89. Bulstrode, H. et al. Mitochondrial DNA and traumatic brain injury. Ann. Neurol. 75, 186–195 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Conley, Y. P. et al. Mitochondrial polymorphisms impact outcomes after severe traumatic brain injury. J. Neurotrauma 31, 34–41 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Cousar, J. L. et al. Influence of ATP-binding cassette polymorphisms on neurological outcome after traumatic brain injury. Neurocrit. Care 19, 192–198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Jha, R. M. et al. ABCC8 single nucleotide polymorphisms are associated with cerebral edema in severe TBI. Neurocrit. Care 26, 213–224 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dardiotis, E. et al. AQP4 tag single nucleotide polymorphisms in patients with traumatic brain injury. J. Neurotrauma 31, 1920–1926 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. Roberts, D. J. et al. Association between the cerebral inflammatory and matrix metalloproteinase responses after severe traumatic brain injury in humans. J. Neurotrauma 30, 1727–1736 (2013).

    PubMed  Google Scholar 

  95. Guilfoyle, M. R. et al. Matrix metalloproteinase expression in contusional traumatic brain injury: a paired microdialysis study. J. Neurotrauma 32, 1553–1559 (2015).

    PubMed  PubMed Central  Google Scholar 

  96. Rochfort, K. D. & Cummins, P. M. Thrombomodulin regulation in human brain microvascular endothelial cells in vitro: role of cytokines and shear stress. Microvasc. Res. 97, 1–5 (2015).

    CAS  PubMed  Google Scholar 

  97. Dardiotis, E., Dardioti, M., Hadjigeorgiou, G. M. & Paterakis, K. Re: Lack of association between the IL1A gene (–889) polymorphism and outcome after head injury. Tanriverdi T. et al. Surg Neurol 2006;65:7–10; discussion 10. Surg. Neurol. 66, 334–335 (2006).

    PubMed  Google Scholar 

  98. Miñambres, E. et al. Correlation between transcranial interleukin-6 gradient and outcome in patients with acute brain injury. Crit. Care Med. 31, 933–938 (2003).

    PubMed  Google Scholar 

  99. Uzan, M. et al. Association between interleukin-1 beta (IL-1β) gene polymorphism and outcome after head injury: an early report. Acta Neurochir. 147, 715–720 (2005).

    CAS  Google Scholar 

  100. Waters, R. J. et al. Cytokine gene polymorphisms and outcome after traumatic brain injury. J. Neurotrauma 30, 1710–1716 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Sinha, S., Monsoori, N., Mukhopadhyay, A. & Sharma, B. Effect of IL-6–174 G/C polymorphism in predicting disability and functional outcome in patients with severe traumatic brain injury (STBI). J. Neurotrauma 112, 673 (2015).

    Google Scholar 

  102. Lavinio, A. et al. Cerebrovascular reactivity and autonomic drive following traumatic brain injury. Acta Neurochir. Suppl. 102, 3–7 (2008).

    PubMed  Google Scholar 

  103. Perkes, I., Baguley, I. J., Nott, M. T. & Menon, D. K. A review of paroxysmal sympathetic hyperactivity after acquired brain injury. Ann. Neurol. 68, 126–135 (2010).

    PubMed  Google Scholar 

  104. Meyfroidt, G., Baguley, I. J. & Menon, D. K. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury. Lancet Neurol. 16, 721–729 (2017).

    PubMed  Google Scholar 

  105. Sykora, M. et al. Autonomic impairment in severe traumatic brain injury: a multimodal neuromonitoring study. Crit. Care Med. 44, 1173–1181 (2016).

    PubMed  Google Scholar 

  106. Ayata, C. & Lauritzen, M. Spreading depression, spreading depolarizations, and the cerebral vasculature. Physiol. Rev. 95, 953–993 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Burrello, J. et al. Is there a role for genomics in the management of hypertension? Int. J. Mol. Sci. 18, 1131 (2017).

    PubMed Central  Google Scholar 

  108. Heusch, G., Erbel, R. & Siffert, W. Genetic determinants of coronary vasomotor tone in humans. Am. J. Physiol. Heart Circ. Physiol. 281, H1465–H1468 (2001).

    CAS  PubMed  Google Scholar 

  109. Andreassi, M. G. et al. Adenosine A2(A) receptor gene polymorphism (1976C>T) affects coronary flow reserve response during vasodilator stress testing in patients with non ischemic-dilated cardiomyopathy. Pharmacogenet. Genom. 21, 469–475 (2011).

    CAS  Google Scholar 

  110. Sato, M. et al. Association between prostaglandin E2 receptor gene and essential hypertension. Prostaglandins Leukot. Essent. Fatty Acids 77, 15–20 (2007).

    CAS  PubMed  Google Scholar 

  111. Coughlin, S. S. Toward a road map for global -omics: a primer on -omic technologies. Am. J. Epidemiol. 180, 1188–1195 (2014).

    PubMed  Google Scholar 

  112. Verghese, A. et al. Factors associated with the course and outcome of schizophrenia. Indian J. Psychiatry 27, 201–206 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Evans, D. M. & Purcell, S. Power calculations in genetic studies. Cold Spring Harb. Protoc. 2012, 664–674 (2012).

    PubMed  Google Scholar 

  114. Nsengimana, J. & Bishop, D. T. Design considerations for genetic linkage and association studies. Methods Mol. Biol. 850, 237–262 (2012).

    PubMed  Google Scholar 

  115. Darby, J. M., Yonas, H., Marion, D. W. & Latchaw, R. E. Local ‘inverse steal’ induced by hyperventilation in head injury. Neurosurgery 23, 84–88 (1988).

    CAS  PubMed  Google Scholar 

  116. Zeiler, F. A. et al. Intra- and extra-cranial injury burden as drivers of impaired cerebrovascular reactivity in traumatic brain injury. J. Neurotrauma 35, 1569–1577 (2018).

    PubMed  Google Scholar 

  117. Hiler, M. et al. Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. J. Neurosurg. 104, 731–737 (2006).

    PubMed  Google Scholar 

  118. Schmidt, E. A. et al. Symmetry of cerebral hemodynamic indices derived from bilateral transcranial Doppler. J. Neuroimaging 13, 248–254 (2003).

    PubMed  Google Scholar 

  119. Schmidt, E. A. et al. Asymmetry of pressure autoregulation after traumatic brain injury. J. Neurosurg. 99, 991–998 (2003).

    PubMed  Google Scholar 

  120. Armstead, W. M. Cerebral blood flow autoregulation and dysautoregulation. Anesthesiol. Clin. 34, 465–477 (2016).

    PubMed  PubMed Central  Google Scholar 

  121. Armstead, W. M., Riley, J. & Vavilala, M. S. Preferential protection of cerebral autoregulation and reduction of hippocampal necrosis with norepinephrine after traumatic brain injury in female piglets. Pediatr. Crit. Care Med. 17, e130–e137 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Burkhart, C. S. et al. Effect of age on intraoperative cerebrovascular autoregulation and near-infrared spectroscopy-derived cerebral oxygenation. Br. J. Anaesth. 107, 742–748 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Czosnyka, M., Czosnyka, Z. H., Whitfield, P. C., Donovan, T. & Pickard, J. D. Age dependence of cerebrospinal pressure-volume compensation in patients with hydrocephalus. J. Neurosurg. 94, 482–486 (2001).

    CAS  PubMed  Google Scholar 

  124. Czosnyka, M. et al. Age, intracranial pressure, autoregulation, and outcome after brain trauma. J. Neurosurg. 102, 450–454 (2005).

    PubMed  Google Scholar 

  125. Mutch, W. A. C. et al. Patient-specific alterations in CO2 cerebrovascular responsiveness in acute and sub-acute sports-related concussion. Front. Neurol. 9, 23 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Ellis, M. J. et al. Neuroimaging assessment of cerebrovascular reactivity in concussion: current concepts, methodological considerations, and review of the literature. Front. Neurol. 7, 61 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Barlow, K. M. et al. Cerebral perfusion changes in post-concussion syndrome: a prospective controlled cohort study. J. Neurotrauma 34, 996–1004 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Yue, J. K. et al. Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J. Neurotrauma 30, 1831–1844 (2013).

    PubMed  PubMed Central  Google Scholar 

  129. Maas, A. I. R. et al. Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery 76, 67–80 (2015).

    PubMed  Google Scholar 

  130. Czosnyka, M. & Miller, C. Monitoring of cerebral autoregulation. Neurocrit. Care 21(Suppl. 2), S95–S102 (2014).

    PubMed  Google Scholar 

  131. Zeiler, F. A., Lee, J. K., Smielewski, P., Czosnyka, M. & Brady, K. Validation of ICP derived cerebrovascular reactivity indices against the lower limit of autoregulation, part II: experimental model of arterial hypotension. J. Neurotrauma. https://doi.org/10.1089/neu.2017.5604 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zeiler, F. A. et al. Validation of pressure reactivity and pulse amplitude indices against the lower limit of autoregulation, part I: experimental intra-cranial hypertension. J. Neurotrauma. https://doi.org/10.1089/neu.2017.5603 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zeiler, F. A. & Smielewski, P. Application of robotic transcranial Doppler for extended duration recording in moderate/severe traumatic brain injury: first experiences. Crit. Ultrasound J. 10, 16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zeiler, F. A. et al. Continuous autoregulatory indices derived from multi-modal monitoring: each one is not like the other. J. Neurotrauma 34, 3070–3080 (2017).

    PubMed  Google Scholar 

  135. Zeiler, F. A. et al. Estimating pressure reactivity index using non-invasive Doppler based systolic flow index. J. Neurotrauma 35, 1559–1568 (2018).

    PubMed  Google Scholar 

  136. Hutchinson, P. J. et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 41, 1517–1528 (2015).

    PubMed  PubMed Central  Google Scholar 

  137. Hutchinson, P. & O’Phelan, K. International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism. Neurocrit. Care 21(Suppl. 2), S148–S158 (2014).

    PubMed  Google Scholar 

  138. Newcombe, P. J., Conti, D. V. & Richardson, S. JAM: a scalable Bayesian framework for joint analysis of marginal SNP effects. Genet. Epidemiol. 40, 188–201 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bergmeijer, T. O. et al. Genome-wide and candidate gene approaches of clopidogrel efficacy using pharmacodynamic and clinical end points — rationale and design of the International Clopidogrel Pharmacogenomics Consortium (ICPC). Am. Heart J. 198, 152–159 (2018).

    CAS  PubMed  Google Scholar 

  141. Long, T. et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 49, 568–578 (2017).

    CAS  PubMed  Google Scholar 

  142. Budohoski, K. P. et al. Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal? Neurocrit. Care 17, 211–218 (2012).

    PubMed  Google Scholar 

  143. Zweifel, C. et al. Continuous assessment of cerebral autoregulation with near-infrared spectroscopy in adults after subarachnoid hemorrhage. Stroke 41, 1963–1968 (2010).

    PubMed  Google Scholar 

  144. Hamilton, N. B., Attwell, D. & Hall, C. N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics 2, 5 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ research was made possible through salary support for F.A.Z through the Cambridge Commonwealth Trust Scholarship, the Royal College of Surgeons of Canada – Harry S. Morton Travelling Fellowship in Surgery and the University of Manitoba Clinician Investigator Program. D.K.M. is also supported by National Institute for Healthcare Research (NIHR, UK) through the Acute Brain Injury and Repair theme of the Cambridge NIHR Biomedical Research Centre and an NIHR Senior Investigator Award to E.P.T. received funding support from Swedish Society of Medicine (Grant no. SLS-587221). Authors were also supported by a European Union Framework Program 7 grant (CENTER-TBI; Grant Agreement No. 602150).

Reviewer information

Nature Reviews Neurology thanks R. Diaz-Arrastia and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed and edited the manuscript before submission. F.A.Z, E.T., J.D., P.J.H. and D.K.M. contributed substantially to discussions of the article content. F.A.Z. researched data for the article and wrote the manuscript.

Corresponding author

Correspondence to Frederick A. Zeiler.

Ethics declarations

Competing interests

P.S. and M.C. declare that they have financial interests in a part of licensing fee for ICM+ software (Cambridge Enterprise Ltd, UK). D.K.M. declares that he has consultancy agreements and/or research collaborations with GlaxoSmithKline, Ornim Medical, Shire Medical, Calico, Pfizer, Pressura, Glide Pharma and NeuroTraumaSciences.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeiler, F.A., Thelin, E.P., Donnelly, J. et al. Genetic drivers of cerebral blood flow dysfunction in TBI: a speculative synthesis. Nat Rev Neurol 15, 25–39 (2019). https://doi.org/10.1038/s41582-018-0105-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-018-0105-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing