Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunology of the ageing kidney

Abstract

Immunosenescence involves a series of ageing-induced alterations in the immune system and is characterized by two opposing hallmarks: defective immune responses and increased systemic inflammation. The immune system is modulated by intrinsic and extrinsic factors and undergoes profound changes in response to the ageing process. Immune responses are therefore highly age-dependent. Emerging data show that immunosenescence underlies common mechanisms responsible for several age-related diseases and is a plastic state that can be modified and accelerated by non-heritable environmental factors and pharmacological intervention. In the kidney, resident macrophages and fibroblasts are continuously exposed to components of the external environment, and the effects of cellular reprogramming induced by local immune responses, which accumulate with age, might have a role in the increased susceptibility to kidney disease among elderly individuals. Additionally, because chronic kidney disease, especially end-stage renal disease, is often accompanied by immunosenescence, which affects these patients independently of age, and many kidney diseases are strongly age-associated, treatment approaches that target immunosenescence might be particularly clinically relevant.

Key points

  • Ageing affects the composition and function of the immune system and leads to immunosenescence, which is characterized by defective immune responses and increased systemic inflammation (also termed inflammageing).

  • Inflammageing is maladaptive and results from multiple mechanisms, including aberrant inflammasome activation, microbial dysbiosis, accumulation of senescent cells and primary dysregulation of immune cells.

  • The causes and consequences of immunosenescence overlap, thus forming a vicious cycle that exacerbates immunosenescence.

  • Immunosenescence is a risk factor for the development of a wide spectrum of age-related diseases and therefore targeting immunosenescence might represent a novel therapeutic strategy for preventing them.

  • The immune status of patients with chronic kidney disease mimics that of elderly individuals, which underlies shared clinical characteristics such as an increased risk of infection and atherosclerosis.

  • The immune system has crucial roles in the pathophysiology of kidney disease and the effects of immunosenescence on kidney diseases are therefore also widespread and substantial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunosenescence in elderly individuals and patients with CKD.
Fig. 2: Age-associated changes in the immune system and the kidney.
Fig. 3: Causes and consequences of senescent T cell accumulation in the elderly.
Fig. 4: Age-related alterations in multiple lymphoid organs contribute to immunosenescence.
Fig. 5: Tertiary lymphoid tissue in aged, injured kidneys.

Similar content being viewed by others

References

  1. Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    CAS  PubMed  Google Scholar 

  2. Goronzy, J. J. & Weyand, C. M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428–436 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Goronzy, J. J., Li, G., Yang, Z. & Weyand, C. M. The janus head of T cell aging – autoimmunity and immunodeficiency. Front. Immunol. 4, 131 (2013).

    PubMed  PubMed Central  Google Scholar 

  4. Betjes, M. G. Immune cell dysfunction and inflammation in end-stage renal disease. Nat. Rev. Nephrol. 9, 255–265 (2013).

    CAS  PubMed  Google Scholar 

  5. Weyand, C. M., Fujii, H., Shao, L. & Goronzy, J. J. Rejuvenating the immune system in rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 583–588 (2009).

    CAS  PubMed  Google Scholar 

  6. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725–732 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Franceschi, C. et al. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front. Immunol. 8, 982 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Takaori, K. et al. Severity and frequency of proximal tubule injury determines renal prognosis. J. Am. Soc. Nephrol. 27, 2393–2406 (2016).

    PubMed  Google Scholar 

  10. Lee, S. et al. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. 22, 317–326 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Krebs, C. F. et al. Autoimmune renal disease is exacerbated by S1P-receptor-1-dependent intestinal Th17 cell migration to the kidney. Immunity 45, 1078–1092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sato, Y. et al. Heterogeneous fibroblasts underlie age-dependent tertiary lymphoid tissues in the kidney. JCI Insight 1, e87680 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. Asada, N. et al. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. J. Clin. Invest. 121, 3981–3990 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sato, Y. & Yanagita, M. Immune cells and inflammation in AKI to CKD progression. Am. J. Physiol. Renal. Physiol. 315, F1501–F1512 (2018).

    CAS  PubMed  Google Scholar 

  15. He, L. et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 92, 1071–1083 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Schmitt, R., Marlier, A. & Cantley, L. G. Zag expression during aging suppresses proliferation after kidney injury. J. Am. Soc. Nephrol. 19, 2375–2383 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    PubMed  PubMed Central  Google Scholar 

  18. Yamamoto, T. et al. Time-dependent dysregulation of autophagy: implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy 12, 801–813 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jennette, J. C. & Nachman, P. H. ANCA glomerulonephritis and vasculitis. Clin. J. Am. Soc. Nephrol. 12, 1680–1691 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Couser, W. G. Primary membranous nephropathy. Clin. J. Am. Soc. Nephrol. 12, 983–997 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Sullivan, E. D., Hughes, J. & Ferenbach, D. A. Renal aging: causes and consequences. J. Am. Soc. Nephrol. 28, 407–420 (2017).

    PubMed  Google Scholar 

  23. Schmitt, R. & Melk, A. Molecular mechanisms of renal aging. Kidney Int. 92, 569–579 (2017).

    CAS  PubMed  Google Scholar 

  24. Georgountzou, A. & Papadopoulos, N. G. Postnatal innate immune development: from birth to adulthood. Front. Immunol. 8, 957 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Akbar, A. N., Henson, S. M. & Lanna, A. Senescence of t lymphocytes: implications for enhancing human immunity. Trends Immunol. 37, 866–876 (2016).

    CAS  PubMed  Google Scholar 

  26. Goronzy, J. J. & Weyand, C. M. Mechanisms underlying T cell ageing. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0180-1 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Goronzy, J. J. & Weyand, C. M. Successful and maladaptive T cell aging. Immunity 46, 364–378 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rubtsova, K., Rubtsov, A. V., Cancro, M. P. & Marrack, P. Age-associated B cells: a T-bet-dependent effector with roles in protective and pathogenic immunity. J. Immunol. 195, 1933–1937 (2015).

    CAS  PubMed  Google Scholar 

  29. Tahir, S. et al. A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production. J. Immunol. 194, 5725–5735 (2015).

    CAS  PubMed  Google Scholar 

  30. Shirakawa, K. et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J. Clin. Invest. 126, 4626–4639 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Sakamoto, K. et al. Osteopontin in spontaneous germinal centers inhibits apoptotic cell engulfment and promotes anti-nuclear antibody production in lupus-prone mice. J. Immunol. 197, 2177–2186 (2016).

    CAS  PubMed  Google Scholar 

  32. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuwahara, M. et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat. Commun. 5, 3555 (2014).

    PubMed  Google Scholar 

  34. Geering, B., Stoeckle, C., Conus, S. & Simon, H. U. Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 34, 398–409 (2013).

    CAS  PubMed  Google Scholar 

  35. Hoeffel, G. et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665–678 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mowat, A. M., Scott, C. L. & Bain, C. C. Barrier-tissue macrophages: functional adaptation to environmental challenges. Nat. Med. 23, 1258–1270 (2017).

    CAS  PubMed  Google Scholar 

  37. Ginhoux, F. & Guilliams, M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 44, 439–449 (2016).

    CAS  PubMed  Google Scholar 

  38. Munro, D. A. D. & Hughes, J. The origins and functions of tissue-resident macrophages in kidney development. Front. Physiol. 8, 837 (2017).

    PubMed  PubMed Central  Google Scholar 

  39. Montecino-Rodriguez, E. & Dorshkind, K. B-1 B cell development in the fetus and adult. Immunity 36, 13–21 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kovtonyuk, L. V., Fritsch, K., Feng, X., Manz, M. G. & Takizawa, H. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front. Immunol. 7, 502 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Masters, A. R., Haynes, L., Su, D. M. & Palmer, D. B. Immune senescence: significance of the stromal microenvironment. Clin. Exp. Immunol. 187, 6–15 (2017).

    CAS  PubMed  Google Scholar 

  42. Chan, G. K. & Duque, G. Age-related bone loss: old bone, new facts. Gerontology 48, 62–71 (2002).

    PubMed  Google Scholar 

  43. Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).

    CAS  PubMed  Google Scholar 

  44. Young, K. et al. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging. J. Exp. Med. 213, 2259–2267 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl Acad. Sci. USA 107, 5465–5470 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pang, W. W. et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc. Natl Acad. Sci. USA 108, 20012–20017 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Riley, R. L. Impaired B lymphopoiesis in old age: a role for inflammatory B cells? Immunol. Res. 57, 361–369 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl Acad. Sci. USA 102, 9194–9199 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hamazaki, Y., Sekai, M. & Minato, N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol. Rev. 271, 38–55 (2016).

    CAS  PubMed  Google Scholar 

  51. Palmer, D. B. The effect of age on thymic function. Front. Immunol. 4, 316 (2013).

    PubMed  PubMed Central  Google Scholar 

  52. Shanley, D. P., Aw, D., Manley, N. R. & Palmer, D. B. An evolutionary perspective on the mechanisms of immunosenescence. Trends Immunol. 30, 374–381 (2009).

    CAS  PubMed  Google Scholar 

  53. den Braber, I. et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36, 288–297 (2012).

    Google Scholar 

  54. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Renkema, K. R., Li, G., Wu, A., Smithey, M. J. & Nikolich-Zugich, J. Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging. J. Immunol. 192, 151–159 (2014).

    CAS  PubMed  Google Scholar 

  56. Rudd, B. D. et al. Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor:pMHC interactions. Proc. Natl Acad. Sci. USA 108, 13694–13699 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kato, A., Takaori-Kondo, A., Minato, N. & Hamazaki, Y. CXCR3(high) CD8(+) T cells with naive phenotype and high capacity for IFN-gamma production are generated during homeostatic T-cell proliferation. Eur. J. Immunol. 48, 1663–1678 (2018).

    CAS  PubMed  Google Scholar 

  58. Li, G. et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18, 1518–1524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Altan-Bonnet, G. & Germain, R. N. Modeling T cell antigen discrimination based on feedback control of digital ERK responses. PLOS Biol. 3, e356 (2005).

    PubMed  PubMed Central  Google Scholar 

  60. DiazGranados, C. A. et al. Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N. Engl. J. Med. 371, 635–645 (2014).

    PubMed  Google Scholar 

  61. Weng, N. P., Akbar, A. N. & Goronzy, J. CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol. 30, 306–312 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lanna, A., Henson, S. M., Escors, D. & Akbar, A. N. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat. Immunol. 15, 965–972 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakajima, T. et al. T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 105, 570–575 (2002).

    CAS  PubMed  Google Scholar 

  64. Broux, B., Markovic-Plese, S., Stinissen, P. & Hellings, N. Pathogenic features of CD4+CD28- T cells in immune disorders. Trends Mol. Med. 18, 446–453 (2012).

    CAS  PubMed  Google Scholar 

  65. Linterman, M. A. How T follicular helper cells and the germinal centre response change with age. Immunol. Cell Biol. 92, 72–79 (2014).

    CAS  PubMed  Google Scholar 

  66. Eaton, S. M., Burns, E. M., Kusser, K., Randall, T. D. & Haynes, L. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J. Exp. Med. 200, 1613–1622 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sage, P. T., Tan, C. L., Freeman, G. J., Haigis, M. & Sharpe, A. H. Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging. Cell Rep. 12, 163–171 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Uppal, S. S., Verma, S. & Dhot, P. S. Normal values of CD4 and CD8 lymphocyte subsets in healthy indian adults and the effects of sex, age, ethnicity, and smoking. Cytometry B. Clin. Cytom. 52, 32–36 (2003).

    CAS  PubMed  Google Scholar 

  69. Hadrup, S. R. et al. Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J. Immunol. 176, 2645–2653 (2006).

    CAS  PubMed  Google Scholar 

  70. Betjes, M. G., Langerak, A. W., van der Spek, A., de Wit, E. A. & Litjens, N. H. Premature aging of circulating T cells in patients with end-stage renal disease. Kidney Int. 80, 208–217 (2011).

    PubMed  Google Scholar 

  71. George, R. P. et al. Premature T cell senescence in pediatric CKD. J. Am. Soc. Nephrol. 28, 359–367 (2017).

    CAS  PubMed  Google Scholar 

  72. Crepin, T. et al. ATG-induced accelerated immune senescence: clinical implications in renal transplant recipients. Am. J. Transplant. 15, 1028–1038 (2015).

    CAS  PubMed  Google Scholar 

  73. Mueller, S. N. & Germain, R. N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chang, J. E. & Turley, S. J. Stromal infrastructure of the lymph node and coordination of immunity. Trends Immunol. 36, 30–39 (2015).

    CAS  PubMed  Google Scholar 

  75. Fletcher, A. L., Acton, S. E. & Knoblich, K. Lymph node fibroblastic reticular cells in health and disease. Nat. Rev. Immunol. 15, 350–361 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Heesters, B. A., Myers, R. C. & Carroll, M. C. Follicular dendritic cells: dynamic antigen libraries. Nat. Rev. Immunol. 14, 495–504 (2014).

    CAS  PubMed  Google Scholar 

  77. Dong, X. et al. Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney. Kidney Int. 68, 1096–1108 (2005).

    CAS  PubMed  Google Scholar 

  78. Maarouf, O. H. et al. Repetitive ischemic injuries to the kidneys result in lymph node fibrosis and impaired healing. JCI Insight 3, 20546 (2018).

    Google Scholar 

  79. Brown, F. D. & Turley, S. J. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J. Immunol. 194, 1389–1394 (2015).

    CAS  PubMed  Google Scholar 

  80. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    CAS  PubMed  Google Scholar 

  81. Thompson, H. L., Smithey, M. J., Surh, C. D. & Nikolich-Zugich, J. Functional and homeostatic impact of age-related changes in lymph node stroma. Front. Immunol. 8, 706 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Cremasco, V. et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat. Immunol. 15, 973–981 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Surh, C. D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS  PubMed  Google Scholar 

  84. Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).

    CAS  PubMed  Google Scholar 

  85. Schietinger, A. & Greenberg, P. D. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 35, 51–60 (2014).

    CAS  PubMed  Google Scholar 

  86. Lee, J. W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

    CAS  PubMed  Google Scholar 

  87. Gardner, J. M. et al. Deletional tolerance mediated by extrathymic aire-expressing cells. Science 321, 843–847 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Becklund, B. R. et al. The aged lymphoid tissue environment fails to support naive T cell homeostasis. Sci. Rep. 6, 30842 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Richner, J. M. et al. Age-dependent cell trafficking defects in draining lymph nodes impair adaptive immunity and control of west nile virus infection. PLOS Pathog. 11, e1005027 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    CAS  PubMed  Google Scholar 

  91. Aw, D. et al. Disorganization of the splenic microanatomy in ageing mice. Immunology 148, 92–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lefebvre, J. S. et al. The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice. Aging Cell 11, 732–740 (2012).

    CAS  PubMed  Google Scholar 

  93. Nayar, S. et al. Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology. Proc. Natl Acad. Sci. USA 116, 13490–13497 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jones, G. W., Hill, D. G. & Jones, S. A. Understanding immune cells in tertiary lymphoid organ development: it is all starting to come together. Front. Immunol. 7, 401 (2016).

    PubMed  PubMed Central  Google Scholar 

  95. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    CAS  PubMed  Google Scholar 

  96. Pipi, E. et al. Tertiary lymphoid structures: autoimmunity goes local. Front. Immunol. 9, 1952 (2018).

    PubMed  PubMed Central  Google Scholar 

  97. Ruddle, N. H. Lymphatic vessels and tertiary lymphoid organs. J. Clin. Invest. 124, 953–959 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lehmann-Horn, K., Wang, S. Z., Sagan, S. A., Zamvil, S. S. & von Budingen, H. C. B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight 1, e87234 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Cheng, J. et al. Ectopic B-cell clusters that infiltrate transplanted human kidneys are clonal. Proc. Natl Acad. Sci. USA 108, 5560–5565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10, 664–674 (2010).

    PubMed  Google Scholar 

  101. Van de Pavert, S. A. et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat. Immunol. 10, 1193–1199 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. Schulz, O., Hammerschmidt, S. I., Moschovakis, G. L. & Forster, R. Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu. Rev. Immunol. 34, 203–242 (2016).

    CAS  PubMed  Google Scholar 

  103. Luther, S. A., Lopez, T., Bai, W., Hanahan, D. & Cyster, J. G. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12, 471–481 (2000).

    CAS  PubMed  Google Scholar 

  104. Luther, S. A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol. 169, 424–433 (2002).

    CAS  PubMed  Google Scholar 

  105. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    CAS  PubMed  Google Scholar 

  106. Krabbe, K. S., Pedersen, M. & Bruunsgaard, H. Inflammatory mediators in the elderly. Exp. Gerontol. 39, 687–699 (2004).

    CAS  PubMed  Google Scholar 

  107. Singh, T. & Newman, A. B. Inflammatory markers in population studies of aging. Ageing Res. Rev. 10, 319–329 (2011).

    CAS  PubMed  Google Scholar 

  108. Csiszar, A., Ungvari, Z., Koller, A., Edwards, J. G. & Kaley, G. Aging-induced proinflammatory shift in cytokine expression profile in coronary arteries. FASEB J. 17, 1183–1185 (2003).

    CAS  PubMed  Google Scholar 

  109. Adler, A. S. et al. Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev. 21, 3244–3257 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Salminen, A. et al. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res. Rev. 7, 83–105 (2008).

    CAS  PubMed  Google Scholar 

  111. Franceschi, C. et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105 (2007).

    CAS  PubMed  Google Scholar 

  112. Van Den Biggelaar, A. H. et al. Inflammation underlying cardiovascular mortality is a late consequence of evolutionary programming. FASEB J. 18, 1022–1024 (2004).

    Google Scholar 

  113. Giunta, S. Exploring the complex relations between inflammation and aging (inflammaging): anti-inflamm-aging remodelling of inflammaging, from robustness to frailty. Inflamm. Res. 57, 558–563 (2008).

    CAS  PubMed  Google Scholar 

  114. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69 (Suppl. 1), S4–S9 (2014).

    PubMed  Google Scholar 

  116. Salimi, S. et al. Inflammation and trajectory of renal function in community-dwelling older adults. J. Am. Geriatr. Soc. 66, 804–811 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Hinojosa, E., Boyd, A. R. & Orihuela, C. J. Age-associated inflammation and toll-like receptor dysfunction prime the lungs for pneumococcal pneumonia. J. Infect. Dis. 200, 546–554 (2009).

    CAS  PubMed  Google Scholar 

  118. Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Esplin, B. L. et al. Chronic exposure to a TLR ligand injures hematopoietic stem cells. J. Immunol. 186, 5367–5375 (2011).

    CAS  PubMed  Google Scholar 

  120. Shen-Orr, S. S. et al. Defective signaling in the JAK-STAT pathway tracks with chronic inflammation and cardiovascular risk in aging humans. Cell Syst. 3, 374–384.e374 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hashimoto, M. et al. Elimination ofp19(ARF)-expressing cells enhances pulmonary function in mice. JCI Insight 1, e87732 (2016).

    PubMed  PubMed Central  Google Scholar 

  122. Baker, D. J. et al. Naturally occurringp16(Ink4a)-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ziegler-Heitbrock, L. The CD14+ CD16+ blood monocytes: their role in infection and inflammation. J. Leukoc. Biol. 81, 584–592 (2007).

    CAS  PubMed  Google Scholar 

  125. Metcalf, T. U. et al. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell 14, 421–432 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Hearps, A. C. et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11, 867–875 (2012).

    CAS  PubMed  Google Scholar 

  127. Metcalf, T. U. et al. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J. Immunol. 199, 1405–1417 (2017).

    CAS  PubMed  Google Scholar 

  128. Bowe, B., Xie, Y., Xian, H., Li, T. & Al-Aly, Z. Association between monocyte count and risk of incident CKD and Progression to ESRD. Clin. J. Am. Soc. Nephrol. 12, 603–613 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Merino, A. et al. Effect of different dialysis modalities on microinflammatory status and endothelial damage. Clin. J. Am. Soc. Nephrol. 5, 227–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Rogers, N. M., Ferenbach, D. A., Isenberg, J. S., Thomson, A. W. & Hughes, J. Dendritic cells and macrophages in the kidney: a spectrum of good and evil. Nat. Rev. Nephrol. 10, 625–643 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. George, J. F., Lever, J. M. & Agarwal, A. Mononuclear phagocyte subpopulations in the mouse kidney. Am. J. Physiol. Renal Physiol. 312, F640–F646 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Yatim, K. M., Gosto, M., Humar, R., Williams, A. L. & Oberbarnscheidt, M. H. Renal dendritic cells sample blood-borne antigen and guide T-cell migration to the kidney by means of intravascular processes. Kidney Int. 90, 818–827 (2016).

    CAS  PubMed  Google Scholar 

  133. Stamatiades, E. G. et al. Immune monitoring of trans-endothelial transport by kidney-resident macrophages. Cell 166, 991–1003 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Chalmers, S. A. et al. Macrophage depletion ameliorates nephritis induced by pathogenic antibodies. J. Autoimmun. 57, 42–52 (2015).

    CAS  PubMed  Google Scholar 

  135. Sharp, P. E. et al. FcgammaRIIb on myeloid cells and intrinsic renal cells rather than B cells protects from nephrotoxic nephritis. J. Immunol. 190, 340–348 (2013).

    CAS  PubMed  Google Scholar 

  136. Sawai, C. M. et al. Hematopoietic stem cells are the major source of multilineage hematopoiesis in adult animals. Immunity 45, 597–609 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  140. Ridker, P. M. et al. Inhibition of interleukin-1beta by Canakinumab and cardiovascular outcomes in patients with chronic kidney disease. J. Am. Coll. Cardiol. 71, 2405–2414 (2018).

    CAS  PubMed  Google Scholar 

  141. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  142. Sheng, J., Ruedl, C. & Karjalainen, K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43, 382–393 (2015).

    CAS  PubMed  Google Scholar 

  143. Lever, J. M. et al. Resident macrophages reprogram toward a developmental state after acute kidney injury. JCI Insight 4, 125503 (2019).

    PubMed  Google Scholar 

  144. Lin, S. L., Castano, A. P., Nowlin, B. T., Lupher, M. L. Jr. & Duffield, J. S. Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J. Immunol. 183, 6733–6743 (2009).

    CAS  PubMed  Google Scholar 

  145. Heine, G. H. et al. Monocyte subpopulations and cardiovascular risk in chronic kidney disease. Nat. Rev. Nephrol. 8, 362–369 (2012).

    CAS  PubMed  Google Scholar 

  146. Ferenbach, D. A. et al. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int. 82, 928–933 (2012).

    CAS  PubMed  Google Scholar 

  147. Guilliams, M. & Scott, C. L. Does niche competition determine the origin of tissue-resident macrophages? Nat. Rev. Immunol. 17, 451–460 (2017).

    CAS  PubMed  Google Scholar 

  148. Berry, M. R. et al. Renal sodium gradient orchestrates a dynamic antibacterial defense zone. Cell 170, 860–874.e819 (2017).

    CAS  PubMed  Google Scholar 

  149. Lin, S. L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Huen, S. C. et al. GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J. Am. Soc. Nephrol. 26, 1334–1345 (2015).

    CAS  PubMed  Google Scholar 

  151. Rodwell, G. E. et al. A transcriptional profile of aging in the human kidney. PLOS Biol 2, e427 (2004).

    PubMed  PubMed Central  Google Scholar 

  152. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    CAS  PubMed  Google Scholar 

  153. Anders, H. J. Of inflammasomes and alarmins: IL-1beta and IL-1alpha in kidney disease. J. Am. Soc. Nephrol. 27, 2564–2575 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and ‘Garb-aging’. Trends Endocrinol. Metab. 28, 199–212 (2017).

    CAS  PubMed  Google Scholar 

  155. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    CAS  PubMed  Google Scholar 

  158. Furman, D. et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat. Med. 23, 174–184 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Youm, Y. H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell. Metab. 18, 519–532 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Youm, Y. H. et al. The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat. Med. 21, 263–269 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Ridker, P. M., Rifai, N., Rose, L., Buring, J. E. & Cook, N. R. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N. Engl. J. Med. 347, 1557–1565 (2002).

    CAS  PubMed  Google Scholar 

  162. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Shigeoka, A. A. et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J. Immunol. 185, 6277–6285 (2010).

    CAS  PubMed  Google Scholar 

  164. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J. Clin. Invest. 123, 236–246 (2013).

    CAS  PubMed  Google Scholar 

  166. Ludwig-Portugall, I. et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int. 90, 525–539 (2016).

    CAS  PubMed  Google Scholar 

  167. Lau, A. et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J. Clin. Invest. 128, 2894–2913 (2018).

    PubMed  PubMed Central  Google Scholar 

  168. Leaf, I. A. et al. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Invest. 127, 321–334 (2017).

    PubMed  Google Scholar 

  169. Lemos, D. R. et al. Interleukin-1beta activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 29, 1690–1705 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).

    CAS  PubMed  Google Scholar 

  171. Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

    CAS  PubMed  Google Scholar 

  172. Surana, N. K. & Kasper, D. L. Deciphering the tete-a-tete between the microbiota and the immune system. J. Clin. Invest. 124, 4197–4203 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Gordon, H. A. Morphological and physiological characterization of germfree life. Ann. N. Y. Acad. Sci. 78, 208–220 (1959).

    CAS  PubMed  Google Scholar 

  174. Hill, D. A. et al. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 3, 148–158 (2010).

    CAS  PubMed  Google Scholar 

  175. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kurts, C., Panzer, U., Anders, H. J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    CAS  PubMed  Google Scholar 

  177. Couser, W. G. Basic and translational concepts of immune-mediated glomerular diseases. J. Am. Soc. Nephrol. 23, 381–399 (2012).

    CAS  PubMed  Google Scholar 

  178. Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Natl Acad. Sci. USA 105, 10871–10876 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Baeyens, A., Fang, V., Chen, C. & Schwab, S. R. Exit strategies: S1P signaling and T cell migration. Trends Immunol. 36, 778–787 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Disteldorf, E. M. et al. CXCL5 drives neutrophil recruitment in TH17-mediated GN. J. Am. Soc. Nephrol. 26, 55–66 (2015).

    CAS  PubMed  Google Scholar 

  182. Wilck, N. et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551, 585–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Madhur, M. S. et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55, 500–507 (2010).

    CAS  PubMed  Google Scholar 

  184. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Norlander, A. E. et al. A salt-sensing kinase in T lymphocytes, SGK1, drives hypertension and hypertensive end-organ damage. JCI Insight 2, 92801 (2017).

    Google Scholar 

  186. Caillon, A. et al. Gammadelta T cells mediate angiotensin II-induced hypertension and vascular injury. Circulation 135, 2155–2162 (2017).

    CAS  PubMed  Google Scholar 

  187. Norlander, A. E., Madhur, M. S. & Harrison, D. G. The immunology of hypertension. J. Exp. Med. 215, 21–33 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

    CAS  PubMed  Google Scholar 

  189. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    CAS  PubMed  Google Scholar 

  190. Anders, H. J., Andersen, K. & Stecher, B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 83, 1010–1016 (2013).

    CAS  PubMed  Google Scholar 

  191. Ramezani, A. et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am. J. Kidney Dis. 67, 483–498 (2016).

    CAS  PubMed  Google Scholar 

  192. Emal, D. et al. Depletion of gut microbiota protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 28, 1450–1461 (2017).

    CAS  PubMed  Google Scholar 

  193. Andrade-Oliveira, V. et al. Gut bacteria products prevent aki induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26, 1877–1888 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Nakade, Y. et al. Gut microbiota-derived D-serine protects against acute kidney injury. JCI Insight 3, 97957 (2018).

    Google Scholar 

  195. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Yoshida, K. et al. The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat. Immunol. 16, 1034–1043 (2015).

    CAS  PubMed  Google Scholar 

  197. Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    PubMed  PubMed Central  Google Scholar 

  198. Lau, C. M. & Sun, J. C. The widening spectrum of immunological memory. Curr. Opin. Immunol. 54, 42–49 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223–232 (2012).

    CAS  PubMed  Google Scholar 

  201. Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e12 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Kaufmann, E. et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell 172, 176–190.e19 (2018).

    CAS  PubMed  Google Scholar 

  203. Wendeln, A. C. et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556, 332−338 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Chambers, M. C. & Schneider, D. S. Pioneering immunology: insect style. Curr. Opin. Immunol. 24, 10–14 (2012).

    CAS  PubMed  Google Scholar 

  205. Welsh, R. M., Che, J. W., Brehm, M. A. & Selin, L. K. Heterologous immunity between viruses. Immunol. Rev. 235, 244–266 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Bistoni, F. et al. Evidence for macrophage-mediated protection against lethal Candida albicans infection. Infect. Immun. 51, 668–674 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Aaby, P., Kollmann, T. R. & Benn, C. S. Nonspecific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges. Nat. Immunol. 15, 895–899 (2014).

    CAS  PubMed  Google Scholar 

  208. Rule, A. D. et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann. Intern. Med. 152, 561–567 (2010).

    PubMed  PubMed Central  Google Scholar 

  209. Kremers, W. K. et al. Distinguishing age-related from disease-related glomerulosclerosis on kidney biopsy: the Aging Kidney Anatomy study. Nephrol. Dial. Transplant. 30, 2034–2039 (2015).

    PubMed  PubMed Central  Google Scholar 

  210. Hommos, M. S. et al. Global glomerulosclerosis with nephrotic syndrome; the clinical importance of age adjustment. Kidney Int. 93, 1175–1182 (2017).

    PubMed  PubMed Central  Google Scholar 

  211. Kimura, T. et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J. Am. Soc. Nephrol. 22, 902–913 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Nathan, C. & Ding, A. Nonresolving inflammation. Cell 140, 871–882 (2010).

    CAS  PubMed  Google Scholar 

  214. Sturmlechner, I., Durik, M., Sieben, C. J., Baker, D. J. & van Deursen, J. M. Cellular senescence in renal ageing and disease. Nat. Rev. Nephrol. 13, 77–89 (2017).

    CAS  PubMed  Google Scholar 

  215. Krishnamurthy, J. et al. Ink4a/Arf expression is a biomarker of aging. J. Clin. Invest. 114, 1299–1307 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

    CAS  PubMed  Google Scholar 

  217. de Keizer, P. L. The fountain of youth by targeting senescent cells? Trends Mol. Med. 23, 6–17 (2017).

    PubMed  Google Scholar 

  218. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell. Biol. 28, 436–453 (2018).

    CAS  PubMed  Google Scholar 

  219. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147 (2017). e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Jin, H. et al. Epithelial innate immunity mediates tubular cell senescence after kidney injury. JCI Insight 4, 125490 (2019).

    PubMed  Google Scholar 

  222. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Sato, Y. & Yanagita, M. Resident fibroblasts in the kidney: a major driver of fibrosis and inflammation. Inflamm. Regen. 37, 17 (2017).

    PubMed  PubMed Central  Google Scholar 

  226. Huang, Y. et al. Identification of novel genes associated with renal tertiary lymphoid organ formation in aging mice. PLOS ONE 9, e91850 (2014).

    PubMed  PubMed Central  Google Scholar 

  227. Steinmetz, O. M. et al. Analysis and classification of B-cell infiltrates in lupus and ANCA-associated nephritis. Kidney Int. 74, 448–457 (2008).

    CAS  PubMed  Google Scholar 

  228. Lech, M. & Anders, H. J. The pathogenesis of lupus nephritis. J. Am. Soc. Nephrol. 24, 1357–1366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Hwang, J. Y., Randall, T. D. & Silva-Sanchez, A. Inducible bronchus-associated lymphoid tissue: taming inflammation in the lung. Front. Immunol. 7, 258 (2016).

    PubMed  PubMed Central  Google Scholar 

  230. Kivity, S., Agmon-Levin, N., Blank, M. & Shoenfeld, Y. Infections and autoimmunity-friends or foes? Trends Immunol. 30, 409–414 (2009).

    CAS  PubMed  Google Scholar 

  231. Simmons, E. M. et al. Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation 79, 914–919 (2005).

    CAS  PubMed  Google Scholar 

  232. Betjes, M. G., Huisman, M., Weimar, W. & Litjens, N. H. Expansion of cytolytic CD4+CD28- T cells in end-stage renal disease. Kidney Int. 74, 760–767 (2008).

    CAS  PubMed  Google Scholar 

  233. Ulrich, C., Heine, G. H., Gerhart, M. K., Kohler, H. & Girndt, M. Proinflammatory CD14+CD16+ monocytes are associated with subclinical atherosclerosis in renal transplant patients. Am. J. Transplant. 8, 103–110 (2008).

    CAS  PubMed  Google Scholar 

  234. Leins, H. et al. Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood 132, 565–576 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Johnson, S. C., Rabinovitch, P. S. & Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 493, 338–345 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Chen, C., Liu, Y., Liu, Y. & Zheng, P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75 (2009).

    PubMed  PubMed Central  Google Scholar 

  237. Mannick, J. B. et al. mTOR inhibition improves immune function in the elderly. Sci. Transl Med. 6, 268ra179 (2014).

    PubMed  Google Scholar 

  238. Mannick, J. B. et al. TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci. Transl Med. 10, eaaq1564 (2018).

    Google Scholar 

  239. Fourati, S. et al. Pre-vaccination inflammation and B-cell signalling predict age-related hyporesponse to hepatitis B vaccination. Nat. Commun. 7, 10369 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Fukushima, Y., Minato, N. & Hattori, M. The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm. Regen. 38, 24 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work is supported by the Japan Agency for Medical Research and Development (AMED) under Grant Numbers JP18gm5010002 and JP18gm0610011; as well as grants from the TMK Project, KAKENHI Grant-in-Aid for Scientific Research B (17H04187), Grant-in-Aid for Young Scientists (B) from the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid on Innovative Areas (17H05642, 18H04673), Grant-in-Aid for Exploratory Research (17K19677), the Translational Research Program, and the Strategic Promotion for Practical Application of Innovative Medical Technology (TR-SPRINT) from AMED, and grants from the Uehara Memorial Foundation, Takeda Science Foundation, Yukiko Ishibashi Foundation and the Sumitomo Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of article preparation.

Corresponding authors

Correspondence to Yuki Sato or Motoko Yanagita.

Ethics declarations

Competing interests

Y.S. is employed by the TMK Project. M.Y. receives research grants from Astellas, Chugai, Daiichi Sankyo, Fujiyakuhin, Kyowa Hakko Kirin, Mitsubishi Tanabe, MSD, Nippon Boehringer Ingelheim and Torii.

Additional information

Peer review information

Nature Reviews Nephrology thanks M. Attanasio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Replicative senescence

Senescence that occurs as a result of repeated cell division, which is accompanied by gradual telomere shortening.

Premature senescence

Senescence that occurs as a result of various stress stimuli such as DNA damage, oxidative stress and oncogenic insults.

Induction therapy

Short-term intensive immunosuppressive therapy administered in the perioperative period to reduce the risk of acute allograft rejection.

Sarcopenia

Degenerative loss of skeletal muscle strength and mass with ageing.

Kaede mice

Transgenic mice that ubiquitously express the photoconvertible Kaede protein, which permanently changes its fluorescence emission from green to red on photoactivation with near-UV light.

Heterologous immunity

Previous immunity to one pathogen can alter the outcome of a subsequent infection with a different pathogen by modulating the immune response.

Exhausted T cells

T cells with impaired effector functions such as cytokine production and cytotoxicity due to chronic antigen stimulation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Yanagita, M. Immunology of the ageing kidney. Nat Rev Nephrol 15, 625–640 (2019). https://doi.org/10.1038/s41581-019-0185-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-019-0185-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing