Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

BIOFILMS

Towards a quantitative view of the global ubiquity of biofilms

Biofilms are a fundamental form of microbial life and occur in diverse environments, ranging from the mammalian gut to deep subsurface rocks. It is often claimed that most bacteria and archaea live in biofilms, but this claim awaits quantification. Recent updates on global microbial cell numbers prompt a revisiting of this question.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The relative contribution of biofilms to the global biomass and population of bacteria and archaea.

References

  1. Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0158-9 (2019).

    Article  PubMed  Google Scholar 

  2. Vert, M. et al. Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl. Chem. 84, 377–410 (2012).

    Article  CAS  Google Scholar 

  3. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  Google Scholar 

  4. Glasser, N. R., Kern, S. E. & Newman, D. K. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol. Microbiol. 92, 399–412 (2014).

    Article  CAS  Google Scholar 

  5. Costerton, J. W. et al. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464 (1987).

    Article  CAS  Google Scholar 

  6. Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).

    Article  CAS  Google Scholar 

  7. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    Article  CAS  Google Scholar 

  8. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 14, e1002533 (2016).

    Article  Google Scholar 

  9. Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Crockford, A. Fromm, I. K. Gal and M. Shamir for useful feedback on this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Milo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bar-On, Y.M., Milo, R. Towards a quantitative view of the global ubiquity of biofilms. Nat Rev Microbiol 17, 199–200 (2019). https://doi.org/10.1038/s41579-019-0162-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-019-0162-0

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology