Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protozoan persister-like cells and drug treatment failure

Abstract

Antimicrobial treatment failure threatens our ability to control infections. In addition to antimicrobial resistance, treatment failures are increasingly understood to derive from cells that survive drug treatment without selection of genetically heritable mutations. Parasitic protozoa, such as Plasmodium species that cause malaria, Toxoplasma gondii and kinetoplastid protozoa, including Trypanosoma cruzi and Leishmania spp., cause millions of deaths globally. These organisms can evolve drug resistance and they also exhibit phenotypic diversity, including the formation of quiescent or dormant forms that contribute to the establishment of long-term infections that are refractory to drug treatment, which we refer to as ‘persister-like cells’. In this Review, we discuss protozoan persister-like cells that have been linked to persistent infections and discuss their impact on therapeutic outcomes following drug treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Persister-like cell types of Plasmodium spp.
Fig. 2: Toxoplasma gondii tachyzoites and bradyzoites.
Fig. 3: Dormant amastigote forms of Trypanosoma cruzi.
Fig. 4: Leishmania life cycle showing impact of persisters.
Fig. 5: Metabolic changes in protozoan persisters.

Similar content being viewed by others

References

  1. O’Neill, J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. AMR https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (2014).

  2. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    CAS  PubMed  Google Scholar 

  3. Bigger, J. W. The bactericidal action of penicillin on Staphylococcus pyogenes. Irish J. Med. Sci. 19, 585–595 (1944).

    Google Scholar 

  4. Cohen, N. R., Lobritz, M. A. & Collins, J. J. Microbial persistence and the road to drug resistance. Cell Host Microbe 13, 632–642 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 (2007).

    CAS  PubMed  Google Scholar 

  6. Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017). This review summarizes knowledge of persister cells in bacteria.

    CAS  PubMed  Google Scholar 

  7. Michiels, J. E., Van den Bergh, B., Verstraeten, N. & Michiels, J. Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist. Updat. 29, 76–89 (2016).

    PubMed  Google Scholar 

  8. Van den Bergh, B., Fauvart, M. & Michiels, J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev. 41, 219–251 (2017).

    PubMed  Google Scholar 

  9. Srinivas, V., Arrieta-Ortiz, M., Peterson, E. L. R. & Baliga, N. S. Characterization and elimination of stochastically generated persister subpopulation in mycobacteria. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/463232v1 (2018).

  10. Delarze, E. & Sanglard, D. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist. Updat. 23, 12–19 (2015).

    PubMed  Google Scholar 

  11. Vera-Ramirez, L. & Hunter, K. W. Tumor cell dormancy as an adaptive cell stress response mechanism. F1000Res. 6, 2134 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Fairlamb, A. H., Gow, N. A., Matthews, K. R. & Waters, A. P. Drug resistance in eukaryotic microorganisms. Nat. Microbiol. 1, 16092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaye, P. & Scott, P. Leishmaniasis: complexity at the host-pathogen interface. Nat. Rev. Microbiol. 9, 604–615 (2011).

    CAS  PubMed  Google Scholar 

  14. Yam, X. Y. & Preiser, P. R. Host immune evasion strategies of malaria blood stage parasite. Mol. Biosyst. 13, 2498–2508 (2017).

    CAS  PubMed  Google Scholar 

  15. Cabral, D. J., Wurster, J. I. & Belenky, P. Antibiotic persistence as a metabolic adaptation: stress, metabolism, the host, and new directions. Pharmaceuticals 11, E14 (2018).

    PubMed  Google Scholar 

  16. Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology. Mol. Cell. 70, 768–784 (2018).

    CAS  PubMed  Google Scholar 

  17. Sanchez-Valdez, F. J., Padilla, A., Wang, W., Orr, D. & Tarleton, R. L. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. eLife 7, e34039 (2018). This is the first unequivocal demonstration of drug-resistant persister subpopulations in kinetoplastid parasites.

    PubMed  PubMed Central  Google Scholar 

  18. Mandell, M. A. & Beverley, S. M. Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc. Natl Acad. Sci. USA 114, E801–E810 (2017). This work reports the discovery of mixed populations of replicating and non-replicating subpopulations of L. major in persistent infections in mice.

    CAS  PubMed  Google Scholar 

  19. Ashley, E. A., Pyae Phyo, A. & Woodrow, C. J. Malaria. Lancet 391, 1608–1621 (2018).

    PubMed  Google Scholar 

  20. Holmes, M. J., Augusto, L. D. S., Zhang, M., Wek, R. C. & Sullivan, W. J. Jr. Translational control in the latency of apicomplexan parasites. Trends Parasitol. 33, 947–960 (2007).

    Google Scholar 

  21. Imwong, M. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J. Infect. Dis. 195, 927–933 (2007).

    CAS  PubMed  Google Scholar 

  22. Shanks, G. D. & White, N. J. The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect. Dis. 13, 900–906 (2013).

    PubMed  Google Scholar 

  23. Battle, K. E. et al. Geographical variation in Plasmodium vivax relapse. Malar. J. 13, 144 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Krotoski, W. A. et al. Observations on early and late post-sporozoite tissue stages in primate malaria. I. Discovery of a new latent form of Plasmodium cynomolgi (the hypnozoite), and failure to detect hepatic forms within the first 24 hours after infection. Am. J. Trop. Med. Hyg. 31, 24–35 (1982).

    CAS  PubMed  Google Scholar 

  25. Krotoski, W. A. et al. Observations on early and late post-sporozoite tissue stages in primate malaria. IV. Pre-erythrocytic schizonts and/or hypnozoites of Chesson and North Korean strains of Plasmodium vivax in the chimpanzee. Am. J. Trop. Med. Hyg. 35, 263–274 (1986).

    CAS  PubMed  Google Scholar 

  26. Dembele, L. et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat. Med. 20, 307–312 (2014). This work introduces a model for P. cynomolgi hypnozoite characterization in cultured hepatocytes.

    CAS  PubMed  Google Scholar 

  27. Gural, N. et al. In vitro culture, drug sensitivity, and transcriptome of Plasmodium vivax hypnozoites. Cell Host Microbe 23, 395–406 (2018). This work introduces a model for P. vivax hypnozoite characterization in cultured hepatocytes.

    CAS  PubMed  Google Scholar 

  28. Roth, A. et al. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat. Commun. 9, 1837 (2018). This work reports an in vitro hepatocyte system to allow screening for drugs against P. vivax hypnozoite and replicative liver stages and P. falciparum liver stages.

    PubMed  PubMed Central  Google Scholar 

  29. Voorberg-van der Wel, A. et al. A comparative transcriptomic analysis of replicating and dormant liver stages of the relapsing malaria parasite Plasmodium cynomolgi. eLife 6, e29605 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Bertschi, N. L. et al. Transcriptomic analysis reveals reduced transcriptional activity in the malaria parasite Plasmodium cynomolgi during progression into dormancy. eLife 7, e41081 (2018). In this work, transcriptomic analysis demonstrates progressive changes in metabolism as hypnozoite form.

    PubMed  PubMed Central  Google Scholar 

  31. Voorberg-van der Wel, A. et al. Transgenic fluorescent Plasmodium cynomolgi liver stages enable live imaging and purification of Malaria hypnozoite-forms. PLOS ONE 8, e54888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Maher, S. P. et al. Microphysical space of a liver sinusoid device enables simplified long-term maintenance of chimeric mouse-expanded human hepatocytes. Biomed. Microdevices 16, 727–736 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Mikolajczak, S. A. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 17, 526–535 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shaefer, C. et al. A recombinant antibody against Plasmodium vivax UIS4 for distinguishing replicating from dormant liver stages. Malar. J. 17, 370 (2018).

    Google Scholar 

  35. Dow, G. S. et al. Radical curative efficacy of tafenoquine combination regimens in Plasmodium cynomolgi-infected Rhesus monkeys (Macaca mulatta). Malar. J. 10, 212 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Alving, A. S. et al. Potentiation of the curative action of primaquine in vivax malaria by quinine and chloroquine. J. Lab. Clin. Med. 46, 301–306 (1955).

    CAS  PubMed  Google Scholar 

  37. Bennett, J. W. et al. Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N. Engl. J. Med. 369, 1381–1382 (2013).

    CAS  PubMed  Google Scholar 

  38. Pybus, B. S. et al. The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar. J. 12, 212 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Milner, E. E. et al. Cytochrome P450 2D-mediated metabolism is not necessary for tafenoquine and primaquine to eradicate the erythrocytic stages of Plasmodium berghei. Malar. J. 15, 588 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. Vuong, C. et al. Differential cytochrome P450 2D metabolism alters tafenoquine pharmacokinetics. Antimicrob. Agents Chemother. 59, 3864–3869 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Marcsisin, S. R. et al. Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds. Malar. J. 13, 2 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Baird, J. K., Battle, K. E. & Howes, R. E. Primaquine ineligibility in anti-relapse therapy of Plasmodium vivax malaria: the problem of G6PD deficiency and cytochrome P-450 2D6 polymorphisms. Malar. J. 17, 42 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. McNamara, C. W. et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature 504, 248–253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeeman, A. M. et al. PI4 kinase is a prophylactic but not radical curative target in Plasmodium vivax-type malaria parasites. Antimicrob. Agents Chemother. 60, 2858–2863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Teuscher, F., Chen, N., Kyle, D. E., Gatton, M. L. & Cheng, Q. Phenotypic changes in artemisinin-resistant Plasmodium falciparum lines in vitro: evidence for decreased sensitivity to dormancy and growth inhibition. Antimicrob. Agents Chemother. 56, 428–431 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nosten, F. Waking the sleeping beauty. J. Infect. Dis. 202, 1300–1301 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Tucker, M. S., Mutka, T., Sparks, K., Patel, J. & Kyle, D. E. Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob. Agents Chemother. 56, 302–314 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hott, A., Tucker, M. S., Casandra, D., Sparks, K. & Kyle, D. E. Fitness of artemisinin-resistant Plasmodium falciparum in vitro. J. Antimicrob. Chemother. 70, 2787–2796 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, N. et al. Fatty acid synthesis and pyruvate metabolism pathways remain active in dihydroartemisinin-induced dormant ring stages of Plasmodium falciparum. Antimicrob. Agents Chemother. 58, 4773–4781 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. Peatey, C. L. et al. A small subset of artemisinin induced dormant P. falciparum parasites maintain mitochondrial membrane potential and resume growth in vitro. J. Infect. Dis. 212, 426–434 (2015).

    CAS  PubMed  Google Scholar 

  51. Nakazawa, S., Kanbara, H. & Aikawa, M. Plasmodium falciparum: recrudescence of parasites in culture. Exp. Parasitol. 81, 556–563 (1995).

    CAS  PubMed  Google Scholar 

  52. Nakazawa, S., Maoka, T., Uemura, H., Ito, Y. & Kanbara, H. Malaria parasites giving rise to recrudescence in vitro. Antimicrob. Agents Chemother. 46, 958–965 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Babbitt, S. E. et al. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state. Proc. Natl Acad. Sci. USA 109, E3278–E3287 (2012).

    CAS  PubMed  Google Scholar 

  54. Painter, H. J. Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum. Antimicrob. Agents Chemother. 54, 5281–5287 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. van Biljon, R. et al. Inducing controlled cell cycle arrest and re-entry during asexual proliferation of Plasmodium falciparum malaria parasites. Sci. Rep. 8, 16581 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Ismail, H. M. et al. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc. Natl Acad. Sci. USA 113, 2080–2085 (2016).

    CAS  PubMed  Google Scholar 

  57. Wang, J. et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 6, 10111 (2018).

    Google Scholar 

  58. Bridgford, J. L. et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Commun. 9, 3801 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Noedl, H. et al. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

    CAS  PubMed  Google Scholar 

  60. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Witkowski, B. et al. Increased tolerance to artemisinin in Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob. Agents Chemother. 54, 1872–1877 (2010). In this study, after 3 years of selection in vitro, artemisinin-refractory P. falciparum is isolated and refractoriness is linked to ring-stage growth arrest.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014). This work reports the discovery of the link between Pfk13 mutations and artemisinin treatment failure in the field, which was shown to be related to ring-stage growth arrest.

    PubMed  Google Scholar 

  63. Witkowski, B. et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect. Dis. 13, 1043–1049 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Straimer, J. et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015).

    CAS  PubMed  Google Scholar 

  65. Tilley, L., Straimer, J., Gnädig, N. F., Ralph, S. A. & Fidock, D. A. Artemisinin action and resistance in Plasmodium falciparum. Trends Parasitol. 32, 682–696 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mbengue, A. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520, 683–687 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Heller, L. E. & Roepe, P. D. Quantification of free ferriprotoporphyrin IX heme and hemozoin for artemisinin sensitive versus delayed clearance phenotype Plasmodium falciparum malarial parasites. Biochemistry 57, 6927–6934 (2018).

    CAS  PubMed  Google Scholar 

  68. Demas, A. R. et al. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc. Natl Acad. Sci. USA 115, 12799–12804 (2018).

    CAS  PubMed  Google Scholar 

  69. Paloque, L., Ramadani, A. P., Mercereau-Puijalon, O., Augereau, J. M. & Benoit-Vical, F. Plasmodium falciparum: multifaceted resistance to artemisinins. Malar. J. 15, 149 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Teuscher, F. et al. Artemisinin-induced dormancy in Plasmodium falciparum: duration, recovery rates, and implications in treatment failure. J. Infect. Dis. 202, 1362–1368 (2010).

    PubMed  PubMed Central  Google Scholar 

  71. Dembele, L. et al. The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites. Sci. Rep. 7, 2325 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dembele, L. et al. Imidazolopiperazines kill both rings and dormant rings in wild-type and K13 artemisinin-resistant Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 62, e02235-17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. O’Neill, P. M. et al. A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance. Nat. Commun. 24, 15159 (2017).

    Google Scholar 

  74. Duvalsaint, M. & Kyle, D. E. Phytohormones, isoprenoids, and role of the apicoplast in recovery from dihydroartemisinin-induced dormancy of Plasmodium falciparum. Antimicrob. Agents Chemother. 62, e01771-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Zhang, M. et al. Inhibiting the Plasmodium eIF2alpha kinase PK4 prevents artemisinin-Induced latency. Cell Host Microbe. 22, 766–776 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, M. et al. The Plasmodium eukaryotic initiation factor-2alpha kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. J. Exp. Med. 207, 1465–1474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Dubey, J. P. Foodborne and waterborne zoonotic sarcocystosis. Food Water. Parasitol. 1, 2–11 (2015).

    Google Scholar 

  78. Seeber, F. & Steinfelder, S. Recent advances in understanding apicomplexan parasites. F1000Res. 5, 1369 (2016).

    Google Scholar 

  79. Dubey, J. P. Toxoplasmosis of Animals and Humans (CRC Press, 2010).

  80. Watts, E. et al. Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. mBio 6, e01155-15 (2015). This work demonstrates that bradyzoites are not dormant but rather that they replicate slowly and asynchronously within the tissue cyst.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hunter, C. A. & Sibley, L. D. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10, 766–778 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dubey, J. P. Bradyzoite-induced murine toxoplasmosis: stage conversion pathogenesis, and tissue cyst formation in mice fed bradyzoites of different strains of Toxoplasma gondii. J. Eukaryot. Microbiol. 44, 592–602 (1997).

    CAS  PubMed  Google Scholar 

  83. Israelski, D. M. & Remington, J. S. Toxoplasmosis in the non-AIDS immunocompromised host. Curr. Clin. Top. Infect. Dis. 13, 322–356 (1993).

    CAS  PubMed  Google Scholar 

  84. Mariuz, P. & Steigbigel, R. T. in Toxoplasmosis: A Comprehensive Clinical Guide (eds Joynson, D. H. M. & Wreghitt, T. G.) 147–177 (Cambridge Univ. Press, 2007).

  85. Dunay, I. R., Gajurel, K., Dhakal, R., Liesenfeld, O. & Montoya, J. G. Treatment of Toxoplasmosis: historical perspective, animal models, and current clinical practice. Clin. Microbiol. Rev. 31, e00057-17 (2018). This work provides a current summary of treatment options and limitations for toxoplasmosis.

    PubMed  Google Scholar 

  86. Behnke, M. S., Zhang, T. P., Dubey, J. P. & Sibley, L. D. Toxoplasma gondii merozoite gene expression analysis with comparison to the life cycle discloses a unique expression state during enteric development. BMC Genomics 15, 350 (2014).

    PubMed  PubMed Central  Google Scholar 

  87. Radke, J. R. et al. Changes in the expression of human cell division autoantigen-1 influence Toxoplasma gondii growth and development. PLOS Pathog. 2, e105 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. Behnke, M., Radke, J., Smith, A. T., Sullivan, W. J. & White, M. W. The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements. Mol. Microbiol. 68, 1502–1518 (2009).

    Google Scholar 

  89. Behnke, M. S. et al. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. PLOS ONE 5, e12354 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Radke, J. R. et al. The transcriptome of Toxoplasma gondii. BMC Biol. 3, 26 (2005).

    PubMed  PubMed Central  Google Scholar 

  91. Hong, D. P., Radke, J. B. & White, M. W. Opposing transcriptional mechanisms regulate Toxoplasma development. mSphere 2, e00347-16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang, S. et al. Toxoplasma gondii AP2IX-4 regulates gene expression during bradyzoite development. mSphere 2, e00054-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Radke, J. B. et al. ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. Proc. Natl Acad. Sci. USA 110, 6871–6876 (2013).

    CAS  PubMed  Google Scholar 

  94. Radke, J. B. et al. Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis. PLOS Pathog. 14, e1007035 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Walker, R. et al. The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Mol. Microbiol. 87, 641–655 (2013).

    CAS  PubMed  Google Scholar 

  96. Painter, H. J., Campbell, T. L. & Llinas, M. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol. Biochem. Parasitol. 176, 1–7 (2011).

    CAS  PubMed  Google Scholar 

  97. Sinha, A. et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yuda, M., Iwanaga, S., Shigenobu, S., Kato, T. & Kaneko, I. Transcription factor AP2-Sp and its target genes in malarial sporozoites. Mol. Microbiol. 75, 854–863 (2010).

    CAS  PubMed  Google Scholar 

  99. White, M. W., Radke, J. R. & Radke, J. B. Toxoplasma development — turn the switch on or off? Cell. Microbiol. 16, 466–472 (2014). This work summarizes how host and parasite-specific factors control stage differentiation of T. gondii.

    CAS  PubMed  Google Scholar 

  100. Fox, B. A., Gigley, J. P. & Bzik, D. J. Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation. Int. J. Parasitol. 34, 323–331 (2004).

    CAS  PubMed  Google Scholar 

  101. Soête, M., Camus, D. & Dubremetz, J. F. Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro. Exp. Parasitol. 78, 361–370 (1994).

    PubMed  Google Scholar 

  102. Bohne, W., Heesemann, J. & Gross, U. Reduced replication of Toxoplasma gondii is necessary for induction of bradyzoite-specific antigens: a possible role for nitric oxide in triggering stage conversion. Infect. Immun. 62, 1761–1767 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Ferreira-da-Silva Mda, F., Takács, A. C., Barbosa, H. S., Gross, U. & Lüder, C. G. Primary skeletal muscle cells trigger spontaneous Toxoplasma gondii tachyzoite-to-bradyzoite conversion at higher rates than fibroblasts. Int. J. Med. Microbiol. 229, 381–388 (2009).

    Google Scholar 

  104. Tanaka, N., Ashour, D., Dratz, E. & Halonen, S. Use of human induced pluripotent stem cell-derived neurons as a model for cerebral toxoplasmosis. Microbes Infect. 18, 496–504 (2016).

    CAS  PubMed  Google Scholar 

  105. Blader, I. J. & Saeij, J. P. Communication between Toxoplasma gondii and its host: impact on parasite growth, development, immune evasion, and virulence. APMIS 117, 458–476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Jeffers, V., Tampaki, Z., Kim, K. & Sullivan, W. J. Jr. A latent ability to persist: differentiation in Toxoplasma gondii. Cell. Mol. Life Sci. 75, 2355–2373 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Su, C. et al. Recent expansion of Toxoplasma through enhanced oral transmission. Science 299, 414–416 (2003).

    CAS  PubMed  Google Scholar 

  108. Dubey, J. P., Miller, N. L. & Frenkel, J. K. The Toxoplasma gondii oocyst from cat feces. J. Exp. Med. 132, 636–662 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Jones, J. L. & Dubey, J. P. Foodborne toxoplasmosis. Clin. Infect. Dis. 55, 864–851 (2012).

    Google Scholar 

  110. Torgerson, P. R. & Mastroiacovo, P. The global burden of congenital toxoplasmosis: a systematic review. Bull. World Health Organ. 91, 501–508 (2013).

    PubMed  PubMed Central  Google Scholar 

  111. Pfaff, A. W. et al. New clinical and experimental insights into old world and neotropical ocular toxoplasmosis. Int. J. Parasitol. 44, 99–107 (2013).

    PubMed  Google Scholar 

  112. Rutaganira, F. U. et al. Inhibition of calcium dependent protein kinase 1 (CDPK1) by pyrazolopyrimidine analogs decreases establishment and reoccurrence of central nervous system disease by Toxoplasma gondii. J. Med. Chem. 60, 9976–9989 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen, M., Osman, I. & Orlow, S. J. Antifolate activity of pyrimethamine enhances temozolomide-induced cytotoxicity in melanoma cells. Mol. Cancer Res. 7, 703–712 (2009).

    CAS  PubMed  Google Scholar 

  114. Tomita, T. et al. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. PLOS Pathog. 9, e1003823 (2013).

    PubMed  PubMed Central  Google Scholar 

  115. Lemgruber, L., Lupetti, P., Martins-Duarte, E. S., De Souza, W. & Vommaro, R. C. The organization of the wall filaments and characterization of the matrix structures of Toxoplasma gondii cyst form. Cell. Microbiol. 13, 1920–1932 (2011).

    CAS  PubMed  Google Scholar 

  116. Spalenka, J. et al. Discovery of new inhibitors of Toxoplasma gondii via the pathogen box. Antimicrob. Agents Chemother. 62, e01640-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  117. Adeyemi, O. S., Sugi, T., Han, Y. & Kato, K. Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents. Parasitol. Res. 117, 355–363 (2018).

    PubMed  Google Scholar 

  118. Benmerzouga, I. et al. Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis. Antimicrob. Agents Chemother. 59, 6939–6945 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Dittmar, A. J., Drozda, A. A. & Blader, I. J. Drug repurposing screening identifies novel compounds that effectively inhibit Toxoplasma gondii growth. mSphere 1, e00042-15 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Konrad, C., Queener, S. F., Wek, R. C. & Sullivan, W. J. Jr. Inhibitors of eIF2alpha dephosphorylation slow replication and stabilize latency in Toxoplasma gondii. Antimicrob. Agents Chemother. 57, 1815–1822 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Radke, J. B., Burrows, J. N., Goldberg, D. E. & Sibley, L. D. Evaluation of current and emerging antimalarial medicines for inhibition of Toxoplasma gondii growth in vitro. ACS Infect. Dis. 4, 1264–1274 (2018). This work evaluates the sensitivity of T. gondii to current drugs and advanced leads for malaria treatment.

    CAS  Google Scholar 

  122. McFadden, D. C., Tomavo, S., Berry, E. A. & Boothroyd, J. C. Characterization of cytochrome b from Toxoplasma gondii and Qo domain mutations as a mechanism of atovaquone-resistance. Mol. Biochem. Parasitol. 108, 1–12 (2000).

    CAS  PubMed  Google Scholar 

  123. Alday, P. H. et al. Genetic evidence for cytochrome b Qi site inhibition by 4(1H)-quinolone-3-diarylethers and antimycin in Toxoplasma gondii. Antimicrob. Agents Chemother. 61, e01866-16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Tekwani, B. L. & Walker, L. A. 8-Aminoquinolines: future role as antiprotozoal drugs. Curr. Opin. Infect. Dis. 19, 623–631 (2006).

    CAS  PubMed  Google Scholar 

  125. Pérez-Molina, J. A. & Molina, I. Chagas disease. Lancet 391, 82–94 (2017).

    PubMed  Google Scholar 

  126. Dumoulin, P. C. & Burleigh, B. A. Stress-induced proliferation and cell cycle plasticity of intracellular Trypanosoma cruzi Amastigotes. mBio 9, e00673-18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Francisco, A. F. et al. Biological factors that impinge on Chagas disease drug development. Parasitology 144, 1871–1880 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Lewis, M. D. et al. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell. Microbiol. 16, 1285–1300 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sosa Estani, S. et al. Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am. J. Trop. Med. Hyg. 59, 526–529 (1998).

    CAS  PubMed  Google Scholar 

  130. Viotti, R. et al. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann. Intern. Med. 144, 724–734 (2006). This work demonstrates in long-term follow-up studies the clinical benefits of treatment of chronic T. cruzi infection in humans.

    CAS  PubMed  Google Scholar 

  131. Bern, C. A new epoch in antitrypanosomal treatment for Chagas disease. J. Am. Coll. Cardiol. 69, 948–950 (2017).

    PubMed  Google Scholar 

  132. Weatherly, D. B., Peng, D. & Tarleton, R. L. Recombination-driven generation of the largest pathogen repository of antigen variants in the protozoan Trypanosoma cruzi. BMC Genomics 17, 729 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Bustamante, J. M. et al. New, combined, and reduced dosing treatment protocols cure Trypanosoma cruzi infection in mice. J. Infect. Dis. 209, 150–162 (2014).

    CAS  PubMed  Google Scholar 

  134. Alvarez, M. G. et al. Seronegative conversion after incomplete benznidazole treatment in chronic Chagas disease. Trans. R. Soc. Trop. Med. Hyg. 106, 636–638 (2012).

    CAS  PubMed  Google Scholar 

  135. MacLean, L. M. et al. Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas’ disease drug discovery. PLOS Negl. Trop. Dis. 12, e0006612 (2018).

    PubMed  PubMed Central  Google Scholar 

  136. Alvarez, M. G. et al. New scheme of intermittent benznidazole administration in patients chronically infected with Trypanosoma cruzi: a pilot short-term follow-up study with adult patients. Antimicrob. Agents Chemother. 60, 833–837 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilkinson, S. R., Taylor, M. C., Horn, D., Kelly, J. M. & Cheeseman, I. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc. Natl Acad. Sci. USA 105, 5022–5027 (2008).

    CAS  PubMed  Google Scholar 

  138. Burza, S., Croft, S. L. & Boelaert, M. Leishmaniasis. Lancet 392, 951–970 (2018).

    PubMed  Google Scholar 

  139. Sundar, S. & Chakravarty, J. Leishmaniasis: an update of current pharmacotherapy. Expert Opin. Pharmacother. 14, 53–63 (2013).

    CAS  PubMed  Google Scholar 

  140. Mukhopadhyay, D., Dalton, J. E., Kaye, P. M. & Chatterjee, M. Post kala-azar dermal leishmaniasis: an unresolved mystery. Trends Parasitol. 30, 65–74 (2014).

    PubMed  PubMed Central  Google Scholar 

  141. Marovich, M. A. et al. Leishmaniasis recidivans recurrence after 43 years: a clinical and immunologic report after successful treatment. Clin. Infect. Dis. 33, 1076–1079 (2001).

    CAS  PubMed  Google Scholar 

  142. Ponte-Sucre, A. et al. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLOS Negl. Trop. Dis. 11, e0006052 (2017).

    PubMed  PubMed Central  Google Scholar 

  143. Imamura, H. et al. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. eLife 5, e12613 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Carnielli, J. B. T. et al. A Leishmania infantum genetic marker associated with miltefosine treatment failure for visceral leishmaniasis. EBioMedicine 36, 83–91 (2018).

    PubMed  PubMed Central  Google Scholar 

  145. Pountain, A. W. et al. Genomic instability at the locus of sterol C24-methyltransferase promotes amphotericin B resistance in Leishmania parasites. PLOS Negl Trop. Dis. 13, e0007052 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Purkait, B. et al. Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob. Agents Chemother. 56, 1031–1041 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Kloehn, J., Saunders, E. C., O’Callaghan, S., Dagley, M. J. & McConville, M. J. Characterization of metabolically quiescent Leishmania parasites in murine lesions using heavy water labeling. PLOS Pathog. 11, e1004683 (2015). This work uses heavy water labelling incorporation into parasite biopolymers in vivo and reveals very slow net replication rates of L. mexicana populations in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Saunders, E. C. et al. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism. PLOS Pathog. 10, e1003888 (2014).

    PubMed  PubMed Central  Google Scholar 

  149. Jara, M. et al. Macromolecular biosynthetic parameters and metabolic profile in different life stages of Leishmania braziliensis: Amastigotes as a functionally less active stage. PLOS ONE 12, e0180532 (2017).

    PubMed  PubMed Central  Google Scholar 

  150. Tegazzini, D. et al. Replicative in vitro assay for drug discovery against Leishmania donovani. Antimicrob. Agents Chemother. 60, 3524–3532 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Wasunna, M. et al. Efficacy and safety of AmBisome in combination with sodium stibogluconate or miltefosine and miltefosine monotherapy for African visceral leishmaniasis: phase II randomized trial. PLOS Negl Trop. Dis. 14, e0004880 (2016).

    Google Scholar 

  152. Carter, N. S. et al. Adaptive responses to purine starvation in Leishmania donovani. Mol. Microbiol. 78, 92–107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Martin, J. L. et al. Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLOS Pathog. 10, e1003938 (2014). This work uses a proteomics and transcriptomics approach to probe changes in L. donovani non-proliferative promastigotes selected in purine-free medium.

    PubMed  PubMed Central  Google Scholar 

  154. Jara, M. et al. Tracking of quiescence in Leishmania by quantifying the expression of GFP in the ribosomal DNA locus. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/641290v1 (2019). This work reports the use of fluorescent dyes and GFP expression from the ribosomal locus, revealing mixed dividing versus non-dividing amastigote populations of L. mexicana and L. braziliensis in vitro and in vivo.

  155. Fox, B. A., Belperron, A. A. & Bzik, D. J. Negative selection of herpes simplex virus thymidine kinase in Toxoplasma gondii. Mol. Biochem. Parasitol. 116, 85–88 (2001).

    CAS  PubMed  Google Scholar 

  156. Merrick, C. J. Transfection with thymidine kinase permits bromodeoxyuridine labelling of DNA replication in the human malaria parasite Plasmodium falciparum. Malar. J. 14, 490 (2015).

    PubMed  PubMed Central  Google Scholar 

  157. Wells, T. N., Burrows, J. N. & Baird, J. K. Targeting the hypnozoite reservoir of Plasmodium vivax: the hidden obstacle to malaria elimination. Trends Parasitol. 26, 145–151 (2010).

    PubMed  Google Scholar 

  158. Handman, E. Leishmaniasis: current status of vaccine development. Clin. Microbiol. Rev. 14, 229–243 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.P.B. is funded by a Wellcome Trust core grant to the Wellcome Centre for Integrative Parasitology (104111/Z/14/Z). R.L.T. is supported by a US National Institutes of Health grant (R01 AI124692).

Author information

Authors and Affiliations

Authors

Contributions

M.P.B. researched data for article and provided substantial contribution to discussion of the content. M.P.B., D.E.K., L.D.S., J.B.R. and R.L.T wrote the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Michael P. Barrett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks P. Kaye, J. Kelly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Malaria Box and Pathogen Box compounds: https://www.pathogenbox.org/

Glossary

Persisters

A subpopulation of slow-growing or growth-arrested cells that have a decreased susceptibility to killing by normally effective cytotoxic agents. Persisters survive treatment with drugs because of their altered metabolism during a temporary state of quiescence and are genetically identical to other, drug-susceptible cells in the population. Persisters may arise stochastically or in response to environmental cues such as nutrient starvation.

Hypnozoite

A small dormant form of Plasmodium vivax and Plasmodium ovale (and Plasmodium cynomolgi in monkeys) that persists in host hepatocytes following infection of sporozoites.

Artemisinin

An antimalarial drug derived from the sweet wormwood plant, Artemisia annua. The structure comprises a sesquiterpene lactone containing an endoperoxide responsible for activity.

Tachyzoite

A rapidly growing intracellular form of Toxoplasma that divides asexually and undergoes successive rounds of lytic growth in a wide range of nucleated cells before being controlled by an efficient immune response. Cause of acute infection and disease manifestation in humans.

Bradyzoite

A persistent form of Toxoplasma found in tissue cysts, which are intracellular and commonly found in skeletal muscle and neurons in the brain. Cysts are not cleared by active immunity or drug therapy. Reactivation can lead to serious disease, especially in those with compromised immune function.

Amastigote

In Trypanosoma cruzi, an intracellular, replicative cell within the mammalian host cell cytoplasm (T. cruzi amastigotes reside in the cytoplasm of various host cell types but show preferential persistence in muscle and adipose tissues). In Leishmania, an intracellular form of Leishmania with a truncated flagellum that replicate in mammalian cells, including macrophages and dendritic cells, within the acidic phagolysosome compartment of these cells.

Sporozoite

In Plasmodium parasites, a form forming in mosquitoes, where it migrates to salivary glands and is injected during a blood meal. It migrates to the liver and invades hepatocytes. In Toxoplasma, an infectious form found in oocysts, the product of the sexual phase, which is shed into the environment and contaminates food and water, leading to transmission. The sporozoite persists in a semidormant state within the oocysts, surviving for many months in the environment.

Schizont

A multinucleated form of the Plasmodium parasite that forms through multiple nuclear divisions preceding cellular division to release merozoite forms. Can occur either in erythrocytes or before the erythrocytic cycle in hepatocytes.

Merozoites

Forms of Plasmodium parasites that emerge from liver cells after differentiation and invade red cells, where the asexual life cycle progression ultimately creates many more merozoites, which burst from infected red cells and invade new ones.

Trophozoite

A form in the Plasmodium parasite life cycle following the ring stage that consumes host haemoglobin before entering schizogony.

Haemolytic anaemia

Anaemia ensuing from lysis of red blood cells, for example due to oxidative stresses induced by primaquine in individuals that are deficient in glucose 6-phosphate dehydrogenase.

Trypomastigotes

In Trypanosoma cruzi, non-replicative, flagellated, extracellular cells that can invade host cells or be transmitted to reduviid vectors during a blood meal.

Promastigote

A form of Leishmania, with an anterior flagellum, that replicates within the midgut of the sandfly vector, which transmits these parasites. Several distinctive other forms exist in the sandfly vector too.

Ergosterol

Major sterol of the Leishmania plasma membrane, also found in fungi. Binds to amphotericin B.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrett, M.P., Kyle, D.E., Sibley, L.D. et al. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol 17, 607–620 (2019). https://doi.org/10.1038/s41579-019-0238-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0238-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing