Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Estimated GFR: time for a critical appraisal

An Author Correction to this article was published on 18 December 2018

This article has been updated

Abstract

Since 1957, over 70 equations based on creatinine and/or cystatin C levels have been developed to estimate glomerular filtration rate (GFR). However, whether these equations accurately reflect renal function is debated. In this Perspectives article, we discuss >70 studies that compared estimated GFR (eGFR) with measured GFR (mGFR), involving ~40,000 renal transplant recipients and patients with chronic kidney disease (CKD), type 2 diabetes mellitus or polycystic kidney disease. Their results show that eGFR often differed from mGFR by ±30% or more, that eGFR values incorrectly staged CKD in 30–60% of patients, and that eGFR and mGFR gave different rates of GFR decline. Errors were unpredictable, and comparable for equations based on creatinine and/or cystatin C. We argue, therefore, that the persistence of these errors (despite intensive research) suggests that the problem lies with using creatinine and/or cystatin C as markers of renal function, rather than with the mathematical methods used for GFR estimation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between serum levels of creatinine or serum cystatin C and measured glomerular filtration rate in patients with and without renal disease.
Fig. 2: Relationship between serum creatinine level and measured glomerular filtration rate.
Fig. 3: The clinical relevance of margins of error in parameters used to assess agreement between estimated and measured glomerular filtration rates.

Similar content being viewed by others

Change history

  • 18 December 2018

    In the version of this article originally published online, the middle initials of Aiko P. J. de Vries, an author on the manuscript, were omitted. The omission has been corrected in the PDF and HTML versions of the article.

References

  1. Perrone, R. D., Madias, N. E. & Levey, A. S. Serum creatinine as an index of renal function: new insights into old concepts. Clin. Chem. 38, 1933–1953 (1992).

    CAS  PubMed  Google Scholar 

  2. Kaji, D., Strauss, I. & Kahn, T. Serum creatinine in patients with spinal cord injury. Mt. Sinai J. Med. 57, 160–164 (1990).

    CAS  PubMed  Google Scholar 

  3. Rule, A. D. et al. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann. Intern. Med. 141, 929–937 (2004).

    CAS  PubMed  Google Scholar 

  4. Levey, A. S. et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 150, 604–612 (2009).

    PubMed  PubMed Central  Google Scholar 

  5. Björk, J. et al. Prediction of relative glomerular filtration rate in adults: new improved equations based on Swedish Caucasians and standardized plasma-creatinine assays. Scand. J. Clin. Lab. Invest. 67, 678–695 (2007).

    PubMed  Google Scholar 

  6. Björk, J., Grubb, A., Sterner, G. & Nyman, U. Revised equations for estimating glomerular filtration rate based on the Lund–Malmö Study cohort. Scand. J. Clin. Lab. Invest. 71, 232–239 (2011).

    PubMed  Google Scholar 

  7. Effersøe, P. Relationship between endogenous 24-hour creatinine clearance and serum creatinine concentration in patients with chronic renal disease. Acta Med. Scand. 156, 429–434 (1957).

    PubMed  Google Scholar 

  8. Edwards, K. D. & Whyte, H. M. Plasma creatinine level and creatinine clearance as tests of renal function. Australas. Ann. Med. 8, 218–224 (1959).

    CAS  PubMed  Google Scholar 

  9. Jelliffe, R. W. Estimation of creatinine clearance when urine cannot be collected. Lancet 1, 975–976 (1971).

    CAS  PubMed  Google Scholar 

  10. Mawer, G. E., Lucas, S. B., Knowles, B. R. & Stirland, R. M. Computer-assisted prescribing of kanamycin for patients with renal insufficiency. Lancet 1, 12–15 (1972).

    CAS  PubMed  Google Scholar 

  11. Jelliffe, R. W. Letter: creatinine clearance: bedside estimate. Ann. Intern. Med. 79, 604–605 (1973).

    CAS  PubMed  Google Scholar 

  12. Cockcroft, D. W. & Gault, M. H. Prediction of creatinine clearance from serum creatinine. Nephron 16, 31–41 (1976).

    CAS  PubMed  Google Scholar 

  13. Levey, A. S., Greene, T., Kusek, J. W. & Beck, G. J. A simplified equation to predict glomerular filtration rate from serum creatinine [abstract]. J. Am. Soc. Nephrol. 11, 115A (2000).

    Google Scholar 

  14. Pottel, H. et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transplant. 31, 798–806 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Grubb, A., Simonsen, O., Sturfelt, G., Truedsson, L. & Thysell, H. Serum concentration of cystatin C, factor D and β2-microglobulin as a measure of glomerular filtration rate. Acta Med. Scand. 218, 499–503 (1985).

    CAS  PubMed  Google Scholar 

  16. Ma, Y. C. et al. Improved GFR estimation by combined creatinine and cystatin C measurements. Kidney Int. 72, 1535–1542 (2007).

    CAS  PubMed  Google Scholar 

  17. Stevens, L. A. et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am. J. Kidney Dis. 51, 395–406 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schaeffner, E. S. et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann. Intern. Med. 157, 471–481 (2012).

    PubMed  Google Scholar 

  20. Feng, J. F. et al. Multicenter study of creatinine- and/or cystatin C-based equations for estimation of glomerular filtration rates in Chinese patients with chronic kidney disease. PLOS ONE 8, e57240 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pottel, H. et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol. Dial. Transplant. 32, 497–507 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Björk, J. et al. Comparison of glomerular filtration rate estimating equations derived from creatinine and cystatin C: validation in the age, gene/environment susceptibility-Reykjavik elderly cohort. Nephrol. Dial. Transplant. 33, 1380–1388 (2018).

    PubMed  Google Scholar 

  23. Inker, L. A. et al. GFR estimation using β-trace protein and β2-microglobulin in CKD. Am. J. Kidney Dis. 67, 40–48 (2016).

    CAS  PubMed  Google Scholar 

  24. Nankivell, B. J., Gruenewald, S. M., Allen, R. D. & Chapman, J. R. Predicting glomerular filtration rate after kidney transplantation. Transplantation 59, 1683–1689 (1995).

    CAS  PubMed  Google Scholar 

  25. Ibrahim, H. et al. An alternative formula to the Cockcroft–Gault and the modification of diet in renal diseases formulas in predicting GFR in individuals with type 1 diabetes. J. Am. Soc. Nephrol. 16, 1051–1060 (2005).

    PubMed  Google Scholar 

  26. MacIsaac, R. J. et al. Estimating glomerular filtration rate in diabetes: a comparison of cystatin-C and creatinine-based methods. Diabetologia 49, 1686–1689 (2006).

    CAS  PubMed  Google Scholar 

  27. Lewis, J. et al. Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am. J. Kidney Dis. 38, 744–753 (2001).

    CAS  PubMed  Google Scholar 

  28. Xie, P., Huang, J. M., Li, Y., Liu, H. J. & Qu, Y. The modified CKD-EPI equation may be not more accurate than CKD-EPI equation in determining glomerular filtration rate in Chinese patients with chronic kidney disease. J. Nephrol. 30, 397–402 (2017).

    PubMed  Google Scholar 

  29. Yang, M. et al. Performance of the creatinine and cystatin C-based equations for estimation of GFR in Chinese patients with chronic kidney disease. Clin. Exp. Nephrol. 21, 236–246 (2017).

    CAS  PubMed  Google Scholar 

  30. Changjie, G. et al. Evaluation of glomerular filtration rate by different equations in Chinese elderly with chronic kidney disease. Int. Urol. Nephrol. 49, 133–141 (2017).

    PubMed  Google Scholar 

  31. Guo, X. et al. Improved glomerular filtration rate estimation using new equations combined with standardized cystatin C and creatinine in Chinese adult chronic kidney disease patients. Clin. Biochem. 47, 1220–1226 (2014).

    CAS  PubMed  Google Scholar 

  32. Li, J. T. et al. Relative performance of two equations for estimation of glomerular filtration rate in a Chinese population having chronic kidney disease. Chin. Med. J. 125, 599–603 (2012).

    CAS  PubMed  Google Scholar 

  33. Liu, X. et al. Comparison of prediction equations to estimate glomerular filtration rate in Chinese patients with chronic kidney disease. Intern. Med. J. 42, e59–e67 (2012).

    CAS  PubMed  Google Scholar 

  34. Matsuo, S. et al. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 53, 982–992 (2009).

    CAS  PubMed  Google Scholar 

  35. Praditpornsilpa, K. et al. The need for robust validation for MDRD-based glomerular filtration rate estimation in various CKD populations. Nephrol. Dial. Transplant. 26, 2780–2785 (2011).

    PubMed  Google Scholar 

  36. Grubb, A. et al. Generation of a new cystatin C-based estimating equation for glomerular filtration rate by use of 7 assays standardized to the international calibrator. Clin. Chem. 60, 974–986 (2014).

    CAS  PubMed  Google Scholar 

  37. MacIsaac, R. J. et al. The Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) equation does not improve the underestimation of glomerular filtration rate (GFR) in people with diabetes and preserved renal function. BMC Nephrol. 16, 198 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Rossing, P., Rossing, K., Gaede, P., Pedersen, O. & Parving, H. H. Monitoring kidney function in type 2 diabetic patients with incipient and overt diabetic nephropathy. Diabetes Care 29, 1024–1030 (2006).

    PubMed  Google Scholar 

  39. Fontsere, N. et al. Are prediction equations for glomerular filtration rate useful for the long-term monitoring of type 2 diabetic patients? Nephrol. Dial. Transplant. 21, 2152–2158 (2006).

    PubMed  Google Scholar 

  40. Mariat, C. et al. Assessing renal graft function in clinical trials: can tests predicting glomerular filtration rate substitute for a reference method? Kidney Int. 65, 289–297 (2004).

    CAS  PubMed  Google Scholar 

  41. Mariat, C. et al. Predicting glomerular filtration rate in kidney transplantation: are the K/DOQI guidelines applicable? Am. J. Transplant. 5, 2698–2703 (2005).

    PubMed  Google Scholar 

  42. Bosma, R. J., Doorenbos, C. R., Stegeman, C. A., van der Heide, J. J. & Navis, G. Predictive performance of renal function equations in renal transplant recipients: an analysis of patient factors in bias. Am. J. Transplant. 5, 2193–2203 (2005).

    PubMed  Google Scholar 

  43. Gaspari, F. et al. Performance of different prediction equations for estimating renal function in kidney transplantation. Am. J. Transplant. 4, 1826–1835 (2004).

    PubMed  Google Scholar 

  44. Ruggenenti, P. et al. Measuring and estimating GFR and treatment effect in ADPKD patients: results and implications of a longitudinal cohort study. PLOS ONE 7, e32533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gaspari, F. et al. The GFR and GFR decline cannot be accurately estimated in type 2 diabetics. Kidney Int. 84, 164–173 (2013).

    CAS  PubMed  Google Scholar 

  46. Iliadis, F. et al. Glomerular filtration rate estimation in patients with type 2 diabetes: creatinine- or cystatin C-based equations? Diabetologia 54, 2987–2994 (2011).

    CAS  PubMed  Google Scholar 

  47. Shemesh, O., Golbetz, H., Kriss, J. P. & Myers, B. D. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 28, 830–838 (1985).

    CAS  PubMed  Google Scholar 

  48. Laterza, O. F., Price, C. P. & Scott, M. G. Cystatin C: an improved estimator of glomerular filtration rate? Clin. Chem. 48, 699–707 (2002).

    CAS  PubMed  Google Scholar 

  49. Crim, M. C., Calloway, D. H. & Margen, S. Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J. Nutr. 105, 428–438 (1975).

    CAS  PubMed  Google Scholar 

  50. Heymsfield, S. B., Arteaga, C., McManus, C., Smith, J. & Moffitt, S. Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. Am. J. Clin. Nutr. 37, 478–494 (1983).

    CAS  PubMed  Google Scholar 

  51. Bleiler, R. E. & Schedl, H. P. Creatinine excretion: variability and relationships to diet and body size. J. Lab. Clin. Med. 59, 945–955 (1962).

    CAS  PubMed  Google Scholar 

  52. Irving, R. A., Noakes, T. D., Irving, G. A. & Van Zyl-Smit, R. The immediate and delayed effects of marathon running on renal function. J. Urol. 136, 1176–1180 (1986).

    CAS  PubMed  Google Scholar 

  53. Rennie, M. J. et al. Effect of exercise on protein turnover in man. Clin. Sci. 61, 627–639 (1981).

    CAS  Google Scholar 

  54. Horber, F. F., Scheidegger, J. & Frey, F. J. Overestimation of renal function in glucocorticosteroid treated patients. Eur. J. Clin. Pharmacol. 28, 537–541 (1985).

    CAS  PubMed  Google Scholar 

  55. Friedman, R. B., Anderson, R. E., Entine, S. M. & Hirshberg, S. B. Effects of diseases on clinical laboratory tests. Clin. Chem. 26, 1D–476D (1980).

    CAS  PubMed  Google Scholar 

  56. Miller, B. F., Leaf, A., Mamby, A. R. & Miller, Z. Validity of the endogenous creatinine clearance as a measure of glomerular filtration rate in the diseased human kidney. J. Clin. Invest. 31, 309–313 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Baldwin, D. S., Sirota, J. H. & Villarreal, H. Diurnal variations of renal function in congestive heart failure. Proc. Soc. Exp. Biol. Med. 74, 578–581 (1950).

    CAS  PubMed  Google Scholar 

  58. Chesley, L. C. Renal excretion at low urine volumes and the mechanism of oliguria. J. Clin. Invest. 17, 591–597 (1938).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jones, J. D. & Burnett, P. C. Creatinine metabolism in humans with decreased renal function: creatinine deficit. Clin. Chem. 20, 1204–1212 (1974).

    CAS  PubMed  Google Scholar 

  60. Mitch, W. E., Collier, V. U. & Walser, M. Creatinine metabolism in chronic renal failure. Clin. Sci. 58, 327–335 (1980).

    CAS  Google Scholar 

  61. Miller, W. G. et al. Creatinine measurement: state of the art in accuracy and interlaboratory harmonization. Arch. Pathol. Lab. Med. 129, 297–304 (2005).

    CAS  PubMed  Google Scholar 

  62. Panteghini, M. Enzymatic assays for creatinine: time for action. Clin. Chem. Lab. Med. 46, 567–572 (2008).

    CAS  PubMed  Google Scholar 

  63. Peake, M. & Whiting, M. Measurement of serum creatinine — current status and future goals. Clin. Biochem. Rev. 27, 173–184 (2006).

    PubMed  PubMed Central  Google Scholar 

  64. Myers, G. L. et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin. Chem. 52, 5–18 (2006).

    CAS  PubMed  Google Scholar 

  65. Delanaye, P., Cavalier, E., Depas, G., Chapelle, J. P. & Krzesinski, J. M. New data on the intraindividual variation of cystatin C. Nephron. Clin. Pract. 108, c246–c248 (2008).

    CAS  PubMed  Google Scholar 

  66. Abrahamson, M. et al. Structure and expression of the human cystatin C gene. Biochem. J. 268, 287–294 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Grubb, A. Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin. Nephrol. 38 (Suppl. 1), S20–S27 (1992).

    CAS  PubMed  Google Scholar 

  68. de Vries, A. P. & Rabelink, T. J. A possible role of cystatin C in adipose tissue homeostasis may impact kidney function estimation in metabolic syndrome. Nephrol. Dial. Transplant. 28, 1628–1630 (2013).

    PubMed  Google Scholar 

  69. Delanaye, P. et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 1: how to measure glomerular filtration rate with iohexol? Clin. Kidney J. 9, 682–699 (2016).

    CAS  Google Scholar 

  70. Delanaye, P. et al. Iohexol plasma clearance for measuring glomerular filtration rate in clinical practice and research: a review. Part 2: why to measure glomerular filtration rate with iohexol? Clin. Kidney J. 9, 700–704 (2016).

    CAS  Google Scholar 

  71. Chantler, C. & Barratt, T. M. Estimation of glomerular filtration rate from plasma clearance of 51-chromium edetic acid. Arch. Dis. Child. 47, 613–617 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Brochner-Mortensen, J. & Rodbro, P. Selection of routine method for determination of glomerular filtration rate in adult patients. Scand. J. Clin. Lab. Invest. 36, 35–43 (1976).

    CAS  PubMed  Google Scholar 

  73. Hall, P. M. & Rolin, H. Iothalamate clearance and its use in large-scale clinical trials. Curr. Opin. Nephrol. Hypertens. 4, 510–513 (1995).

    CAS  PubMed  Google Scholar 

  74. Equalis. External quality assessment (EQA) schemes: Iohexol (024). equalis https://www.equalis.se/en/products-and-services/external-quality-assessment-eqa/eqa-schemes/g-l/iohexol-024/ (2014).

  75. Lin, L., Hedayat, A. & Wu, W. Statistical Tools for Measuring Agreement (Springer Science+Business Media, 2012).

  76. Lin, L. I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268 (1989).

    CAS  PubMed  Google Scholar 

  77. Lin, L., Hedayat, A., Sinha, B. & Yang, M. Statistical methods in assessing agreement: models, issues, and tools. J. Am. Stat. Assoc. 97, 257–270 (2002).

    Google Scholar 

  78. Bland, J. M. & Altman, D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307–310 (1986).

    CAS  PubMed  Google Scholar 

  79. Luis-Lima, S. et al. Estimated glomerular filtration rate in renal transplantation: the nephrologist in the mist. Transplantation 99, 2625–2633 (2015).

    PubMed  Google Scholar 

  80. Ahlstrom, M. G., Kjaer, A., Gerstoft, J. & Obel, N. Agreement between estimated and measured renal function in an everyday clinical outpatient setting of human immunodeficiency virus-infected individuals. Nephron 136, 318–327 (2017).

    PubMed  Google Scholar 

  81. Selistre, L. et al. Comparison of the Schwartz and CKD-EPI equations for estimating glomerular filtration rate in children, adolescents, and adults: a retrospective cross-sectional study. PLOS Med. 13, e1001979 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Fan, L. et al. Glomerular filtration rate estimation using cystatin C alone or combined with creatinine as a confirmatory test. Nephrol. Dial. Transplant. 29, 1195–1203 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Evans, M. et al. Glomerular filtration rate-estimating equations for patients with advanced chronic kidney disease. Nephrol. Dial. Transplant. 28, 2518–2526 (2013).

    PubMed  Google Scholar 

  84. van Deventer, H. E., Paiker, J. E., Katz, I. J. & George, J. A. A comparison of cystatin C and creatinine-based prediction equations for the estimation of glomerular filtration rate in black South Africans. Nephrol. Dial. Transplant. 26, 1553–1558 (2011).

    PubMed  Google Scholar 

  85. Stevens, L. A. et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J. Am. Soc. Nephrol. 18, 2749–2757 (2007).

    PubMed  Google Scholar 

  86. Murata, K. et al. Relative performance of the MDRD and CKD-EPI equations for estimating glomerular filtration rate among patients with varied clinical presentations. Clin. J. Am. Soc. Nephrol. 6, 1963–1972 (2011).

    PubMed  PubMed Central  Google Scholar 

  87. Froissart, M., Rossert, J., Jacquot, C., Paillard, M. & Houillier, P. Predictive performance of the modification of diet in renal disease and Cockcroft–Gault equations for estimating renal function. J. Am. Soc. Nephrol. 16, 763–773 (2005).

    PubMed  Google Scholar 

  88. Hojs, R., Bevc, S., Ekart, R., Gorenjak, M. & Puklavec, L. Kidney function estimating equations in patients with chronic kidney disease. Int. J. Clin. Pract. 65, 458–464 (2011).

    CAS  PubMed  Google Scholar 

  89. Wang, X. et al. Validation of creatinine-based estimates of GFR when evaluating risk factors in longitudinal studies of kidney disease. J. Am. Soc. Nephrol. 17, 2900–2909 (2006).

    CAS  PubMed  Google Scholar 

  90. Xie, D. et al. A comparison of change in measured and estimated glomerular filtration rate in patients with nondiabetic kidney disease. Clin. J. Am. Soc. Nephrol. 3, 1332–1338 (2008).

    PubMed  PubMed Central  Google Scholar 

  91. Padala, S. et al. Accuracy of a GFR estimating equation over time in people with a wide range of kidney function. Am. J. Kidney Dis. 60, 217–224 (2012).

    PubMed  PubMed Central  Google Scholar 

  92. Lee, D., Levin, A., Roger, S. D. & McMahon, L. P. Longitudinal analysis of performance of estimated glomerular filtration rate as renal function declines in chronic kidney disease. Nephrol. Dial. Transplant. 24, 109–116 (2009).

    PubMed  Google Scholar 

  93. Hossain, F., Kendrick-Jones, J., Ma, T. M. & Marshall, M. R. The estimation of glomerular filtration rate in an Australian and New Zealand cohort. Nephrology (Carlton) 17, 285–293 (2012).

    CAS  Google Scholar 

  94. Ebert, N. et al. Cystatin C standardization decreases assay variation and improves assessment of glomerular filtration rate. Clin. Chim. Acta 456, 115–121 (2016).

    CAS  PubMed  Google Scholar 

  95. Poggio, E. D., Wang, X., Greene, T., Van Lente, F. & Hall, P. M. Performance of the modification of diet in renal disease and Cockcroft–Gault equations in the estimation of GFR in health and in chronic kidney disease. J. Am. Soc. Nephrol. 16, 459–466 (2005).

    PubMed  Google Scholar 

  96. Bevc, S., Hojs, R., Ekart, R., Gorenjak, M. & Puklavec, L. Simple cystatin C formula compared to serum creatinine-based formulas for estimation of glomerular filtration rate in patients with mildly to moderately impaired kidney function. Kidney Blood Press. Res. 35, 649–654 (2012).

    CAS  PubMed  Google Scholar 

  97. Bevc, S., Hojs, R., Ekart, R., Gorenjak, M. & Puklavec, L. Simple cystatin C formula compared to sophisticated CKD-EPI formulas for estimation of glomerular filtration rate in the elderly. Ther. Apher. Dial. 15, 261–268 (2011).

    PubMed  Google Scholar 

  98. Hojs, R., Bevc, S., Ekart, R., Gorenjak, M. & Puklavec, L. Serum cystatin C as an endogenous marker of renal function in patients with mild to moderate impairment of kidney function. Nephrol. Dial. Transplant. 21, 1855–1862 (2006).

    CAS  PubMed  Google Scholar 

  99. Barroso, S., Martinez, J. M., Martin, M. V., Rayo, I. & Caravaca, F. Accuracy of indirect estimates of renal function in advanced chronic renal failure patients. Nefrologia 26, 344–350 (2006).

    CAS  PubMed  Google Scholar 

  100. Lopes, M. B. et al. Estimation of glomerular filtration rate from serum creatinine and cystatin C in octogenarians and nonagenarians. BMC Nephrol. 14, 265 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Brown, M. A. et al. Inaccuracies in estimated glomerular filtration rate in one Australian renal centre. Nephrology (Carlton) 16, 486–494 (2011).

    Google Scholar 

  102. Li, H. X., Xu, G. B., Wang, X. J., Zhang, X. C. & Yang, J. M. Diagnostic accuracy of various glomerular filtration rates estimating equations in patients with chronic kidney disease and diabetes. Chin. Med. J. 123, 745–751 (2010).

    CAS  PubMed  Google Scholar 

  103. El-Minshawy, O. M. & El-Bassuoni, E. Validation of El-Minia equation for estimation of glomerular filtration rate in different stages of chronic kidney disease. Iran. J. Kidney Dis. 6, 262–268 (2012).

    PubMed  Google Scholar 

  104. Tent, H. et al. Performance of MDRD study and CKD-EPI equations for long-term follow-up of nondiabetic patients with chronic kidney disease. Nephrol. Dial. Transplant. 27 (Suppl. 3), 89–95 (2012).

    Google Scholar 

  105. Methven, S., Gasparini, A., Carrero, J. J., Caskey, F. J. & Evans, M. Routinely measured iohexol glomerular filtration rate versus creatinine-based estimated glomerular filtration rate as predictors of mortality in patients with advanced chronic kidney disease: a Swedish Chronic Kidney Disease Registry cohort study. Nephrol. Dial. Transplant. 32 (Suppl. 2), 170–179 (2017).

    Google Scholar 

  106. Gaspari, F. et al. Glomerular filtration rate determined from a single plasma sample after intravenous iohexol injection: is it reliable? J. Am. Soc. Nephrol. 7, 2689–2693 (1996).

    CAS  PubMed  Google Scholar 

  107. Ku, E. et al. Change in measured GFR versus eGFR and CKD outcomes. J. Am. Soc. Nephrol. 27, 2196–2204 (2016).

    CAS  PubMed  Google Scholar 

  108. Maple-Brown, L. J. et al. Performance of formulas for estimating glomerular filtration rate in indigenous Australians with and without type 2 diabetes: the eGFR Study. Diabet. Med. 31, 829–838 (2014).

    CAS  PubMed  Google Scholar 

  109. Rigalleau, V. et al. A simplified Cockcroft–Gault formula to improve the prediction of the glomerular filtration rate in diabetic patients. Diabetes Metab. 32, 56–62 (2006).

    CAS  PubMed  Google Scholar 

  110. Wood, A. J. et al. Estimating glomerular filtration rate: performance of the CKD-EPI equation over time in patients with type 2 diabetes. J. Diabetes Complications 30, 49–54 (2016).

    Google Scholar 

  111. Beauvieux, M. C. et al. New predictive equations improve monitoring of kidney function in patients with diabetes. Diabetes Care 30, 1988–1994 (2007).

    PubMed  Google Scholar 

  112. Silveiro, S. P. et al. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation pronouncedly underestimates glomerular filtration rate in type 2 diabetes. Diabetes Care 34, 2353–2355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Perkins, B. A. et al. Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. J. Am. Soc. Nephrol. 16, 1404–1412 (2005).

    PubMed  Google Scholar 

  114. Bjornstad, P., Cherney, D. Z. & Maahs, D. M. Update on estimation of kidney function in diabetic kidney disease. Curr. Diab. Rep. 15, 57 (2015).

    PubMed  PubMed Central  Google Scholar 

  115. Masson, I. et al. MDRD versus CKD-EPI equation to estimate glomerular filtration rate in kidney transplant recipients. Transplantation 95, 1211–1217 (2013).

    PubMed  Google Scholar 

  116. Masson, I. et al. GFR estimation using standardized cystatin C in kidney transplant recipients. Am. J. Kidney Dis. 61, 279–284 (2013).

    CAS  PubMed  Google Scholar 

  117. Gera, M. et al. Assessment of changes in kidney allograft function using creatinine-based estimates of glomerular filtration rate. Am. J. Transplant. 7, 880–887 (2007).

    CAS  PubMed  Google Scholar 

  118. Fauvel, J. P., Hadj-Aissa, A., Buron, F., Morelon, E. & Ducher, M. Performance of estimated glomerular filtration rates to monitor change in renal function in kidney transplant recipients. Nephrol. Dial. Transplant. 28, 3096–3100 (2013).

    CAS  PubMed  Google Scholar 

  119. Hossain, M. A., Attia, A. & Shoker, A. Measurement error in estimated GFR slopes across transplant chronic kidney disease stages. Am. J. Nephrol. 31, 151–159 (2010).

    PubMed  Google Scholar 

  120. Buron, F. et al. Estimating glomerular filtration rate in kidney transplant recipients: performance over time of four creatinine-based formulas. Transplantation 92, 1005–1011 (2011).

    CAS  PubMed  Google Scholar 

  121. Attia, A., Zahran, A. & Shoker, A. Comparison of equations to estimate the glomerular filtration rate in post-renal transplant chronic kidney disease patients. Saudi J. Kidney Dis. Transpl. 23, 453–460 (2012).

    PubMed  Google Scholar 

  122. Goerdt, P. J., Heim-Duthoy, K. L., Macres, M. & Swan, S. K. Predictive performance of renal function estimate equations in renal allografts. Br. J. Clin. Pharmacol. 44, 261–265 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Harzallah, K. et al. Creatinine clearance estimation after kidney transplantation: an analysis of three methods. Transplant. Proc. 39, 2571–2573 (2007).

    CAS  PubMed  Google Scholar 

  124. Kukla, A. et al. GFR-estimating models in kidney transplant recipients on a steroid-free regimen. Nephrol. Dial. Transplant. 25, 1653–1661 (2010).

    PubMed  PubMed Central  Google Scholar 

  125. Maillard, N. et al. Cystatin C-based equations in renal transplantation: moving toward a better glomerular filtration rate prediction? Transplantation 85, 1855–1858 (2008).

    CAS  PubMed  Google Scholar 

  126. Poge, U. et al. MDRD equations for estimation of GFR in renal transplant recipients. Am. J. Transplant. 5, 1306–1311 (2005).

    PubMed  Google Scholar 

  127. Poge, U. et al. Cystatin C-based calculation of glomerular filtration rate in kidney transplant recipients. Kidney Int. 70, 204–210 (2006).

    CAS  PubMed  Google Scholar 

  128. Poge, U., Gerhardt, T., Stoffel-Wagner, B., Sauerbruch, T. & Woitas, R. P. Validation of the CKD-EPI formula in patients after renal transplantation. Nephrol. Dial. Transplant. 26, 4104–4108 (2011).

    PubMed  Google Scholar 

  129. Poggio, E. D. et al. Assessing glomerular filtration rate by estimation equations in kidney transplant recipients. Am. J. Transplant. 6, 100–108 (2006).

    CAS  PubMed  Google Scholar 

  130. Raju, D. L., Grover, V. K. & Shoker, A. Limitations of glomerular filtration rate equations in the renal transplant patient. Clin. Transplant. 19, 259–268 (2005).

    PubMed  Google Scholar 

  131. Risch, L. & Huber, A. R. Assessing glomerular filtration rate in renal transplant recipients by estimates derived from serum measurements of creatinine and cystatin C. Clin. Chim. Acta 356, 204–211 (2005).

    CAS  PubMed  Google Scholar 

  132. White, C. et al. Estimating glomerular filtration rate in kidney transplantation: a comparison between serum creatinine and cystatin C-based methods. J. Am. Soc. Nephrol. 16, 3763–3770 (2005).

    CAS  PubMed  Google Scholar 

  133. White, C. et al. Chronic kidney disease stage in renal transplantation classification using cystatin C and creatinine-based equations. Nephrol. Dial. Transplant. 22, 3013–3020 (2007).

    CAS  PubMed  Google Scholar 

  134. Yeo, Y. et al. Suitability of the IDMS-traceable MDRD equation method to estimate GFR in early postoperative renal transplant recipients. Nephron Clin. Pract. 114, c108–c117 (2010).

    CAS  PubMed  Google Scholar 

  135. Zahran, A., Qureshi, M. & Shoker, A. Comparison between creatinine and cystatin C-based GFR equations in renal transplantation. Nephrol. Dial. Transplant. 22, 2659–2668 (2007).

    CAS  PubMed  Google Scholar 

  136. Orskov, B. et al. Estimating glomerular filtration rate using the new CKD-EPI equation and other equations in patients with autosomal dominant polycystic kidney disease. Am. J. Nephrol. 31, 53–57 (2010).

    PubMed  Google Scholar 

  137. Spithoven, E. M. et al. Tubular secretion of creatinine in autosomal dominant polycystic kidney disease: consequences for cross-sectional and longitudinal performance of kidney function estimating equations. Am. J. Kidney Dis. 62, 531–540 (2013).

    CAS  PubMed  Google Scholar 

  138. [No authors listed.] Chapter 2: definition, identification, and prediction of CKD progression. Kidney Int. Suppl. 3, 63–72 (2013).

  139. Caroli, A. et al. Effect of longacting somatostatin analogue on kidney and cyst growth in autosomal dominant polycystic kidney disease (ALADIN): a randomised, placebo-controlled, multicentre trial. Lancet 382, 1485–1495 (2013).

    CAS  PubMed  Google Scholar 

  140. European Medicines Agency. Guideline on the clinical investigation of medicinal products to prevent development/slow progression of chronic renal insufficiency. EMA http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/10/WC500214980.pdf (2016).

  141. British Transplantation Society. Guidelines for living donor kidney transplantation. BTS https://bts.org.uk/wp-content/uploads/2018/07/FINAL_LDKT-guidelines_June-2018.pdf (2018).

  142. The Renal Association. Clinical practice guideline post-operative care in the kidney transplant recipient. renal https://renal.org/wp-content/uploads/2017/06/FINAL-Post-Operative-Care-Guideline.pdf (2017).

  143. Schaeffner, E. Determining the glomerular filtration rate — an overview. J. Ren. Nutr. 27, 375–380 (2017).

    PubMed  Google Scholar 

  144. Soveri, I. et al. Measuring GFR: a systematic review. Am. J. Kidney Dis. 64, 411–424 (2014).

    PubMed  Google Scholar 

  145. Gaspari, F. et al. Safety of iohexol administration to measure glomerular filtration rate in different patient populations: a 25-year experience. Nephron 140, 1–8 (2018).

    CAS  PubMed  Google Scholar 

  146. Sterner, G. et al. Determining ‘true’ glomerular filtration rate in healthy adults using infusion of inulin and comparing it with values obtained using other clearance techniques or prediction equations. Scand. J. Urol. Nephrol. 42, 278–285 (2008).

    CAS  PubMed  Google Scholar 

  147. Luis-Lima, S. et al. Iohexol plasma clearance simplified by dried blood spot testing. Nephrol. Dial. Transplant. 33, 1597–1603 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge research support from the DIABESITY working group of the ERA-EDTA, the IMBRAIN (CIBICAN) project (FP7-RE6-POT-2012-CT2012-31637-IMBRAIN) funded under the 7th Framework Programme (capacities); Instituto de Salud Carlos III (ISCIII) grants PI13/00342 and PI16/01814 to E.P. and A.T., REDINREN RD16/0009 and PI10/02428 grants to E.P. and A.T.; and funding from the IRSIN (Instituto Reina Sofia de Investigacion) and FEDER (both to A.T.). S.L.L. is a research fellow supported by ISCIII grant CM15/00214 for Río Hortega specialized health-care post-training contracts. E.P. is a researcher supported by the ISCIII Ramón y Cajal Programme and Fundación Caja Canarias grant DIAB05. The authors thank F. G. Rinne for preparation of the figures, N. N. Mena for performing the iohexol method in the Laboratory of Renal Function, and M. L. McLean for technical assistance.

Reviewer information

Nature Reviews Nephrology thanks E. Cavalier, L. Dubourg and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

E.P., F.C. and F.G. researched data for the article, made substantial contributions to discussions of its content, wrote the manuscript and reviewed or edited the manuscript before submission. P.R., A.d.V. and G.R. made substantial contributions to discussions of the article content, wrote the manuscript and reviewed or edited the manuscript before submission. S.L.-L. researched data for the article, contributed substantially to discussions of its content, and reviewed or edited the manuscript before submission. A.J. researched data for the article and contributed substantially to discussions of its content. A.T. substantially contributed to discussions of the article content.

Corresponding author

Correspondence to Esteban Porrini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Glossary

Accuracy

The degree of closeness of the determined value (in this case, estimated glomerular filtration rate) to the true value (measured glomerular filtration rate) under prescribed conditions. Accuracy is also sometimes termed trueness.

Bias

The difference between an estimated value (such as estimated glomerular filtration rate) and a true value (measured glomerular filtration rate), which is also termed error. A statistic is biased if it is calculated in such a way that it is systematically different from the parameter being estimated.

Coefficient of variation

The variation obtained when measurements are repeated under the same conditions. A low value indicates that the technique is both accurate and precise.

Precision

The closeness of agreement (that is, the degree of scatter) in a series of determinations (that is, estimated glomerular filtration rate values) obtained from multiple sampling of the same homogenous sample under the prescribed conditions.

Reproducibility

The precision of results compared between two laboratories. Reproducibility also refers to the precision of a particular method when used under the same operating conditions over a short period of time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porrini, E., Ruggenenti, P., Luis-Lima, S. et al. Estimated GFR: time for a critical appraisal. Nat Rev Nephrol 15, 177–190 (2019). https://doi.org/10.1038/s41581-018-0080-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0080-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing