Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug combinations: a strategy to extend the life of antibiotics in the 21st century

Abstract

Antimicrobial resistance threatens a resurgence of life-threatening bacterial infections and the potential demise of many aspects of modern medicine. Despite intensive drug discovery efforts, no new classes of antibiotics have been developed into new medicines for decades, in large part owing to the stringent chemical, biological and pharmacological requisites for effective antibiotic drugs. Combinations of antibiotics and of antibiotics with non-antibiotic activity-enhancing compounds offer a productive strategy to address the widespread emergence of antibiotic-resistant strains. In this Review, we outline a theoretical and practical framework for the development of effective antibiotic combinations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of synergistic antibiotic combinations.
Fig. 2: Identifying synergistic antibiotic combinations.
Fig. 3: Hybrid antibiotics.

Similar content being viewed by others

References

  1. Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    PubMed  Google Scholar 

  2. Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    CAS  PubMed  Google Scholar 

  3. Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6, 41–55 (2007). This article develops the concept that successful antibacterial agents countermand resistance by interdicting either multiple independent targets or targets composed of multiple interdependent subunits.

    CAS  PubMed  Google Scholar 

  4. van Miert, A. S. The sulfonamide-diaminopyrimidine story. J. Vet. Pharmacol. Ther. 17, 309–316 (1994).

    PubMed  Google Scholar 

  5. Davis, B. D. & Maas, W. K. Analysis of the biochemical mechanism of drug resistance in certain bacterial mutants. Proc. Natl Acad. Sci. USA 38, 775–785 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Pato, M. L. & Brown, G. M. Mechanisms of resistance of Escherichia coli to sulfonamides. Arch. Biochem. Biophys. 103, 443–448 (1963).

    CAS  PubMed  Google Scholar 

  7. Estrada, A., Wright, D. L. & Anderson, A. C. Antibacterial antifolates: from development through resistance to the next generation. Cold Spring Harb. Perspect. Med. 6, a028324 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Huovinen, P., Sundstrom, L., Swedberg, G. & Skold, O. Trimethoprim and sulfonamide resistance. Antimicrob. Agents Chemother. 39, 279–289 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012). This study uses a Bayesian computational approach to evolve new chemical ligands with multitarget properties, a number of which were experimentally validated.

    CAS  PubMed  Google Scholar 

  10. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690 (2008).

    CAS  PubMed  Google Scholar 

  11. Lewis, K. Antibiotics: recover the lost art of drug discovery. Nature 485, 439–440 (2012).

    CAS  PubMed  Google Scholar 

  12. Cook, D. et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    CAS  PubMed  Google Scholar 

  13. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    CAS  PubMed  Google Scholar 

  14. Wright, G. D. Opportunities for natural products in 21(st) century antibiotic discovery. Nat. Prod. Rep. 34, 694–701 (2017).

    CAS  PubMed  Google Scholar 

  15. Cox, G. et al. A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem. Biol. 24, 98–109 (2017).

    CAS  PubMed  Google Scholar 

  16. Covington, B. C., McLean, J. A. & Bachmann, B. O. Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat. Prod. Rep. 34, 6–24 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016). This paper reports an open-access database and tool suite for tandem mass spectrometry fingerprints of complex small-molecule fingerprints of extracts from natural-product producer organisms and ecosystems.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Challis, G. L. & Hopwood, D. A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl Acad. Sci. USA 100 (Suppl. 2), 14555–14561 (2003). This article develops the argument that synergism is a driving principle in the evolution of multiple secondary metabolite production.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Weiss, K., Parzefall, C. & Herzner, G. Multifaceted defense against antagonistic microbes in developing offspring of the parasitoid wasp Ampulex compressa (Hymenoptera, Ampulicidae). PLOS ONE 9, e98784 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Cihlar, T. & Fordyce, M. Current status and prospects of HIV treatment. Curr. Opin. Virol. 18, 50–56 (2016).

    CAS  PubMed  Google Scholar 

  21. Bayat Mokhtari, R. et al. Combination therapy in combating cancer. Oncotarget 8, 38022–38043 (2017).

    PubMed  Google Scholar 

  22. Huffman, M. D., Xavier, D. & Perel, P. Uses of polypills for cardiovascular disease and evidence to date. Lancet 389, 1055–1065 (2017).

    PubMed  Google Scholar 

  23. Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 71–109 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Moellering, R. C. Jr. Rationale for use of antimicrobial combinations. Am. J. Med. 75, 4–8 (1983).

    PubMed  Google Scholar 

  25. Jawetz, E., Gunnison, J. B. & Coleman, V. R. The combined action of penicillin with streptomycin or chloromycetin on enterococci in vitro. Science 111, 254–256 (1950).

    CAS  PubMed  Google Scholar 

  26. Rosen, W. Miracle Cure: The Creation of Antibiotics and the Birth of Modern Medicine (Viking, 2017).

  27. Jawetz, E., Gunnison, J. B., Bruff, J. B. & Coleman, V. R. Studies on antibiotic synergism and antagonism. Synergism among seven antibiotics against various bacteria in vitro. J. Bacteriol. 64, 29–39 (1952).

    CAS  PubMed Central  Google Scholar 

  28. Bushby, S. R. & Hitchings, G. H. Trimethoprim, a sulphonamide potentiator. Br. J. Pharmacol. Chemother. 33, 72–90 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kerantzas, C. A. & Jacobs, W. R. Jr. Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. mBio 8, e01586-16 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Noordeen, S. K. History of chemotherapy of leprosy. Clin. Dermatol. 34, 32–36 (2016).

    PubMed  Google Scholar 

  31. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).

    PubMed  Google Scholar 

  32. Tangden, T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Ups. J. Med. Sci. 119, 149–153 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Greco, W. R., Bravo, G. & Parsons, J. C. The search for synergy: a critical review from a response surface perspective. Pharmacol. Rev. 47, 331–385 (1995).

    CAS  PubMed  Google Scholar 

  34. Keith, C. T., Borisy, A. A. & Stockwell, B. R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005).

    CAS  PubMed  Google Scholar 

  35. Bush, K. Topics in Medicinal Chemistry: Antibacterials Vol. 1 (eds Fisher, J. F., Mobashery, S. & Miller, M. J.) 69–88 (Springer, 2017).

  36. Odds, F. C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52, 1 (2003).

    CAS  PubMed  Google Scholar 

  37. Baeder, D. Y., Yu, G., Hoze, N., Rolff, J. & Regoes, R. R. Antimicrobial combinations: Bliss independence and Loewe additivity derived from mechanistic multi-hit models. Phil. Trans. R. Soc. B 371, 20150294 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016). This paper summarizes and synthesizes the complex interaction landscape of synergistic and antagonistic antibiotic combinations.

    PubMed  PubMed Central  Google Scholar 

  39. Yeh, P. & Kishony, R. Networks from drug-drug surfaces. Mol. Syst. Biol. 3, 85 (2007).

    PubMed  PubMed Central  Google Scholar 

  40. Chait, R., Craney, A. & Kishony, R. Antibiotic interactions that select against resistance. Nature 446, 668–671 (2007).

    CAS  PubMed  Google Scholar 

  41. Hegreness, M., Shoresh, N., Damian, D., Hartl, D. & Kishony, R. Accelerated evolution of resistance in multidrug environments. Proc. Natl Acad. Sci. USA 105, 13977–13981 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl Acad. Sci. USA 111, 14494–14499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Russ, D. & Kishony, R. The null additivity of multi-drug combinations. Preprint at bioRxiv https://www.biorxiv.org/content/early/2017/12/25/239517 (2018).

  44. Beppler, C. et al. When more is less: emergent suppressive interactions in three-drug combinations. BMC Microbiol. 17, 107 (2017).

    PubMed  PubMed Central  Google Scholar 

  45. Tekin, E. et al. Enhanced identification of synergistic and antagonistic emergent interactions among three or more drugs. J. R. Soc. Interface 13, 20160332 (2016).

    PubMed  PubMed Central  Google Scholar 

  46. Tekin, E. et al. Prevalence and patterns of higher-order drug interactions in Escherichia coli. NPJ Syst. Biol. Appl. 4, 31 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Torella, J. P., Chait, R. & Kishony, R. Optimal drug synergy in antimicrobial treatments. PLOS Comput. Biol. 6, e1000796 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. MacNair, C. R. et al. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun. 9, 458 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Johnston, N. J., Mukhtar, T. A. & Wright, G. D. Streptogramin antibiotics: mode of action and resistance. Curr. Drug Targets 3, 335–344 (2002).

    CAS  PubMed  Google Scholar 

  50. Berditsch, M. et al. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 59, 5288–5296 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Booth, J. H., Benrimoj, S. I. & Nimmo, G. R. In vitro interactions of neomycin sulfate, bacitracin, and polymyxin B sulfate. Int. J. Dermatol. 33, 517–520 (1994).

    CAS  PubMed  Google Scholar 

  52. Berdy, J. Bioactive microbial metabolites. J. Antibiot. 58, 1–26 (2005).

    CAS  Google Scholar 

  53. Gonzalez-Bello, C. Antibiotic adjuvants — a strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 27, 4221–4228 (2017).

    CAS  PubMed  Google Scholar 

  54. Kalan, L. & Wright, G. D. Antibiotic adjuvants: multicomponent anti-infective strategies. Expert Rev. Mol. Med. 13, e5 (2011).

    PubMed  Google Scholar 

  55. Worthington, R. J. & Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 31, 177–184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Wright, G. D. Antibiotic adjuvants: rescuing antibiotics from resistance. Trends Microbiol. 24, 862–871 (2016). This article classifies the different adjuvants.

    CAS  PubMed  Google Scholar 

  57. Brown, D. Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat. Rev. Drug Discov. 14, 821–832 (2015).

    CAS  PubMed  Google Scholar 

  58. Podolsky, S. H. The Antibiotic Era: Reform, Resistance, and the Pursuit of a Rational Therapeutics (Johns Hopkins Univ. Press, 2015).

  59. Drawz, S. M. & Bonomo, R. A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160–201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, G. et al. Targeting the adaptability of heterogeneous aneuploids. Cell 160, 771–784 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bush, K. & Bradford, P. A. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb. Perspect. Med. 6, a025247 (2016). This paper provides a comprehensive summary of syncretic β-lactam–β-lactamase inhibitor combinations.

    PubMed  PubMed Central  Google Scholar 

  62. Rotondo, C. M. & Wright, G. D. Inhibitors of metallo-β-lactamases. Curr. Opin. Microbiol. 39, 96–105 (2017).

    CAS  PubMed  Google Scholar 

  63. Allen, N. E., Alborn, W. E. Jr, Hobbs, J. N. Jr & Kirst, H. A. 7-Hydroxytropolone: an inhibitor of aminoglycoside-2”-O-adenylyltransferase. Antimicrob. Agents Chemother. 22, 824–831 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Daigle, D. M., McKay, G. A. & Wright, G. D. Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J. Biol. Chem. 272, 24755–24758 (1997).

    CAS  PubMed  Google Scholar 

  65. Shakya, T. et al. A small molecule discrimination map of the antibiotic resistance kinome. Chem. Biol. 18, 1591–1601 (2011).

    CAS  PubMed  Google Scholar 

  66. Stogios, P. J. et al. Structure-guided optimization of protein kinase inhibitors reverses aminoglycoside antibiotic resistance. Biochem. J. 454, 191–200 (2013).

    CAS  PubMed  Google Scholar 

  67. Clancy, J. et al. Assays to detect and characterize synthetic agents that inhibit the ErmC methyltransferase. J. Antibiot. 48, 1273–1279 (1995).

    CAS  Google Scholar 

  68. Feder, M. et al. Virtual screening and experimental verification to identify potential inhibitors of the ErmC methyltransferase responsible for bacterial resistance against macrolide antibiotics. ChemMedChem 3, 316–322 (2008).

    CAS  PubMed  Google Scholar 

  69. Hajduk, P. J. et al. Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis. J. Med. Chem. 42, 3852–3859 (1999).

    CAS  PubMed  Google Scholar 

  70. Li, X. Z., Plesiat, P. & Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28, 337–418 (2015). This article provides an effective overview of efflux pump biochemistry, structural biology and the barriers to inhibition.

    PubMed  PubMed Central  Google Scholar 

  71. Nikaido, H. & Pages, J. M. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev. 36, 340–363 (2012).

    CAS  PubMed  Google Scholar 

  72. Stavri, M., Piddock, L. J. & Gibbons, S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 59, 1247–1260 (2007).

    CAS  PubMed  Google Scholar 

  73. Neyfakh, A. A., Borsch, C. M. & Kaatz, G. W. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother. 37, 128–129 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A. & Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl Acad. Sci. USA 97, 1433–1437 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kalle, A. M. & Rizvi, A. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrob. Agents Chemother. 55, 439–442 (2011).

    CAS  PubMed  Google Scholar 

  76. Lomovskaya, O. et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother. 45, 105–116 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kern, W. V. et al. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J. Antimicrob. Chemother. 57, 339–343 (2006).

    CAS  PubMed  Google Scholar 

  78. Sjuts, H. et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc. Natl Acad. Sci. USA 113, 3509–3514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Takatsuka, Y., Chen, C. & Nikaido, H. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc. Natl Acad. Sci. USA 107, 6559–6565 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lamers, R. P., Cavallari, J. F. & Burrows, L. L. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAbetaN) permeabilizes the outer membrane of gram-negative bacteria. PLOS ONE 8, e60666 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Abdali, N. et al. Reviving antibiotics: efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrAB-TolC multidrug efflux pump. ACS Infect. Dis. 3, 89–98 (2017).

    CAS  PubMed  Google Scholar 

  82. Rancati, G., Moffat, J., Typas, A. & Pavelka, N. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34–49 (2018).

    CAS  PubMed  Google Scholar 

  83. Tommasi, R., Brown, D. G., Walkup, G. K., Manchester, J. I. & Miller, A. A. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug Discov. 14, 529–542 (2015).

    CAS  PubMed  Google Scholar 

  84. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    CAS  PubMed  Google Scholar 

  85. Gavin, A. C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    CAS  PubMed  Google Scholar 

  86. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    CAS  PubMed  Google Scholar 

  87. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    CAS  PubMed  Google Scholar 

  88. Babu, M. et al. Quantitative genome-wide genetic interaction screens reveal global epistatic relationships of protein complexes in. Escherichia coli. PLOS Genet. 10, e1004120 (2014). This paper reports the first genome-wide screen for synthetic lethal genetic interactions in E. coli.

    PubMed  Google Scholar 

  89. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537 (2005). This article reports the first comprehensive protein interaction network by mass spectrometry of protein complexes in E. coli.

    CAS  PubMed  Google Scholar 

  90. Fischer, B. et al. A map of directional genetic interactions in a metazoan cell. eLife 4, e05464 (2015).

    PubMed Central  Google Scholar 

  91. Nijman, S. M. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 585, 1–6 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Roemer, T. & Boone, C. Systems-level antimicrobial drug and drug synergy discovery. Nat. Chem. Biol. 9, 222–231 (2013).

    CAS  PubMed  Google Scholar 

  93. Sharom, J. R., Bellows, D. S. & Tyers, M. From large networks to small molecules. Curr. Opin. Chem. Biol. 8, 81–90 (2004).

    CAS  PubMed  Google Scholar 

  94. Bridges, C. B. The origin of variations in sexual and sex-limited characters. Am. Nat. 56, 51–63 (1922).

    Google Scholar 

  95. Dobzhansky, T. Genetics of natural populations; recombination and variability in populations of Drosophila pseudoobscura. Genetics 31, 269–290 (1946).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hartman, J. L. IV, Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    CAS  PubMed  Google Scholar 

  97. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016). This paper comprehensively demonstrates that synthetic lethal gene pairs vastly exceed essential genes.

    PubMed  PubMed Central  Google Scholar 

  98. Davierwala, A. P. et al. The synthetic genetic interaction spectrum of essential genes. Nat. Genet. 37, 1147–1152 (2005).

    CAS  PubMed  Google Scholar 

  99. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed  PubMed Central  Google Scholar 

  100. Kim, D. U. et al. Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat. Biotechnol. 28, 617–623 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Dixon, S. J. et al. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl Acad. Sci. USA 105, 16653–16658 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Ryan, C. J. et al. Hierarchical modularity and the evolution of genetic interactomes across species. Mol. Cell 46, 691–704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Frost, A. et al. Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 149, 1339–1352 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dowell, R. D. et al. Genotype to phenotype: a complex problem. Science 328, 469 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cokol, M. et al. Systematic exploration of synergistic drug pairs. Mol. Syst. Biol. 7, 544 (2011).

    PubMed  PubMed Central  Google Scholar 

  106. Spitzer, M. et al. Cross-species discovery of syncretic drug combinations that potentiate the antifungal fluconazole. Mol. Syst. Biol. 7, 499 (2011).

    PubMed  PubMed Central  Google Scholar 

  107. French, S. et al. A robust platform for chemical genomics in bacterial systems. Mol. Biol. Cell 27, 1015–1025 (2016). This article presents a comprehensive mapping of the antibiotic synthetic chemical lethality landscape in E. coli.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu, A. et al. Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob. Agents Chemother. 54, 1393–1403 (2010). This paper presents the first systematic screen for the synthetic chemical lethality of antibiotics.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Price, M. N. et al. Mutant phenoClasss for thousands of bacterial genes of unknown function. Nature 557, 503–509 (2018).

    CAS  PubMed  Google Scholar 

  110. Yang, J. H., Bening, S. C. & Collins, J. J. Antibiotic efficacy-context matters. Curr. Opin. Microbiol. 39, 73–80 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Wambaugh, M. A., Shakya, V. P. S., Lewis, A. J., Mulvey, M. A. & Brown, J. C. S. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance. PLOS Biol. 15, e2001644 (2017).

    PubMed  PubMed Central  Google Scholar 

  112. Chandrasekaran, S. et al. Chemogenomics and orthology-based design of antibiotic combination therapies. Mol. Syst. Biol. 12, 872 (2016).

    PubMed  PubMed Central  Google Scholar 

  113. Ejim, L. et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol. 7, 348–350 (2011). This study provides proof of concept of screens for syncretic antibiotic combinations to identify novel chemical interactions in multiple antibiotic species.

    CAS  PubMed  Google Scholar 

  114. Gill, E. E., Franco, O. L. & Hancock, R. E. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem. Biol. Drug Des. 85, 56–78 (2015).

    CAS  PubMed  Google Scholar 

  115. Cassone, M. & Otvos, L. Jr. Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev. Anti Infect. Ther. 8, 703–716 (2010).

    CAS  PubMed  Google Scholar 

  116. Park, Y., Kim, H. J. & Hahm, K. S. Antibacterial synergism of novel antibiotic peptides with chloramphenicol. Biochem. Biophys. Res. Commun. 321, 109–115 (2004).

    CAS  PubMed  Google Scholar 

  117. Wu, X. et al. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des. Devel. Ther. 11, 939–946 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Reffuveille, F., de la Fuente-Nunez, C., Mansour, S. & Hancock, R. E. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob. Agents Chemother. 58, 5363–5371 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Boehr, D. D. et al. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem. Biol. 10, 189–196 (2003).

    CAS  PubMed  Google Scholar 

  120. Hancock, R. E., Nijnik, A. & Philpott, D. J. Modulating immunity as a therapy for bacterial infections. Nat. Rev. Microbiol. 10, 243–254 (2012).

    CAS  PubMed  Google Scholar 

  121. Perry, J. A. et al. A macrophage-stimulating compound from a screen of microbial natural products. J. Antibiot. 68, 40–46 (2015).

    CAS  Google Scholar 

  122. Yang, J. H. et al. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22, 757–765 (2017). This paper describes the effect of antibiotics on host biology and offers a new target for type II antibiotic adjuvants.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Piotrowski, J. S. et al. Functional annotation of chemical libraries across diverse biological processes. Nat. Chem. Biol. 13, 982–993 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zlitni, S., Ferruccio, L. F. & Brown, E. D. Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nat. Chem. Biol. 9, 796–804 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Langlais, D., Fodil, N. & Gros, P. Genetics of infectious and inflammatory diseases: overlapping discoveries from association and exome-sequencing studies. Annu. Rev. Immunol. 35, 1–30 (2017).

    CAS  PubMed  Google Scholar 

  126. Quebatte, M. & Dehio, C. Systems-level interference strategies to decipher host factors involved in bacterial pathogen interaction: from RNAi to CRISPRi. Curr. Opin. Microbiol. 39, 34–41 (2017).

    CAS  PubMed  Google Scholar 

  127. Sedlyarov, V. et al. The bicarbonate transporter SLC4A7 plays a key role in macrophage phagosome acidification. Cell Host Microbe 23, 766–774 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Virreira Winter, S., Zychlinsky, A. & Bardoel, B. W. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus alpha-hemolysin-mediated toxicity. Sci. Rep. 6, 24242 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science 360, eaao1729 (2018). This first systematic analysis of higher-order genetic interactions suggests that ternary synthetic lethal interactions may be 100-fold more prevalent than binary interactions.

    PubMed  PubMed Central  Google Scholar 

  130. Robbins, N. et al. An antifungal combination matrix identifies a rich pool of adjuvant molecules that enhance drug activity against diverse fungal pathogens. Cell Rep. 13, 1481–1492 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Postma, N., Kiers, D. & Pickkers, P. The challenge of Clostridium difficile infection: overview of clinical manifestations, diagnostic tools and therapeutic options. Int. J. Antimicrob. Agents 46, S47–S50 (2015).

    CAS  PubMed  Google Scholar 

  132. Broadfoot, M. A delicate balance. Science 360, 18–20 (2018).

    CAS  PubMed  Google Scholar 

  133. Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kroiss, J. et al. Symbiotic Streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nat. Chem. Biol. 6, 261–263 (2010).

    CAS  PubMed  Google Scholar 

  135. Wildenhain, J. et al. Prediction of synergism from chemical-genetic interactions by machine learning. Cell Syst. 1, 383–395 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wildenhain, J. et al. Systematic chemical-genetic and chemical-chemical interaction datasets for prediction of compound synergism. Sci. Data 3, 160095 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bansal, M. et al. A community computational challenge to predict the activity of pairs of compounds. Nat. Biotechnol. 32, 1213–1222 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Feala, J. D. et al. Systems approaches and algorithms for discovery of combinatorial therapies. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 181–193 (2010).

    PubMed  Google Scholar 

  139. Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Aziz, R. K. et al. Systems biology-guided identification of synthetic lethal gene pairs and its potential use to discover antibiotic combinations. Sci. Rep. 5, 16025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Drouin, A. et al. Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons. BMC Genomics 17, 754 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Drusano, G. L., Hope, W., MacGowan, A. & Louie, A. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 2. Antimicrob. Agents Chemother. 60, 1194–1201 (2015).

    CAS  PubMed  Google Scholar 

  143. Drusano, G. L., Louie, A., MacGowan, A. & Hope, W. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 1. Antimicrob. Agents Chemother. 60, 1183–1193 (2015).

    CAS  PubMed  Google Scholar 

  144. Parkes, A. L. & Yule, I. A. Hybrid antibiotics — clinical progress and novel designs. Expert Opin. Drug Discov. 11, 665–680 (2016).

    CAS  PubMed  Google Scholar 

  145. Wang, K. K. et al. A hybrid drug limits resistance by evading the action of the multiple antibiotic resistance pathway. Mol. Biol. Evol. 33, 492–500 (2016).

    CAS  PubMed  Google Scholar 

  146. Mukhtar, T. A., Koteva, K. P. & Wright, G. D. Chimeric streptogramin-tyrocidine antibiotics that overcome streptogramin resistance. Chem. Biol. 12, 229–235 (2005).

    CAS  PubMed  Google Scholar 

  147. Singh, S. B., Young, K. & Silver, L. L. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem. Pharmacol. 133, 63–73 (2017).

    CAS  PubMed  Google Scholar 

  148. Fisher, J. F., Meroueh, S. O. & Mobashery, S. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev. 105, 395–424 (2005).

    CAS  PubMed  Google Scholar 

  149. Brown, A. G. et al. Naturally-occurring β-lactamase inhibitors with antibacterial activity. J. Antibiot. 29, 668–669 (1976).

    CAS  Google Scholar 

  150. Bush, K. Game changers: new β-lactamase inhibitor combinations targeting antibiotic resistance in Gram-negative bacteria. ACS Infect. Dis. 4, 84–87 (2018).

    CAS  PubMed  Google Scholar 

  151. King, A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Boehr, D. D., Lane, W. S. & Wright, G. D. Active site labeling of the gentamicin resistance enzyme AAC(6′)-APH(2”) by the lipid kinase inhibitor wortmannin. Chem. Biol. 8, 791–800 (2001).

    CAS  PubMed  Google Scholar 

  153. Markham, P. N., Westhaus, E., Klyachko, K., Johnson, M. E. & Neyfakh, A. A. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother. 43, 2404–2408 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Brackett, C. M. et al. Small-molecule suppression of β-lactam resistance in multidrug-resistant gram-negative pathogens. J. Med. Chem. 57, 7450–7458 (2014).

    CAS  PubMed  Google Scholar 

  155. Nguyen, T. V. et al. The discovery of 2-aminobenzimidazoles that sensitize Mycobacterium smegmatis and M. tuberculosis to β-lactam antibiotics in a pattern distinct from β-lactamase inhibitors. Angew. Chem. Int. Ed. 56, 3940–3944 (2017).

    CAS  Google Scholar 

  156. Rogers, S. A., Bero, J. D. & Melander, C. Chemical synthesis and biological screening of 2-aminoimidazole-based bacterial and fungal antibiofilm agents. Chembiochem 11, 396–410 (2010).

    CAS  PubMed  Google Scholar 

  157. Worthington, R. J., Bunders, C. A., Reed, C. S. & Melander, C. Small molecule suppression of carbapenem resistance in NDM-1 producing Klebsiella pneumoniae. ACS Med. Chem. Lett. 3, 357–361 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Taylor, P. L., Rossi, L., De Pascale, G. & Wright, G. D. A forward chemical screen identifies antibiotic adjuvants in. Escherichia coli. ACS Chem. Biol. 7, 1547–1555 (2012).

    CAS  PubMed  Google Scholar 

  159. Farha, M. A. et al. Inhibition of WTA synthesis blocks the cooperative action of PBPs and sensitizes MRSA to β-lactams. ACS Chem. Biol. 8, 226–233 (2013).

    CAS  PubMed  Google Scholar 

  160. Wang, H. et al. Discovery of wall teichoic acid inhibitors as potential anti-MRSA β-lactam combination agents. Chem. Biol. 20, 272–284 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Lee, S. H. et al. TarO-specific inhibitors of wall teichoic acid biosynthesis restore beta-lactam efficacy against methicillin-resistant staphylococci. Sci. Transl Med. 8, 329ra32 (2016).

    PubMed  Google Scholar 

  162. Mann, P. A. et al. Murgocil is a highly bioactive staphylococcal-specific inhibitor of the peptidoglycan glycosyltransferase enzyme MurG. ACS Chem. Biol. 8, 2442–2451 (2013).

    CAS  PubMed  Google Scholar 

  163. Farha, M. A. et al. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Proc. Natl Acad. Sci. USA 112, 11048–11053 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Tran, T. B. et al. Anthelmintic closantel enhances bacterial killing of polymyxin B against multidrug-resistant Acinetobacter baumannii. J. Antibiot. 69, 415–421 (2016).

    CAS  Google Scholar 

  165. Brochmann, R. P., Helmfrid, A., Jana, B., Magnowska, Z. & Guardabassi, L. Antimicrobial synergy between carprofen and doxycycline against methicillin-resistant Staphylococcus pseudintermedius ST71. BMC Vet. Res. 12, 126 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. Stokes, J. M. et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat. Microbiol. 2, 17028 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the Canadian Institutes of Health Research, the Ontario Research Fund, the Bill and Melinda Gates Foundation and the Canada Research Chairs programme. The authors thank E. Brown for terrifically generous and valuable discussions together with M. Spitzer and J. Wildenhain for inspired conversations on machine-learning-based predictions of chemical synergism. C. Groves provided excellent assistance in preparation of figure 2.

Reviewer information

Nature Reviews Microbiology thanks A. Typas and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

M.T. and G.D.W. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Gerard D. Wright.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PEW Trust: http://www.pewtrusts.org/en/multimedia/data-visualizations/2014/antibiotics-currently-in-clinical-development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyers, M., Wright, G.D. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol 17, 141–155 (2019). https://doi.org/10.1038/s41579-018-0141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-018-0141-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing