Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

CRISPR–Cas in mobile genetic elements: counter-defence and beyond

Abstract

The principal function of CRISPR–Cas systems in archaea and bacteria is defence against mobile genetic elements (MGEs), including viruses, plasmids and transposons. However, the relationships between CRISPR–Cas and MGEs are far more complex. Several classes of MGE contributed to the origin and evolution of CRISPR–Cas, and, conversely, CRISPR–Cas systems and their components were recruited by various MGEs for functions that remain largely uncharacterized. In this Analysis article, we investigate and substantially expand the range of CRISPR–Cas components carried by MGEs. Three groups of Tn7-like transposable elements encode ‘minimal’ type I CRISPR–Cas derivatives capable of target recognition but not cleavage, and another group encodes an inactivated type V variant. These partially inactivated CRISPR–Cas variants might mediate guide RNA-dependent integration of the respective transposons. Numerous plasmids and some prophages encode type IV systems, with similar predicted properties, that appear to contribute to competition among plasmids and between plasmids and viruses. Many prokaryotic viruses also carry CRISPR mini-arrays, some of which recognize other viruses and are implicated in inter-virus conflicts, and solitary repeat units, which could inhibit host CRISPR–Cas systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolutionary relationships and gene fluxes between CRISPR–Cas systems and mobile genetic elements.
Fig. 2: Derived type I CRISPR–Cas systems in Tn7-like transposons.
Fig. 3: Type IV CRISPR–Cas systems in plasmids and prophages.
Fig. 4: Origins of spacers in CRISPR arrays from viruses and proviruses.
Fig. 5: CRISPR mini-arrays in Streptococcus thermophilus lytic bacteriophages.
Fig. 6: Proposed functions and mechanisms of virus-encoded CRISPR mini-arrays and solitary repeat units.

Similar content being viewed by others

References

  1. Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353, aad5147 (2016).

    Article  PubMed  Google Scholar 

  3. Barrangou, R. & Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2, 17092 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Jackson, S. A. et al. CRISPR-Cas: adapting to change. Science 356, eaal5056 (2017).

    Article  PubMed  Google Scholar 

  5. Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017). This article is the latest published overview of the CRISPR–Cas diversity, with an emphasis on Class 2 systems discovered through dedicated search efforts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garcia-Martinez, J., Maldonado, R. D., Guzman, N. M. & Mojica, F. J. M. The CRISPR conundrum: evolve and maybe die, or survive and risk stagnation. Microb. Cell 5, 262–268 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Classification and nomenclature of CRISPR-Cas systems: where from here? CRISPR J. https://doi.org/10.1089/crispr.2018.0033 (2018).

    Article  PubMed  Google Scholar 

  8. Faure, G., Makarova, K. S. & Koonin, E. V. CRISPR-Cas: complex functional networks and multiple roles beyond adaptive immunity. J. Mol. Biol. 431, 3–20 (2018).

    Article  PubMed  Google Scholar 

  9. Westra, E. R., Buckling, A. & Fineran, P. C. CRISPR-Cas systems: beyond adaptive immunity. Nat. Rev. Microbiol. 12, 317–326 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Shmakov, S. A., Makarova, K. S., Wolf, Y. I., Severinov, K. V. & Koonin, E. V. Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. Proc. Natl Acad. Sci. USA 115, E5307–E5316 (2018). This article presents systematic prediction and analysis of genes associated with various subsets of CRISPR–Cas systems. The results suggest substantial functional diversification of CRISPR–Cas, in particular, coupling with signal transduction, especially in type III systems.

    Article  CAS  PubMed  Google Scholar 

  11. Shah, S. A. et al. Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. RNA Biol. https://doi.org/10.1080/15476286.2018.1483685 (2018). This paper complements Shmakov et al. (2018) by providing systematic analysis of predicted accessory proteins associated with type III CRISPR–Cas systems.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Koonin, E. V. & Makarova, K. S. Mobile genetic elements and evolution of CRISPR-Cas systems: all the way there and back. Genome Biol. Evol 9, 2812–2825 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krupovic, M., Beguin, P. & Koonin, E. V. Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery. Curr. Opin. Microbiol. 38, 36–43 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krupovic, M., Makarova, K. S., Forterre, P., Prangishvili, D. & Koonin, E. V. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biol. 12, 36 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kazazian, H. H. Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Gueguen, E., Rousseau, P., Duval-Valentin, G. & Chandler, M. The transpososome: control of transposition at the level of catalysis. Trends Microbiol. 13, 543–549 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Peters, J. E. & Craig, N. L. Tn7: smarter than we thought. Nat. Rev. Mol. Cell Biol. 2, 806–814 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Fricker, A. D. & Peters, J. E. Vulnerabilities on the lagging-strand template: opportunities for mobile elements. Annu. Rev. Genet. 48, 167–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Nunez, J. K., Lee, A. S., Engelman, A. & Doudna, J. A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519, 193–198 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hudaiberdiev, S. et al. Phylogenomics of Cas4 family nucleases. BMC Evol. Biol. 17, 232 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017). This article presents a definitive description of the dedicated efforts on the discovery of diverse Class 2 CRISPR–Cas systems. The key finding is the identification of multiple variants assigned to subtype V-U that appear to have independently evolved from different groups of TnpB nucleases and are likely to be evolutionary intermediates on the path from TnpB to bona fide Class 2 CRISPR effectors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017). This article is the first description of derived CRISPR–Cas systems carried by Tn7-like transposons. A hypothetical mechanism for crRNA-guided transposition is proposed.

    Article  CAS  PubMed  Google Scholar 

  24. McDonald, N. D., Regmi, A., Morreale, D. P., Borowski, J. D. & Fidelma Boyd, E. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics 20, 105 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ozcan, A. et al. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Nat. Microbiol. 4, 89–96 (2019). This article presents the most thorough available characterization of the structure and biochemical activities of type IV CRISPR–Cas systems. The similarity of the effector complex structure to those of type I is demonstrated, suggesting that type IV is an extremely derived form of type I.

    Article  PubMed  Google Scholar 

  26. Maier, L. K., Dyall-Smith, M. & Marchfelder, A. The adaptive immune system of Haloferax volcanii. Life (Basel) 5, 521–537 (2015).

    Google Scholar 

  27. Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Naser, I. B. et al. Analysis of the CRISPR-Cas system in bacteriophages active on epidemic strains of Vibrio cholerae in Bangladesh. Sci. Rep. 7, 14880 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roberts, A. P. & Mullany, P. Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol. Rev. 35, 856–871 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Parks, A. R. et al. Transposition into replicating DNA occurs through interaction with the processivity factor. Cell 138, 685–695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 362, 839–842 (2018). This article is an experimental validation of the interference activity of three small type V effector proteins that are closely related to TnpB and some of the subtype V-U variants described in Shmakov et al. ( Nat. Rev. Microbiol. , 2017). Preferential activity against single-stranded DNA, as opposed to double-stranded DNA, as is the case for Cas12, is demonstrated. The corresponding CRISPR–Cas type systems are now classified as subtype V-F.

    Article  CAS  PubMed  Google Scholar 

  32. Yan, W. X. et al. Functionally diverse type V CRISPR-Cas systems. Science 363, 88–91 (2019). This work complements Harrington et al. (2018) by demonstrating the activity of a distinct V-U variant (reclassified subtype V-G) that unexpectedly shows strong preference for single-stranded RNA substrates.

    Article  CAS  PubMed  Google Scholar 

  33. He, S. et al. The IS200/IS605 family and “peel and paste” single-strand transposition mechanism. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MDNA3-0039-2014 (2015).

    Article  PubMed  Google Scholar 

  34. Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Choi, K. Y., Spencer, J. M. & Craig, N. L. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. Proc. Natl Acad. Sci. USA 111, E2858–E2865 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Peters, J. E. Tn7. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MDNA3-0010-2014 (2014).

    Article  PubMed  Google Scholar 

  37. Koonin, E. V. & Krupovic, M. Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat. Rev. Genet. 16, 184–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Nowacki, M., Shetty, K. & Landweber, L. F. RNA-mediated epigenetic programming of genome rearrangements. Annu. Rev. Genomics Hum. Genet. 12, 367–389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newire, E., Aydin, A., Juma, S., Enne, V. & Roberts, A. P. Identification of a type IV CRISPR-Cas system located exclusively on IncHI1B/ IncFIB plasmids in Enterobacteriaceae. Preprint at bioRxiv https://doi.org/10.1101/536375 (2019)

    Article  Google Scholar 

  40. Carroll, K. S. et al. A conserved mechanism for sulfonucleotide reduction. PLOS Biol. 3, e250 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  41. You, D., Wang, L., Yao, F., Zhou, X. & Deng, Z. A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces lividans. Biochemistry 46, 6126–6133 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 41, 4360–4377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Simon, N. C., Aktories, K. & Barbieri, J. T. Novel bacterial ADP-ribosylating toxins: structure and function. Nat. Rev. Microbiol. 12, 599–611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Shabbir, M. A. et al. Bacteria versus bacteriophages: parallel evolution of immune arsenals. Front. Microbiol. 7, 1292 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Villion, M. & Moineau, S. The double-edged sword of CRISPR-Cas systems. Cell Res. 23, 15–17 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Angermeyer, A., Das, M. M., Singh, D. V. & Seed, K. D. Analysis of 19 highly conserved Vibrio cholerae bacteriophages isolated from environmental and patient sources over a twelve-year period. Viruses 10, E299 (2018).

    Article  PubMed  Google Scholar 

  48. Al-Shayeb, B. et al. Clades of huge phage from across Earth’s ecosystems. Preprint at bioRxiv https://doi.org/10.1101/572362 (2019).

    Article  Google Scholar 

  49. Hooton, S. P., Brathwaite, K. J. & Connerton, I. F. The bacteriophage carrier state of Campylobacter jejuni features changes in host non-coding RNAs and the acquisition of new host-derived CRISPR spacer sequences. Front. Microbiol. 7, 355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hooton, S. P. & Connerton, I. F. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. Front. Microbiol. 5, 744 (2014).

    PubMed  Google Scholar 

  51. He, F. et al. Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat. Microbiol. 3, 461–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Koonin, E. V. & Makarova, K. S. Anti-CRISPRs on the march. Science 362, 156–157 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779–786 (2006).

    Article  PubMed  Google Scholar 

  54. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Garcia-Heredia, I. et al. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLOS ONE 7, e33802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Faure, G. et al. Comparative genomics and evolution of trans-activating RNAs in class 2 CRISPR-Cas systems. RNA Biol. https://doi.org/10.1080/15476286.2018.1493331 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 8, e01397-17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anderson, E. M. et al. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biotechnol. 211, 56–65 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Zheng, T. et al. Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence. Sci. Rep. 7, 40638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401–1412 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Leenay, R. T. et al. Identifying and visualizing functional PAM diversity across CRISPR-Cas systems. Mol. Cell 62, 137–147 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang, Y. et al. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 50, 488–503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Amitai, G. & Sorek, R. CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14, 67–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  65. Pawluk, A. et al. Naturally occurring off-switches for CRISPR-Cas9. Cell 167, 1829–1838 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Maxwell, K. L. The anti-CRISPR story: a battle for survival. Mol. Cell 68, 8–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Varble, A., Meaden, S., Barrangou, R., Westra, E. R. & Marraffini, L. A. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0400-2 (2019).

    Article  PubMed  Google Scholar 

  69. Koonin, E. V. & Krupovic, M. A movable defense. TheScientist https://www.the-scientist.com/features/a-movable-defense-36135 (2015).

  70. Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.F., S.A.S., K.S.M. and E.V.K. are supported by funds from the Intramural Research Program of the National Institutes of Health of the USA. S.A.S. was additionally supported by the Russian Foundation for Basic Research (research project 18-34-00012) and a systems biology fellowship from Philip Morris Sales and Marketing. J.E.P. was supported by the US Department of Agriculture National Institute of Food and Agriculture Hatch Project NYC-189438. D.R.C., W.X.Y. and D.A.S. are supported by Arbor Biotechnologies.

Reviewer information

Nature Reviews Microbiology thanks U. Gophna, and other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

G.F., S.A.S., W.X.Y., D.R.C., D.A.S., J.E.P., K.S.M. and E.V.K. researched the data for the article. G.F., W.X.Y., D.R.C., D.A.S., J.E.P., K.S.M. and E.V.K. substantially contributed to the discussion of the content. E.V.K. wrote the article. G.F., W.X.Y., D.R.C., D.A.S., J.E.P., K.S.M. and E.V.K. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Eugene V. Koonin.

Ethics declarations

Competing interests

D.R.C., W.X.Y. and D.A.S. are shareholders of Arbor Biotechnologies. All other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

CRISPR spacers

Unique sequences of 20–60 nucleotides inserted between the repeats in the CRISPR array and employed, as part of the CRISPR RNA, for targeting DNA molecules containing a homologous protospacer.

CRISPR array

A series of direct repeats in bacterial and archaeal genomes interspersed with spacers that are acquired primarily from mobile genetic element DNA.

crRNAs

Short RNAs, produced by processing of the primary transcript of a CRISPR array, that consists of a spacer and portions of the flanking repeats and functions as a guide to target DNA or RNA molecules containing cognate protospacers.

Mini-arrays

Minimal forms of a CRISPR array that consists of a proximal repeat, a spacer and a distal repeat, or, more commonly, a partial repeat; so far identified in virus and provirus genomes.

Solitary repeat units

(SRUs). Short sequences, so far identified in virus and provirus genomes, that are (nearly) identical to a repeat from a CRISPR array.

CRISPR adaptation module

A group of cas genes dedicated to the selection and insertion of new spacers into CRISPR arrays.

TnpB

A nuclease containing a RuvC-like domain that is encoded by numerous transposons (insertion sequences) although not required for transposition.

IS605-like transposons

A family of bacterial and archaeal insertion sequence elements that encode a distinct transposase (TnpA) and often a second nuclease (TnpB) that is also found in numerous non-autonomous IS605-like transposons lacking TnpA.

Tn7-like transposons

A derivative of Tn7 family transposons lacking some accessory genes involved in transposition and in some cases carrying derived CRISPR–Cas systems lacking the interference capacity.

CRISPR effector module

A suite of Cas proteins (Class 1 CRISPR–Cas systems) or a single large protein (Class 2 CRISPR–Cas systems) that are responsible for maturation of the CRISPR RNA and interference.

R-loops

Three-stranded structures that consist of a DNA–RNA hybrid and the displaced single-stranded DNA, formed during transcription and other processes including target recognition by CRISPR–Cas effector complexes (proteins).

Protospacer

A piece of DNA, typically from a mobile genetic element genome, that is inserted into a CRISPR array by the CRISPR adaptation complex, to become a spacer.

CysH enzymes

Enzymes of the adenosine 5′-phosphosulfate reductase family that reduce activated sulfate to sulfite; associated with many type IV CRISPR–Cas systems.

Exaptation

Co-option (recruitment) of a biological entity, such as a protein or DNA sequence, for a role that is distinct from its original function.

Anti-CRISPR proteins

Diverse proteins encoded by many bacterial and archaeal viruses that inhibit the host CRISPR–Cas systems, typically by binding and inactivating the effector complex (protein).

Transactivating RNAs

(tracrRNAs). RNA molecules encoded by all known type II CRISPR–Cas systems and some type V systems that consist of a sequence partially complementary to the corresponding repeat and a unique portion; co-folding of the tracrRNA with the pre-crRNA is essential for crRNA maturation and interference by the respective CRISPR–Cas systems.

Protospacer adjacent motif

(PAM). A short, two-to-three-nucleotide motif, the presence of which next to the protospacer sequence is essential for both adaptation and interference by most of the CRISPR–Cas systems; different PAM sequences are required by different CRISPR-Cas types and subtypes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faure, G., Shmakov, S.A., Yan, W.X. et al. CRISPR–Cas in mobile genetic elements: counter-defence and beyond. Nat Rev Microbiol 17, 513–525 (2019). https://doi.org/10.1038/s41579-019-0204-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0204-7

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology